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ABSTRACT 
 

Unmanned aerial vehicles (UAV) systems could provide an ‘as needed’ 
solution for small-to-medium scale farmers who want to monitor their fields at a 
low altitude with high accuracy frequently. This paper highlights the application 
of UAV systems in container counting and tree counting, which is vital to predict 
the tree density and yield. The main challenge of plant counting comes from the 
severe overlap of adjacent plants. In this paper, two types of crops were discussed. 
One crop is with uniform canopy area (e.g. container plants and citrus trees) and 
another is with non-uniform canopy area (e.g. Christmas trees). For the first type, 
aerial images of container-grown plants with green and yellow foliage were 
acquired with a stable, ground-based boom truck and UAV system. Two different 
index sets, (2*G-R-B) and (R-G)/(R+G) were used to extract the green and yellow 
container plants from background, respectively. A counting algorithm based on 
average canopy area was developed to estimate plant count. The effects of shoot 
height and adjacent plant distance on the accuracy of the algorithm are discussed. 
Further, the algorithm was successfully applied on the panorama images created 
from video file using Microsoft ® ICE software. In this realistic case, there are 
about 22,000 plants in the image and the applied algorithm accurately predicted 
the 22,000 plants within ±5%. This also indicates that the algorithm was 
successful when applied to low-resolution images. In addition, a second algorithm 
was employed which counted plants based on the local maximum value at or near 
the center of coniferous tree. A 3-D intensity distribution of the images showed 
that local maximum of intensity of (R-G) matched well with tree centers. Also, 
minimum distance filter (MDF) and thresholds generated from color component 
histograms were successfully used to remove the falsely identified tree locations. 
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INTRODUCTION 
 

Tree inventory is a diverse research topic which mainly focuses on four aspects: 
species (GENTRY, 1988; Williams-Linera, 2002), physical parameter (including 
size, diameter and height) estimate (Næsset, 2001; Popescu, 2003), plant health 
(G. Sepulcre-Cantó, 2006; Sankaran, 2013) and total number of the plants. In this 
paper, we will target our research to tree and nursery number inventory 
management. Research herein will focus on measuring crop inventory using an 
UAV platform, in which researcher will provide an accurate count of field and 
container grown plants.   

Plant inventory management still primarily involves manual counting. Manual 
management is labor-intensive and time consuming, especially for orchards and 
nursery fields with large areas. Due to the time involved in manually counting 
plants, growers often count only a portion of their crop (Hale, 1984). Manual 
counting also prevents producer access to real-time inventory. Variation in worker 
skill level and data collection also results in variable accuracy. When the 
aforementioned errors are compounded it can result in infrequent, inaccurate plant 
counts. 

Remote sensing provides the capability to conduct crop management in a non-
contact way and in real-time. Applying remote sensing technology on tree 
identification and counting has focused on two directions: One is LIDAR or Laser 
scanning, which can be not visualized directly. JANG (2008) used airborne Lidar 
data to retrieve the raster height image of apple tree groves.  Jang then applied the 
local maximum and region growing to delineate individual trees. Similar research 
was conducted by Pouliot (2004) on tree crown detection and delineation based 
on local maximum using digital camera images. Alternatively, others have 
approached identification of plants using visible aerial images. Karantzalos and 
Argiales (2004) used an anisotropic diffusion filter and local spatial maximum of 
the Laplacian to detect well spaced, individual olive trees. Robust counting results 
were obtained for olive trees with non-overlapping canopies. Camargo and 
Mirando (2009) developed an approach to identify, count, and estimate canopy 
diameter of citrus trees within QuickBird satellite images. A k-means algorithm 
was used to extract the tree region before utilizing a generic algorithm to adjust 
the tree position to the tree center and estimate canopy diameter. An overall 
accuracy of approximately 93% was achieved under conditions of low/high tree 
row space and uniform/non-uniform tree size.  

Although remote sensing has proved to be an efficient method in many 
agricultural applications, a suitable choice for aerial platforms is important since it 
is closely related to resolution, monitoring accuracy, time and subsequent cost. 
Grenzdörffer (2008) pointed out that high temporal resolution images are difficult 
and costly to obtain, either by satellite imagery or by conventional airborne data. 
A survey showed that the dominant barrier, which blocks wide application of 
precision agriculture by farmers is cost (Robert, 2002). Meantime, the high 
altitude of conventional platforms makes it difficult to obtain high spatial 
resolution images (2 inches or less). The occurrence of UAV systems greatly 
changed the working mode of conventional systems and exhibited the great 



possibility to provide researcher and crop producers a steady, low-cost aerial 
platform for remote sensing. 

UAV technology is mainly used by the military (>80 %) (UAS, 2007), but the 
civilian application began to take a considerable role in recent years although 
operators must comply Federal Aviation Administration (FAA) regulations to 
operate UAVs in the National Airspace (NAS).  The wide application of UAV in 
agriculture came from three basic considerations: cost, resolution and 
convenience. Sensors on unmanned aerial vehicles (UAVs) could provide low-
cost, high-resolution aerial images resolving major deficiencies of current image 
acquisition systems (Berni, J.et al., 2009) since UAVs can fly at a low altitude, 
close to the object of interest at different positions. Today, even with low cost 
GPS systems, UAVs can be navigated with decimeter accuracy and the 
orientation parameters can be used for navigation (Eisenbeiss, 2004). Other 
features such as vertical take-off (Jame, 1994), way points set in advance, easy to 
repeat flights make it attractive and practical. It is suggested that UAVs are going 
to make a great contribution to regional agricultural resource monitoring (S.R 
Herwitz et al, 2004).  In the recent years, many researches have demonstrated that 
UAVs are a promising technology in agriculture applications (Xiang, 2011; Saari, 
2011; Mäkynen, 2012; Garcia-Ruiz, Sankaran et al. 2013). 

In this paper, we will explore the possibility to adopt a UAV system for tree 
and nursery inventory management. Once it is successful, farmers will be capable 
of monitoring their fields as needed. Image stitching technology and the flexibility 
of mounting a multitude of light-weighted sensors (e.g. digital camera, video 
recorder) on UAV systems could potentially monitor large crop production areas 
in real time. 

 
MATERIAL AND METHODS 

 
Nursery inventory management with uniform canopies 

 
Preliminary test-ground based boom truck for green nursery crops 
management  
 

An articulated boom (Hertz, USA) was used to deploy sensors from 9.14 m to 
24.38 m (30 to 80 ft.) (Fig. 1). Sensors were mounted to an aluminum pole that 
extended 2m horizontally beyond the bucket. Images were taken after a proper 
location was obtained by adjusting the extendable boom. A plumb line was used 
to locate the center of the plant region to guarantee that the image had complete 
coverage of all the plants. 

The digital camera used is a Canon EOS 5D Mark II. It is a 21.1-megapixel 
(5,616 × 3,744 pixels) full-frame, CMOS, digital, single-lens reflex camera.  

 
 

 



 
Fig.  1. Articulated boom.  

 

The experiment was conducted on 13 and 14 November, 2012 at the Citrus 
Research and Education Center (University of Florida, Lake Alfred, FL, USA).  
Region of interest (ROI) was a block of 100 containerized perennial peanut 
(Arachis glabrata) spaced in a 10 x 10 grid. The perennial peanut is fast growing 
crop with a uniform canopy resulting in a regular outline. The black polyethylene 
containers used were blow molded C200 pots with the following specifications: 
volume, 2.03 L; top diameter, 15.24 cm, height, 15.24 cm. Considering the 
altitude range of the articulated boom and the spatial resolution of the images, 
images were taken at the altitudes of 9.14, 12.19, 15.24 and 18.28 m (30, 40, 50, 
and 60 ft.). The container spacing was set as 0, 2.54, 7.62, 12.70, 18.28 and 22.86 
cm (0, 1, 3, 5, 7 and 9 in.), respectively. In total, there were 24 (4 × 6) different 
combined conditions. For each condition, four replicates were taken. In order to 
validate the results, 20 plants were switched with 20 other plants inside the block 
randomly after photographing each replicate. The center plant was marked. 
Before each photo was taken, the operator on the boom would use a plumb line to 
check whether the camera was directly over the center point of a block in order to 
make sure the image did not deviate from the ROI. Although this was done, some 
images still deviated. The deviation reduced the available number of combined 
conditions to 17.  
 
UAV system for commercial nursery field inventory management 

 
An unmanned aerial vehicle (UAV) system was used at altitudes up to 4 km. 

The vehicle was powered by a 6600 mA h lithium ion polymer battery which can 
provide 10 to 20 minutes of flight time, depending on payload. It is capable of 
remaining stable under wind speeds up to 50 km/h (Garcia-Ruiz et al., 2013) 
preventing issues related to vibration causing image distortion. Waypoints can be 
established before or during the flight. A control board was used to trigger the 
sensor aboard the UAV system. 

Two videos were recorded on May 23, 2013 and August 23, 2013 in ground 
field nursery (Cherry Lake Tree Farm, Groveland, Florida) in which crops were 
arranged in a rectangle. The UAV flew at a steady altitude of 31 meters from one 
end to another end (about 50m). The video recorder used was a Sony NEX-5n 
(Sony Corporation of America IR, San Diego, CA) with an 18-55 mm lens. It is 
autofocused and MPEG-4 1,440 x 1,080 was recorded at 30p on NTSC models. 
To guarantee a high overlap of the consecutive frames, the UAV system was 



flying at the speed of 3m/s. An image composite editor (ICE, Microsoft, Inc., 
Seattle, USA) was used to create the panorama image of the nursery field.  

 
UAV system for yellow foliage nursery crops with fabric and gravel 
background (Experiment of University of Arkansas) 

 
Container-grown Fire ChiefTM arborvitae (Thuja occidentalis L.) were spaced 

in staggered rows to achieve three canopy separation treatments: 5 cm between 
canopy edges (5 cm), canopy edges touching (0 cm), and 5 cm of canopy edge 
overlap (-5 cm). For each canopy separation treatment, a set of 64 containers (8 × 
8) was established outdoors on a black polypropylene ground cover (Lumite, Inc., 
Alto, GA) on 14 July, 2013 and on gravel on 13 July, 2013. Treatment sets were 
replicated three times in a randomized complete block design (RCBD) for a total 
of 9 sets of plants. Set number 10 only had 56 plants. Four fully separated plants 
were positioned outside the east edge of the nine sets and were used to train the 
MATLAB algorithm. Shoot height was measured from the substrate surface to the 
top of the plant.  

A Sony NEX-5n 16.1 megapixels color digital frame camera, with an 18-55 
mm lens was used as the sensor. The shooting mode was set for intelligent auto 
resulting in images with an ISO of 200-250, shutter speed of 1/200-1/500, f value 
of 1/7.1-1/8. Autofocusing and aspect ratio of 3:2 were fixed.  

  
Matlab Algorithm 

 
A counting algorithm was written in Matlab (R2013b) based on the assumption 

that canopy area of container-grown plant varies little within block. The basic 
idea is to train the algorithm based on a small number of container-grown plants 
in order to obtain the canopy area of an individual. Once the area of an individual 
is known, then propagate that area information to large plant blocks to estimate 
the number of container-grown plants.  

For image processing in Matlab, we mainly rely on the color and texture 
information to extract and analyze the plants. Color information we adopted to 
extract plants (e.g. yellow plants, green plants) from different background (fabric, 
gravel) is different. Main steps of the algorithm are discussed in the following. 

Step 1-Extract the training plants: In our experiment, we placed 4 individual 
plants outside region of interest (ROI). The 4 plants are separately placed and 
have no overlap with adjacent plants. The first step is to choose the appropriate 
index to extract training plants from background. For green plants, since the green 
component is higher than that of blue and yellow. The value of excess green index 
(2G-B-R) of nursery plants will be larger than that of the background. We took 
advantage of this difference to extract green plant information from background. 
A global threshold was determined to binarize the image. To find a better 
threshold, image enhancement was implemented to improve the image contrast. 
White pixels on result image represent plants, while black pixels represent 
background.  

For yellow plants, the difference of (Red-Green) is smaller than that of the 
background. A normalized index (Red-Green)/(Red+Green) is used to extract the 
plants and binarize the image.  



In practical nursery filed, the spacing of the adjacent crops is significantly 
small and they are squeezed together with severe overlaps. If individual plants are 
taken as training plants. The area cannot represent the true canopy area. Hence we 
randomly chose the training sets from the real fields instead of the individual 
plant training set. Since the commercial nursery fields have green crops, we also 
took index (2G-B-R) to extract the training set. 

Step 2-Post-processing and estimate the canopy area: The canopy area is 
defined as total pixels of one plant in the image. The second step is to estimate 
average canopy area based on 4 individual plants. Before we do the estimation, 
post-processing technology was applied to the result image in step 1 to fill the 
holes inside the plants and remove dots outside the plants that are falsely 
identified as plants. Morphology operation (erosion followed by dilation) is taken 
to deal with this issue. For green plants (in the boom truck system and practical 
field), since index 2G-R-B is capable to distinguish the plants from the 
background, we don't have many falsely identified pixels. After applying 
morphology (erosion followed by dilation) technology, we could generate an 
outcome image shown in Fig. 2a. For yellow plants with fabric background, there 
does not exist many falsely identified pixels outside the plants, morphology 
operation could produce a satisfactory result, similar to Fig. 2a. However, for 
yellow plants with gravel background, there are large yellow elements in the 
gravel background. When we extracted yellow plants from background, these 
elements would also be extracted (Fig. 2b).  Erosion cannot eliminate the falsely 
identified pixels completely (Fig. 2c). We took an area threshold which is set 
based on the altitude of the images to be taken. If the area of the white region is 
smaller than the threshold, the region is removed. Otherwise, it is kept as the plant 
canopy. Average plant canopy (A) is calculated based on remaining white regions.  

Step 3-Extract container-grown plants (ROI) from large block: Since we 
already got the reference canopy area (A) in step 2. The purpose of step 3 is to 
obtain the canopy area of region of interest. Green crops in preliminary 
experiment and commercial field are in a uniform, dark background. Excess green 
index (2G-B-R) was used to extract region of interest from large blocks to be 
counted. 

 
Fig.  2.  (a) Green training plants and yellow training plants with fabric. (b) 

Yellow training plants with gravel background. (c) Result of applying 
morphology to (b) (The smallest region will be removed by area thresholding). 



 
We have two different backgrounds (fabric and gravel) for yellow plants. In 

the case of fabric background, normalized index (Red–Green)/(Red+Green) 
works well to extract plants in large block since we have a uniform black cover. 
However, for gravel background, a lot of pixels were false identifies as plants. If 
these pixels lie outside of the large block, we can eliminate them based on 1) 
morphology technology (discrete pixels or small regions) or 2) thresholding on 
average plant canopy (relatively larger regions but smaller than canopy region). If 
these pixels lies between the plants in the large block, the may result in 
connection two adjacent plants and create an even larger white area which is the 
sum of two or more container-grown plants (Fig. 3a). This cannot be solved by 
the two methods mentioned above. Here, we created an index Dark=3-
(Red+Green+Blue)-30*(Abs(Red-Green)) to extract the dark area between 
adjacent plants. If the pixel is darker, the index is larger. We can create a dark 
pixel map (Fig. 3b) according to this index. Finally, apply the dark map to the 
binarized image created by index (Red-Green)/(Red+Green). This would help to 
remove the false identified pixels among adjacent plants. The result image 
modified by the dark map is shown in Fig. 3c. For comparison purpose, the 
original color image is shown in Fig. 3d. 

     Step 4-Propagate the canopy area (A) in the training set to plants extracted 
in large block then estimate the number of plants (interval counting): With the 
information from step 2 and step 3, our goal here is to provide a relationship 
between A and canopy area of region of interest. Since we assume that the plants 
bear a uniform canopy. We came up a scheme called interval counting to estimate 
the count number based on A. 

 
Fig.  3.  (a) False pixels connect adjacent plants. (b) Dark map. (c) Result image 

after modification. (d) Original color image.  

 



 
 

Fig.  4. (a) Flowchart of the process  (b) Intensity distribution of (G-R) grayscale  
image. 

 
Take A as a basis, if the area of white region is smaller than 0.5×A, then it is 

counted as 0. If the area lies in the range of 0.5×A and 1.0×A, it is counted as 1 
plant. Continue the process until all the white regions are included. Sum up the 
counted plants together which is the total count. 

 
Christmas tree inventory management without uniform canopies 

 
Coniferous trees such as Christmas trees are most easily identified by the cone 

shape. This spatial structure varies the reflectance results in a local maximum 
value at or near the center of trees.  In this section, an image-processing algorithm 
was developed based on this special character in Christmas tree to identify the 
individual trees and count them in an aerial image. For coniferous trees, local 
maximum filtering will be used. A window with fixed size will pass over all the 
pixels and check if a given pixel is with higher reflectance than other pixels 
within the window. Pixels with largest digital number in the window will be 
marked as a tree location. The flowchart of the processing is shown in Fig. 4a.  
 

Matlab Algorithm 
 

Step1-Pre-processing: In order to extract the region of interest and remove 
background, grayscale image of component (G-R) was extracted. Moreover, a 
Gaussian filter was used to remove the noise and smooth image. Fig. 4b shows the 
intensity distribution of the processed image. 

Step 2-Local maximum filter: A window with fixed size (25 pixels*25 pixels) 
will pass over all the pixels and check if a given pixel is with higher reflectance 
than other pixels within the window. Pixels with largest digital number in the 
window will be marked as a tree location.  Tree locations after local maximum 
filter are shown in Fig. 5a.  

Step 3-Minimum distance filter (MDF): After the local maximum filter step, 
we found that one tree was detected many times. This will result in a high 
commission error. To reduce the commission error, a minimum distance filter was 
used. The principle of MDF is that if the distance of two points identified as tree 
locations lies inside a threshold (we pre-set that threshold to 30), then one point 
will be removed. Fig. 5b shows the outcome image after MDF. 



Step 4-Remove false identified tree in background: In Fig. 5b, some locations 
in the background are falsely identified as tree. Here, based on the histogram 
difference of the tree, soil and grass, the false locations in the background are 
removed. Fig. 6 compares histograms of RૠGૠBૠHૠSૠV components of 
trees and background (green represents trees, blue represents background). S 
component of trees and background are fully separated here. If S value of the 
identified location is smaller than 60, it will be removed. Otherwise, it is pertained. 
Fig. 5c shows the outcome image after false tree locations removed. 

 

RESULTS AND DISCUSSION 
 

In this section, we discussed the results consistent with experiments described 
in M&M section. 

 
Nursery inventory management with uniform canopies 

 
Preliminary test-Ground based boom truck for green nursery crops 
management  

 

Fig.  5.  (a) Tree locations identified by local maximum filter. (b) Tree locations 
identified after minimum distance filter. (c) Outcome image after false tree 

locations removed. 

 

 
Fig.  6.  (a-f) Histograms comparison of R, G, B, H, S, V components. 

 



Table 1.  Preliminary counting results using a boom truck  

Height 

(feet) 

Space 

(inch) 

Disk 

size 

Rep1 

count 

Rep2 

count 

Rep3 

count 

Rep4 

count 

Average 

count 

Actual 

count 
Error 

 

 

30 

 

0 3 115.0 114.0 119.0 ------ 116.0 117.0 -0.9% 

1 3 104.0 102.0 104.0 107.0 104.3 104.0 0.2% 

3 3  102.0 102.0 101.0 102.0 101.8 104.0 -2.9% 

5 3 112.0 113.0 116.0 117.0 114.5 104.0 10.0% 

7 3 102.0 100.0 101.0 99.0 100.5 100.0 0.5% 

9 3 100.0 99.0 101.0 100.0 100.0 100.0 0.0% 

 

 

40 

 

 

1 3 105.0 104.0 105.0 105.0 104.8 104.0 0.7% 

3 3 105.0 105.0 105.0 105.0 105.0 104.0 1.0% 

5 2 104.0 103.0 102.0 103.0 103.0 104.0 1.0% 

7 2 105.0 106.0 106.0 105.0 105.5 104.0 0.5% 

9 2 100.0 101.0 100.0 102.0 100.8 100.0 0.8% 

 

50 

 

5 2 99.0 97.0 98.0 99.0 98.3 100.0 -1.8% 

7 2 105.0 105.0 105.0 105.0 105.0 104.0 1.0% 

9 2 105.0 107.0 106.0 106.0 106.0 104.0 1.9% 

 

60 

 

5 2 70.0 69.0 69.0 69.0 69.3 70.0 -1.1% 

7 2 105.0 106.0 106.0 107.0 106.0 104.0 1.9% 

9 2 105.0 106.0 106.0 106.0 106.0 104.0 1.9% 

 

 
Table 1 shows counting results for green foliage nursery crops growing on 

black ground fabric. Images were taken from boom truck. An ANOVA test 
showed that the observed counting and the actual counting were not significantly 
different (Į=0.05).  

 
UAV system for commercial nursery field inventory management 

 
We had more success with stitching from video than static images. The aerial 

picture (Fig. 7a) was created from video file recorded on May 23, 2013. At the 
last block (row 34-47), UAV system was preparing to land. Hence, the flying 
altitude was lower than that of all the previous blocks. Workers counted the 
nursery crops manually and we treated that number as the ground truth that was 
compared to the results from the software. The two crops in the yellow rectangle 
were randomly chosen as training set. The counting result of each block is shown 
in Table 2. 

 
 



 
Fig. 7. Panorama image created by ICE. 

Table 2.  Counting results of the nursery field recorded in May 

Row # Algorithm Count Manual Count 

99-114 495 499 

79-97 514 553 

64-77 464 425 

49-62 429 422 

34-47 489 418 

 
 
From Table 2, we can easily conclude that the counting error of the last block 

was much higher than other blocks. This is because the altitude of aerial platforms 
was lower when the video was recording at the last block. Hence, the number of 
pixels which one nursery crop covers increased. In other words, the canopy area 
of this block was larger than that of other blocks. Hence, if we applied the training 
area calculated by previous blocks, the counting number of the last block will be 
overestimated. This is consistent with what we have observed. 

The count results from the video file recorded on August, 2013 is shown in Fig. 
7b-7d. The count on the side was calculated from our image processing software. 
There were about 22,000 plants in that block (three pictures). The only issue that 
we had was with three blocks in Fig. 7c. For some unknown reason, the plant look 
different (more yellow) and because of that our algorithm didn't work well. If 
these three blocks are included, our count came very close to 22,000 (within five 
percent). This is a realistic case with overlap plant canopy yet the algorithm 
worked reasonably well. It is even hard for human to count these pots  
 

UAV system for yellow foliage nursery crops with fabric and gravel 
background (Experiment of University of Arkansas) 

 
Table 3 shows the counting accuracy of yellow nursery crops on fabric ground 

cover. 
 



Table 3.  Total count errors for container-grown Fire Chief TM arborvitae (Thuja 
occidentalis L.) on a black fabric ground cover using MATLAB. 

Canopy Separation(cm) Counting Accuracy 

5 6% 

0 -5% 

-5 -28% 

A high counting error was occurred when the canopy separation is -5cm. This 
is because for set 3, set 7 and set 9 at each height, the plants in the block are 
severely squeezed. Hence, it is impossible to take the average area of the 4 
individual training plants to represent the area of the plants in the 6*6 block. The 
counting results will be greatly underestimated.  

Here, we exacted the counting results of set 3, set 7 and set 9 and compared 
with ground truth counting. We found out the squeeze ratio (ground 
counting/algorithm counting) is close to a constant in each set, respectively. 
Knowing that, we took that ratio to correct the average area of the 4 training 
plants, the corrected training area is calculated by (average area of 4 plants/ 
squeeze ratio). Table 4 shows the average correction ratio for each severely 
overlapped set. 
     The squeeze ratio was applied to the counting with gravel background. 
Counting accuracy for yellow container plants on gravel is showed in Table 5 
after correction. 
 

Table 4.  Correction ration for different set. 

Set number Correction Ratio 

3 1.34 

7 1.27 

9 1.56 

 

Table 5.  Count errors for container-grown Fire Chief TM arborvitae (Thuja 
occidentalis L.) on gravel as ground cover using MATLAB® 

Canopy separation  

(cm) 

Flight altitude (m) 

6 12 22 

Count error % Count error % Count error % 

5 1 2% 2 3% 3 5% 

0 -2 -3% -5 -8% 0 0% 

-5 2 3% 0 0% 2 3% 



 

 
Fig.  8.  Results for Christmas tree count with non-uniform canopy. (a) Actual 

Counting=86. (b) Algorithm counting=83. (c) Actual Counting=74. (d) Algorithm 
counting=76. 

 
Clearly, after applying the correction factor for plants with canopy separation -

5cm, the counting accuracy improved. This proves again that the training area 
should be consistent with area which is covered by the canopy from the image 
view.  

 
Christmas tree inventory management without uniform canopies 

 
We displayed the original image with manual counting results and outcome 

image with algorithm counting results in Fig. 8. We don’t have many testing 
image available. The red dot in the outcome image represents each tree detected 
by the algorithm.  

In test image 2, we can notice a high commission error. This is because we 
apply a MDF to decrease the commission error. If we set the threshold too large, 
two close trees will be identified as one tree. This will increase the omission error. 
However, if the threshold is too small, one single tree with large canopy area will 
be identified as two or more trees like image 2. The value of the threshold of 
MDF is a trade-off between commission and omission error. 

 
CONCLUSIONS 

  
Two counting algorithm targeting at uniform canopy nursery and non-uniform 

canopy nursery were developed in this paper. We applied uniform counting 
algorithm to aerial images of experimental nursery field with boom truck and 
UAV system. Results were compared with different shooting heights and canopy 
separation distance. Also, algorithm was tested on aerial images of practical 
nursery field stitched from a video. In both case, counting accuracy lies inside 
10%. This indicates that the algorithm works well with high shooting altitude (up 



to 60m), canopy overlapped (with -5cm separation) and low-resolution image 
(created from video). Non-uniform counting algorithm was applied to Christmas 
tree counting. Although we don’t have many test images, the two test cases 
showed that the counting accuracy lies inside 5%. 
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