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ABSTRACT: 

     Sugar beet yields in England are expected to increase in the future, due to the 
advances in plant breeding and agronomic progress, but the intra-field variation in 
yield due to the variability in biotic and abiotic factors should not be ignored. This 
paper explores the spatial variation in the field in relation to sugar beet growth 
and yield. It also investigates the possibility of anticipating spatial variation in 
sugar beet yield based on early assessment of crop biomass. For this study 91 
plots were placed in an irregular grid in a 9 ha sugar beet field located in the east 
of England. The results indicate significant spatial variation in final root yield 
from 36.5 to 89.5 t/ha across the field. The sampling protocol followed in this 
field was sufficient to describe the majority of the variation. Some of the observed 
variation related to the soil moisture and soil organic matter. The spatial variation 
in root yield at final harvest was correlated with the variation in Leaf Area Index 
(LAI) measured in July. Therefore variations in LAI observed early in the 
growing season were a good predictor of the final economic yield of sugar. In 
addition, preliminary results in two other fields also indicate a significant 
relationship between the yield map of sugar beet crop and the map of previous 
crop (winter wheat). These results indicate the feasibility of predicting the 
variation in sugar beet yield from the yield map of previous crop together with 
early LAI of the sugar beet crop. 
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INTRODUCTION: 

 

     Conventionally, agricultural fields are managed with uniform application of 
tillage and agronomic inputs. In addition to potential adverse effects on the 
environment, this approach may increase the costs of production and waste the 
natural resources (Montanari et al., 2012), because environmental variables are 
never uniform even at the field scale, so that crop development and yield vary 
spatially (Hedge, 2013). This variability could be managed by applying the right 
amount of inputs in the right place at the right time in order to optimize benefits, 
increase sustainability and decrease adverse environmental impact (Mondal et al., 
2011, Najafabadi et al., 2011). Factors such as soil fertility, pH, water deficit, 
weeds, pests and diseases could be managed spatially, while others such as soil 
texture, topography and climate cannot (Sadler et al., 1998, Frogbrook, 2002).  

    Sugar beet (Beta vulgaris L.), along with sugar cane are the two main global 
sources of sucrose, for which there is a large global market of high economic 
importance. Sugar beet currently supplies approximately 40 million tonnes of 
sucrose annually which represents about 30 % of global demand (Draycottand 
Christenson, 2003). In 2010-2011 sugar beet occupied approximately 3% of the 
UK arable land, and this produced around 1.3 million tonnes of sugar with an 
average root yield of 75 t/ha (Limb, 2012). During the last four decades the sugar 
beet yield per hectare in the UK has increased significantly as a result of 
improvements in sugar beet varieties and agronomy (Jaggard et al., 2007) and this 
is expected to continue in the future (Richter et al., 2006).  However, sugar beet 
growers face various challenges such as the recent changes in weather which are 
outside the grower’s control, while plant nutrients can be added to achieve 
significant benefits (Draycott and Christenson, 2003). Perhaps the most important 
factor in northern Europe now and in the future is the soil moisture, since most 
sugar beet is rain-fed (Freckleton et al., 1999), while in the Mediterranean region 
the effect of temperature on sugar beet yield could be greater than the effect of 
drought, due to the increase in the evapotranspiration rate (Abd-El-Motagally, 
2004). 
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     The variation within regions and even within fields is, however, expected to be 
higher than the variation between regions due to the variability in soil properties 
(Richter et al., 2006). Therefore identifying spatial variation in environmental 
conditions could provide important information for water  and  nutrient  
management  and  fertilizer  application  in  sugar  beet  fields  (Montanari et al., 
2012, 6D÷ODP et al., 2011). Some studies have attributed the within-field variation 
in crop yield to one or few factors such as soil texture and soil organic matter 
(Shaner et al., 2008) and nutrients (Vanek et al., 2008) which have a significant 
effect on crop yield.  Variation in the proportion of sand and stones can cause 
spatially variable wilting in the sugar beet crop (Zhang et al., 2011). Others have 
referred to some variables such as the diffusion of water and nutrient, which are 
quite complex and difficult to investigate (Lark, 2012). Since the within-field 
variation could be due the combined influence of different soil and micro-climate 
factors, it is quite difficult to isolate the effect of a single environmental factor. In 
addition, crop  stress  is  usually  observed  and  treated  when  it  becomes  visible 
by which time the  damage has already  occurred  and  the crop may not  be fully 
recover (Bouma, 1997). Therefore anticipating the spatial  variability  in  sugar  
beet  yield early  in  the  growing  season is also important  as  it  might help the 
farmers avoid  or  mitigate  the  damage before it occurs.   
     The overall objectives are to assess the spatial correlation of sugar beet yield 
with measured variables and also with the yield map of the immediately preceding 
winter wheat crop. 
 

 

RESEARCH METHODOLOGY: 

 

Research site and measurements: 
 

     The study was conducted in three sugar beet fields located in the east of 
England, but only the results of one field are presented in this paper. The field 
called White Patch with area of 9 ha is located in Broom’s Barn Research 
Station and it was selected on basis of known intra-field variability in soil 
type, aspect and the perception that there is likely to be significant spatial 
variation in factors deemed likely to be important as driving variables. 
According to a previous soil analysis at Broom’s Barn using a regular 40x40 
m soil sampling grid (5 per ha), the White Patch field has three different soil 
types; loam, sandy clay loam and, sandy loam (Draycott and Evans, 2012). 
This information provided an initial picture of spatial variation to identify the 
number and the allocation of samples needed in the present study (Webster 
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and Lark, 2012). All field operations were uniform across the field and with 
farmer responsibility for all operations. The field was drilled in 23March2012 
and the variety of sugar beet planted was Valeska. Parts of the field were 
excluded from the study due to the presence of other experiments, but a 
suitable number of plots were identified to represent the different soil types. 
The sampling scheme was an irregular grid in two dimensions and the 
sampling intervals for main plots ranged between 24 to 40m. To reveal the 
variation over shorter distances and the nugget effect, some nested samples 
with 10 m intervals were identified purposively within each soil type (Fig.1) 
(Webster and Oliver, 2007, Webster and Lark, 2012). The area of each plot 
was 2x2 m, and a differential Global Positioning System (dGPS) was used for 
georeferencing the plots. All the soil and plant samples, microclimate and 
other measurements were taken from these plots. The plots were harvested by 
hand on 25 September 2012 and the samples sent to the British Sugar factory 
in Wissington for analysis in exactly the same way as for commercial farmers. 

 

 

 

Figure. 1.The field map and the position of samples in White Patch field, 
near Bury St Edmunds, England shown on a Google Earth satellite image. 
Field size is 300×300 m. 
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Geostatistical analysis: 
     The data for each variable were examined by histogram and skewness 
coefficient to detect any departure from normality, because the variogram is 
sensitive to asymmetry (Kerry and Oliver 2007). The experimental variograms 
which can explain the spatial variation were calculated for each variable by 
Matheron’s Methods of Moment (MoM) and fitted by a suitable model using 
GenStat software (Webster and Oliver 2007).  

      For Kriging interpolation, the model parameters with the original set of data 
were then passed to ArcGIS software to create a predicted map using the 
geostatistical analyst tool available in ArcGIS software to show the scales of 
within-field variation. 

 
RESULTS: 

 
      The summary statistics of the studied parameters (Table1) showed a low 
coefficient of skewness. These variables were therefore normally distributed 
which is desirable for geostatistical analysis (Montanari et al., 2012). The 
coefficients of variation (%CV) which indicates how the spatial variation differed 
from one variable to another and ranged between 32% for LAI and 15% for 
organic matter (Table1). The preliminary results of geostatistical analysis showed 
that all the variables, for which results are presented here, varied spatially 
(Table2). The variogram shapes and the fitted model differed considerably from 
one variable to another (Fig 2, A-D). A spherical model gave the best fit to LAI 
and root yield, an exponential one to soil organic matter, and circular model to 
soil moisture. However, most of these variograms reached their upper limit (sill) 
which means the variation in these properties is patchy producing areas with high 
value and others with low values (Frogbrook et al., 2002). Since the variograms 
eventually stabilized with lag distance (Fig 2), the sampling protocol accounted 
for the majority of spatial variation in the field. As the variograms indicate the 
patchy variation, the average extent of these patches which is determined by the 
range of the variogram also differed between the studied variables. It was as long 
as 132.9 m for soil moisture and as short as 22.9 m for soil organic matter, and it 
ranged between these values for other variables. The degree of spatial dependency 
which can be computed as a proportional ratio of nugget to sill semi-variances 
was very strong for all the studied variables (Table 2).  
 

Variation in organic matter and soil moisture: 
 
     The maps created based on ordinary kriging interpolation show considerable 
spatial variation in soil organic matter and soil moisture. The areas of low and 
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high values of these variables were distributed as patches with some differences in 
average extent of the patches (Fig 3, A and B). The percentage of organic matter 
significantly varied throughout the field from 1.9 to 3.6% and soil moisture from 
0.14 to 0.39 (Table 1). Most of the area of high organic matter and soil moisture 
was from the west toward the middle of the field which is almost the same area of 
loamy soil in the previous soil map of this field. Some areas of low organic matter 
were also associated with low soil moisture content with a correlation coefficient 
of 0.37 (Table 3). The area of low soil moisture appeared as a continuous patch 
from the southeast corner toward the north and this patch was discontinuous for 
organic matter (Figure 4 A and B).  
 

Sugar yield t/ha and yield value £/ha 
 

     Associated with the spatial variation in soil organic matter and soil moisture, 
significant variation was also observed in LAI during July and consequently the 
root varied at final harvest from 36.5 to 89.5 t/ha  (Table 1).  

 
 
Table1. Summary statistics for some studied variables. 

 
 
Table2. The fitted model and their main parameters for studied variables. 

 
 
     Table3. The correlation coefficients between studied variables. 

Variable Mean Minimum Maximum  C.V% Skewness 
Organic matter, % 3.4 1.9 3.6 15 0.47 
Soil moisture  0.46 0.14 0.39 21 0.60 
Leaf area index 1.9 0.77 3.45 32 0.42 
Root yield, t/ha  58.8 36.5 89.5 21 0.43 

Variables Model Sill  Range, m Nugget  Spatial dependency 
Organic matter, % exponential 0.18 22.9 0.078 0.33 
Soil moisture  circular 0.0025 13.9 0.00012 4.6 
Leaf area index  spherical 0.27 77.4 0.081 23 
Root yield, t/ha  spherical 135.5 105.5 9.9 0.08 

   Organic matter, % Soil moisture Leaf area index 
Organic matter, % -   
Soil moisture  0.37 -  
Leaf area index 0.28 0.45 - 
Root yield, t/ha 0.48 0.36 0.43 
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The variation in root yield only reached its maximum variance (135.5) over long 
range (105.5 m, Table 2). The areas of low LAI were generally in areas of low 
soil moisture and organic matter (Figure 3, B-C) with correlation coefficients of 
0.45 and 0.28 respectively (Table 3). These areas were also associated with low 
root yield (Figure 3, D) with correlation coefficients of 0.36 and 0.48 
respectively with soil moisture and organic matter (Table 3).  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

   
 
 
 
 
 
 
 

 
 
 
 

Figure 2. Experimental variograms for (A) organic matter, %, (B) soil 
moisture in July 2012, (C) leaf area index in July 2012 and (D) sugar beet 

root yield, t/ha, at harvest in September 2012. 
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Figure 3.Kriged maps for (A) soil organic matter, %, (B) soil moisture in 
July 2012, (C) leaf area index in July 2012 and (D) sugar beet root yield, t/ha, 
at harvest in September 2012 
 
 
The areas of high root yield were associated with some areas of high organic 
matter and were located in the western part of the field toward northeast. The 
variations in sugar beet root approximately followed the same patterns of spatial 
variation as LAI measured in July (Fig. 3 C , D) with a correlation coefficient of 
0.43 (Table 3). 
Results in two other fields of sugar beet showed significant relationship between 
the yield map of sugar beet and the yield map of previous crop (data not shown). 
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DISCUSSION: 
  

     The variation in crop yield and some associated variables to some extent 
followed the same patterns and distributed as a patches of low and high values. 
However the average extents of these patches differed from one variable to 
another. The areas of high soil moisture and soil organic matter corresponded to 
the area of loamy soil in the map produced by Draycott and Evans, (2012), which 
is located in the western part of the field. As a result some areas of high root yield 
were also found in this part and especially associated with areas of high organic 
matter. Therefore mapping soil texture is important for site-specific water and 
nutrient management, because it is strongly related to these variables (Safari et 
al., 2013). The areas of low soil moisture and organic matter were mostly located 
in the southeast corner of the field toward the north and appeared as patches with 
different sizes. These areas were also associated with low LAI and were mostly 
located in the same area of the field where there a slope. Consequently some of 
these areas were also associated with low root yield at final harvest. This indicates 
that field topography could be one of the main driving variables which was 
causing spatial variation in soil forming factors and erosion and this might reflect 
on crop yield (Kumhálová et al., 2008). It can also cause significant variation  in  
solar radiation received which  in turn leads to spatial  variation  in  
microenvironment  such  as  soil  and  air  temperature,  soil   moisture, 
evapotransperation  and photosynthesis  (Fu and Rich, 1999). Although,  it is not 
possible to change the field topography and soil texture by agronomic practice, 
but it can  still be  used  to  understand  the causes of variation  (Godwin  and  
Miller,  2003, Draycott and Christenson, 2003). The variation in root yield 
generally followed the same patterns of the spatial variation in LAI measured in 
July. The areas of high root yield were slightly different, but some of the areas of 
low values were located in the same parts. This indicates the possibility of using 
the spatial variation in LAI observed early in the growing season as a good 
predictor of the final economic yield of sugar. Thus agricultural inputs should 
spatially vary according to these patches and the areas of low LAI should perhaps 
receive more inputs than areas with high values, which may increase the 
uniformity of final economic yield in the field. Moreover a preliminary analysis 
of the relationship between the yield map of sugar beet crop in 2012 and the yield 
map of previous crop (winter wheat) showed a good correlation. This indicates to 
the feasibility of predicting the spatial variation in sugar beet yield from the yield 
map of previous crop.  
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CONCLUSION: 
 

     All the variables studied varied spatially and the sampling protocol followed in 
this field was sufficient to describe the majority of the variation. Some of the 
observed variation in crop growth could be attributed to the variation in soil 
moisture and soil organic matter which in turn were affected by soil texture and 
field topography. The spatial variation in final yield was almost the same as the 
variation in LAI measured in July. Therefore variation in LAI observed early in 
the growing season was good predictor of the final yield of roots.  
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