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ABSTRACT 

      Injury to crops caused by off-target drift of glyphosate can seriously reduce 
growth and yield, and is of great concern to farmers and aerial applicators. 
Determining an indirect method for assessing the levels and extent of crop injury 
could support management decisions. The objectives of this study were to 
evaluate multiple vegetation indices (VIs) as surrogate variables for glyphosate 
injury identification and to evaluate the combined use of Geostatistical methods 
and the VIs to assess the level and extent of crop injury. The experiment 
evaluated glyphosate injury between the cotton and corn crops. Cotton and corn 
were planted on July 23, 2009 in eight row strips spaced 102-cm apart and 80 m 
long with four replications. A single aerial application of glyphosate was made on 
August 12, 2009 using an Air Tractor 402B airplane equipped with fifty-four CP-
09 spray nozzles. Multispectral images were collected from the same airplane 
using a MS 4100 camera at 1, 7, 14 and 21 days after the glyphosate application. 
On the same days as the image collections, plant damage data including visual 
injury ratings, plant height, chlorophyll content and shoot dry weight were 



collected from all eight rows in a 0.5-m-wide band centered over the sampling 
location selected within each experimental unit. Seven VIs, calculated from the 
images, were entered along with the plant damage data into a canonical 
correlation analysis (CCA). Semivariograms were computed for each vegetation 
index/crop and replication. The range of spatial correlation derived from the 
semivariograms was used to evaluate differences in the extent of injury between 
replications and crops/replications. The results suggest that vegetation indices, 
especially the Chlorophyll Vegetation Index (CVI), can be used as surrogate for 
glyphosate injury identification, and the range of spatial correlation indicated the 
extent of crop damage.   
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INTRODUCTION 

Managing aerial herbicide applications is the key to minimizing off-target 
drift of pesticides that could cause crop damage, deposit harmful residues on 
edible crops, and contaminate water supplies. Spray drift of glyphosate, one of the 
most common non-selective herbicides used in row crop production, is of concern 
due to post application consequences such as inhibition of growth, chlorosis at the 
newest growing points, necrosis throughout the entire plant within 1 to 2 weeks 
after application, and yield reduction (Henry et al., 2004). 

Crops often affected by off-target glyphosate drift including corn 
(Buehring et al., 2007; Brown et al., 2009), soybean (Bellaloui et al., 2008), and 
rice (Ellis et al., 2003) have been the target for evaluation of several methods for 
identifying injury or damage. Rowland (2000) found stand height as one of the 
best parameters to identify the degree of glyphosate damage in corn. Raw remote 
sensing data and derived vegetation indices, commonly used to indirectly assess 
differences in growth and chlorophyll content of several crops (Zarco-Tejada et 
al. 2005; Gitelson et al. 2003, Zhang et al. 2009), have been also used to 
determine the extent and location of herbicide injury. Henry et al. (2004), 
comparing herbicide injury of soybean and corn, distinguished healthy and injury 
plants using hyperspectral reflectance and several vegetation indices such as the 
ratio vegetation index and the DINO12, a NDVI-like index comprising a region 
around 2,220 nm. Thelen et al. (2004) found significant differences between 
herbicide or herbicide rate by calculating NDVI from digital aerial images of 
soybean.  

A challenge in detection of herbicide injury by remote sensing is the 
identification of technique used to enhance within-field spatial variability for 
detection of the level and extent of crop injury. Spectral band ratios described as 
vegetation indices have been used to facilitate image classification (Lu and Weng, 
2007). Moreover, vegetation often displays some degree of spatial 
autocorrelation, sometimes at different scales of variation, observed on the 
images. These scales of spatial variation can be detected through the use of 



semivariograms (Matheron, 1963). Within an image, an object’s spectral 
properties (e.g., reflectance respect to the level of leaves’ chlorophyll or amount 
of biomass) are more homogeneous compared with the surrounding features (Jupp 
et al, 1988a, 1988b). Therefore the range of spatial correlation could be used to 
identify specific features within an image. Factorial kriging, a geostatistical 
technique that allows filtering spatial components identified from nested 
variograms, has been used to extract from satellite images scale-dependent 
information of land characteristics related to topography, soil drainage, and land 
use (Meirvenne and Goovaerts, 2002). Rodgers and Oliver (2007) used factorial 
kriging to identify on a NDVI image the variation in landscape and to understand 
the processes controlling the physical properties of the soil and vegetation cover.  

The objectives of this research were to determine whether vegetation 
indices derived from multispectral images could be used to identify crop injury by 
off-target glyphosate drift and to evaluate geostatistical procedures applied to the 
vegetation index images for evaluation of crop injury levels and extent of injury. 

 

MATERIALS AND METHODS 

Study field and experimental plan 

  Crop injury and biological responses of two row crops (cotton and corn) 
following glyphosate drift from an aerial application were evaluated in an 
experiment conducted during summer 2009. The study field was located at of the 
research farms of the U.S. Department of Agriculture-Agricultural Research 
Service in Stoneville, MS (33°26’N, 90°55’W). Cotton (non-GR cotton cultivar 
‘FM955LL’) and corn (non-GR corn hybrid ‘Pioneer 31P41’) were planted on 
July 23, 2009 in eight row strips spaced 102-cm apart and 80 m long with four 
replications (Figure 1). 

  A single aerial application of glyphosate was made on August 12, 2009 when 
cotton was at two- to three-leaf stage and corn was at four-leaf stage. The 
glyphosate was applied using an Air Tractor 402B airplane equipped with fifty-
four CP-09 spray nozzles (CP Products, Tempe, AZ) set at 5 degree deflection 
angle for this particular experiment. The aircraft and application system were 
adjusted to deliver the liquid at the rate of 46.8 L ha-1 at a release height of 3.7 m 
and operating speed of 225 km h-1 over an 18.3 m wide spray swath. The sprayed 
liquid was a Glyphosate solution of Roundup Weathermax® (Monsanto Co., St. 
Louis, MO) applied at a rate of 866 g ae ha-1. The airplane traveled west to east 
direction across the center of the study field perpendicular to the crop rows over a 
marked swath line (Fig. 1).  

Biomass Measurements 

Plant sampling locations by crop and replication were established 
downwind at 9, 12, 15, 20, 25, 35, and 45 m from the center of the spray swath 
(18.3 m size). One upwind sample location at 35.4 m from the upwind edge of the 



18.3 m wide swath was included as a control (crops not exposed to glyphosate) 
for comparison of biological responses to drift.  
 

 

Fig.  1. Experimental layout for the spray test (plant sampling locations for 
cotton and corn are displayed with points) 

 
Data of percentage plant injury, plant height, chlorophyll content and shoot dry 
weight were collected from all eight rows in a 0.5-m-wide band centered over the 
sampling location except at 9 m.  For the 9 m sampling location, data were 
collected from the 18.3 m spray swath.  The sampling location at 9 m downwind 
represented the highest exposure to glyphosate, while the 35.4 m upwind 
sampling location represented no glyphosate exposure. Visual injury ratings were 
based on chlorosis, necrosis, stunted growth, and plant death and the rating scale 
was assigned on a scale of 0 to 100, with 100 representing total plant mortality 
and 0 representing no injury. Plant height values resulted from the average of five 
plants randomly selected within the sampling area at each location. Chlorophyll 
content was determined from three of the youngest fully expanded leaves from 
three randomly selected plants. Chlorophyll was extracted with 10 mL dimethyl 
sulfoxide and quantified spectrophotometrically (Hiscox and Israelstam, 1979). 
Shoot dry weight was calculated from ten plants selected from the sampling area, 
which were oven dried (60°C, 72 h). 
 

Aerial Multispectral Imaging and Vegetation Indices 

Multispectral images were collected from the Air Tractor 402B airplane 
using a MS 4100 camera (Geospatial Systems, Inc., West Henrietta, New York). 



This camera is a multi-spectral 3-CCD (Charge‐Coupled Device) color/color 
infrared (CIR) digital camera and provides a digital imaging quality of 1920 
(horizontal) x 1080 (vertical) pixel array per sensor and wide field of view of 60 
degrees with 14 mm, f/2.8 lens. The camera captures imagery in four spectral 
bands:  blue (460 nm - 45 nm bandwidth), green (540 nm - 40 nm bandwidth), red 
(660 nm - 40 nm bandwidth), and near infrared- NIR (800 nm - 65 nm 
bandwidth), however for this experiment the camera was configured to produce 
CIR images (red, green and NIR bands). Multispectral images with a spatial 
resolution of 11 x 20 cm/pixel were collected 1, 7, 14 and 21 days after the 
glyphosate application (DAA). For this study, only results from the image 
collected 21 DAA are presented because it should represent the highest extent of 
injury one can expect from the set of three images.  

Data Processing and Statistical Analysis 

Subsets of the 21 DAA image corresponding to each crop and replication 
were extracted and individually analyzed (4 individual images per crop – 8 
images total). Seven vegetation indices (VIs) as different band ratio combinations 
were calculated from the images (Table 1). Each vegetation index (VI) data was 
rescaled to unit variance by dividing each pixel value by the VI standard deviation 
(e.g., NDVI pixel i,j / NDVI standard deviation). This procedure ensured that 
computations of experimental semivariograms calculated from each vegetation 
index/crop/replication were standardized to unit sill (Van Meirvenne and 
Goovaerts, 2002). Each omnidirectional semivariogram was computed for 80 lags 
with 0.56 m lag distance using the usual computing equation (Webster and Oliver, 
2001). The best semivariogram model for each variable was chosen based on the 
minimum residual sum of squares for the fit (Isaacs and Srivastava, 1989). 
Ordinary punctual kriging was used to estimate the vegetation index values at 
each plant sampling location (Kerry and Oliver, 2003) using TerraSeer STIS 
software (Avruskin et al. 2004).      

Canonical correlation analyses (CCA) by crop were conducted to identify 
the vegetation indices strongly related to the on-ground measured glyphosate crop 
damage. CCA assesses the relationship between a linear combination of a set of Y 
variables (on-ground measured plant damage variables) and a linear combination of a set 
of X variables (vegetation indices).  Through this method it is possible to create 
independent pairs of new variables, where each component of the canonical 
variable pair is generated from the linear combination of the variables within each 
group of the original variables (Martin et al, 2005). The level of significance of 
the canonical correlation was assessed through the Wilkes-Lambda statistic.  If P< 
0.05, the pair of canonical variables was significantly associated by canonical 
correlation.  The loadings, or correlations in the CCA, indicate the simple linear 
relationship between the original variables and the canonical variable di.  
Variables having a high contribution to the canonical variable di are those that 
exhibit large loadings.   

 



Table 1. Vegetation indices evaluated for assessment of glyphosate injury on 
cotton and corn. 

Vegetation Index (VI) Formula Reference 

Normalized Difference 
Vegetation Index 

(NDVI) 
(NIR-Red)/(NIR+Red) Rouse et al. (1974), 

Tucker (1979) 

Green Normalized 
Difference Vegetation 

(GNDVI) 
 (NIR-Green)/(NIR+Green) Gitelson et al. (1996) 

Simple Ratio Index 
(NIR/R) NIR/Red Jordan (1969) 

NIR/G NIR/Green Jordan (1969) 

Chlorophyll Vegetation 
Index (CVI) (NIR/Green)*(Red/Green) Vincini et al. (2008) 

Modified Simple Ratio 
(MSR) (NIR/Red − 1)/((NIR/Red)1/2 + 1) Chen (1996) 

Infrared Percentage 
Vegetation Index (IPVI) NIR/ (NIR+Red) Crippen (1990)  

 

Assessment of the extent of glyphosate drift injury on each crop was 
determined by analyzing each range of spatial correlation derived from the 
standardized semivariograms calculated for each index/replication. The 
semivariogram standardization allowed a more reliable comparison between 
ranges. Comparison of the level and extent of injury between cotton and corn was 
performed by analyzing the range of spatial variability and frequency distribution 
of the residuals values (pixel value – mean) calculated from the vegetation indices 
selected through the canonical correlation analysis.   

 

RESULTS 

Canonical correlation analysis 

For each crop, the CCA between the on-ground measured plant damage 
data and vegetation indices calculated from the image collected 21 DAA, resulted 
in four pairs of canonical variables (Table 2). The correlation (r = 0.90) between 
the first pair of canonical variables for the cotton crop was significant while for 
the second and third pairs even though higher (0.54 and 0.43 respectively) were 
not significant. For the corn crop, the correlation for the first and second pair of 
canonical variables was significant (P < 0.05) with correlation coefficients of 0.86 
and 0.70 respectively. The significant and strong canonical correlation between on 
ground-measured  plant damage variables and remotely-sensed vegetation indices 



validates the hypothesis that vegetation indices can be used for assessment of 
degree of crop injury caused by Glyphosate drift as well as the extent of damage. 

For cotton, the discussion of results herein from the CAA is focused on the 
correlation between the first significant pair of canonical variables that explained 
84% of the variability between the plant damage data and the vegetation 
reflectance (data not shown). The largest correlation in the plant damage variable 
was for dry matter and injury data and the lowest correlation was for chlorophyll. 
The variability on the vegetation reflectance canonical variable was strongly 
correlated with the indices CVI (r = 0.77), NIR/G (r = 0.76) and GNDVI (r = 
0.64) respectively. Contrasting with cotton, two significant canonical variables 
from the CAA for corn data showed that plant damage was strongly correlated 
with the first canonical damage variable; not so much for the second canonical 
variable. The vegetation indices strongly correlated with the damage variable 
were also CVI, NIR/G and GNDVI with correlations of 0.86, 0.82, and 0.71, 
respectively. Although low correlation was observed for chlorophyll and injury 
variable with the second plant damage canonical variable, this correlation might 
also be explained by the variability of the NDVI, NIR/R, MSR, and IPVI index 
values. The agreement between CVI, NIR/G and GNDVI indices, especially CVI, 
explained most of the variability in ground-measured plant damage for cotton and 
corn. This provides strong evidence of the potential for remote assessment of 
glyphosate plant damage.  

Geostatistical Analyses 

The ranges of spatial correlation summarized the average extent of crop 
injury which changed by replication, with the highest damage area observed on  
replication 3 for both crops (Tables 3 and 4). There were no differences between 
the ranges of spatial correlation calculated for each vegetation index within each 
replication, which indicated that there were not differences between vegetation 
indices for assessing the extent of crop injury. The ranges of spatial correlation 
indicated that the overall average extent of glyphosate injury at 21 DAA was 
within a range of 34 to 36 m for both crops.  The comparison of ranges between 
crops by replication showed low differences in the extent of damage/injury 
between the cotton and corn crops.  

Differences between the average range (data from all vegetation indices) 
for cotton and corn were observed for replication 2 and slightly for replications 3 
and 4. The extent of damage was higher for corn for replications 2 and 3 with 
ranges of 34.6 m and 43.6 m compared with cotton with ranges of 29.9 m and 
41.1 m, respectively (Tables 3 and 4). A more reliable comparison of the levels 
and extent of damage was possible when the residuals values (pixel value i ,j – 
average pixel values) from a single vegetation index (CVI) were analyzed.   



 Table 2.  Canonical correlation between plant damage data and seven vegetation indices calculated from cotton and corn images. 

Canonical component 
Cotton   Corn 

Eigen value CC† Pr > F  Eigen value CC† Pr > F 
1 3.89 0.90 0.0018 2.92 0.86 0.0002 
2 0.41 0.54 0.6178 0.97 0.70 0.0593 
3 0.23 0.43 0.7114 0.49 0.58 0.3309 
4 0.09 0.28 0.7209 0.05 0.23 0.8567 

Wilks' Lambda 0.002 0.0002 
Correlations between the plant damage variables and their canonical variables 

Plant damage Damage 1 Damage 2 Damage 3  Damage 1 Damage 2 Damage 3 Damage 4 
Injury 0.90 0.16 0.39  0.86 -0.27 0.33 0.27 

Chlorophyll -0.22 -0.20 -0.23  -0.94 0.28 0.18 -0.01 
Dry Matter -0.97 -0.07 0.18  -0.93 -0.16 -0.34 0.02 

Height -0.85 -0.52 -0.07  0.96 0.04 -0.02 -0.26 
Correlations between the VIs and the canonical variables of the plant damage variables 

VIs Damage 1 Damage 2 Damage 3  Damage 1 Damage 2 Damage 3 Damage 4 
NDVI -0.47 -0.31 -0.16  -0.44 0.33 -0.08 0.01 

GNDVI 0.64 -0.01 -0.07  0.71 0.21 0.00 -0.08 
NIR/R -0.38 -0.30 -0.17  -0.38 0.39 -0.17 0.00 
NIR/G 0.76 0.07 0.00  0.82 0.10 0.04 -0.04 

CVI 0.77 0.12 0.12  0.86 -0.03 0.02 -0.01 
MSR -0.26 0.25 -0.18  -0.54 0.32 -0.17 0.04 
IPVI 0.07 -0.23 -0.17   0.01 0.48 -0.04 0.00 

† Canonical Correlation 



Table 3. Range of spatial correlation of different vegetation index images collected at 21 days after glyphosate application – Cotton  

VI 
Rep 1 Rep 2 Rep3 Rep4 Average 

range  Range Model Range Model Range Model Range Model 
NDVI  36.4 Cubic 30.7 Spherical 39.2 Spherical 32.6 Spherical 34.8 

GNDVI 31.6 Spherical 30.1 Spherical 41.4 Spherical 31.1 Spherical 33.5 
NIR/R  36.5 Cubic 29.0 Spherical 39.7 Spherical 31.9 Spherical 34.3 
NIR/G  38.6 Cubic 30.3 Spherical 43.7 Spherical 31.9 Spherical 36.1 
CVI 39.4 Cubic 30.8 Spherical 41.9 Spherical 30.8 Spherical 35.7 
MSR  36.0 Cubic 29.1 Spherical 40.6 Spherical 33.3 Spherical 34.8 
IPVI  36.8 Cubic 29.5 Spherical 40.9 Spherical 32.7 Spherical 35.0 

Average  36.5  29.9  41.1  32.1   
 
Table 4. Range of spatial correlation of different vegetation index images collected at 21 days after glyphosate application – Corn 

VIs 
Rep 1 Rep 2 Rep3 Rep4 Average 

range Range Model Range Model Range Model Range Model 
NDVI 37.3 Cubic 36.8 Cubic 39.9 Spherical 29.9 Spherical 36.0 

GNDVI 35.7 Cubic 36.3 Cubic 38.5 Spherical 28.3 Spherical 34.7 
NIR/R  35.9 Cubic 31.5 Spherical 46.1 Cubic 30.0 Spherical 35.9 
NIR/G  37.1 Cubic 38.3 Cubic 44.1 Cubic 28.4 Spherical 37.0 
CVI 38.7 Cubic 39.0 Cubic 42.9 Cubic 33.5 Cubic 38.5 
MSR 36.0 Cubic 29.8 Spherical 46.6 Cubic 30.2 Spherical 35.6 
IPVI 37.7 Cubic 30.6 Spherical 47.3 Cubic 34.7 Cubic 37.6 

Average 36.9  34.6  43.6  30.7   
 



The range of spatial correlation of CVI residuals for cotton and corn was 
similar for replications 1 and 4; however, a higher range was observed for corn on 
replications 2 (39.1 m) and 3(43.3 m)  compared with cotton on the same 
replications, 35.3 m and 40.7 m, respectively (Table 5). The higher ranges 
observed for corn are an indication of a larger damaged area compared to the 
cotton crop.  Negative CVI residual values on a map indicate areas where either 
the growth or chlorophyll of plants is less than the overall average conditions; 
therefore, differences in the percentage of negative residuals between cotton and 
corn might be indicative of a higher level of damage. Two class intervals with 
negative residuals values derived from frequency histograms were analyzed for 
both cotton and corn. A higher percentage of negative values < - 1.32 for corn 
respect to cotton was observed on replications 2, 3, and 4. These differences were 
represented by a 3, 9, 6 and 17% more negative pixels (-3.13 to -1.32 interval) for 
corn than cotton on the replications 1, 2, 3, and 4 respectively (Table 6). This 
result is evidence of higher glyphosate susceptibility of corn compared to cotton.   

 

Table 5. Ranges of spatial correlation for CVI-Mean (damage assessment). 

Replication 
ID Crop Range 

1 
Cotton 38.5 
Corn 39.7 

2 
Cotton 35.3 
Corn 39.1 

3 
Cotton 40.7 
Corn 43.3 

4 
Cotton 34.7 

Corn 32.8 
 

Table 6. Percentage of pixels in the interval of frequency with negative values 
(areas of damage). 

Interval of 
frequency 

% of pixels representing damage areas 
Rep 1 Rep 2 Rep3 Rep4 

Cotton Corn Cotton Corn Cotton Corn Cotton Corn 
-3.13 - -1.32 32 33 20 35 32 34 35 41 
-1.32 - 0.54 35 35 50 28 26 31 24 23 

 

 

CONCLUSIONS 



The results from this study showed that VIs were correlated with the 
ground-based measurement of plant damage. From the VIs evaluated, CVI, 
NIR/G and GNDVI indices, especially CVI, explained most of the variability in 
ground-measured plant damage on cotton and corn, which provided evidence of 
the potential for remote assessment of glyphosate plant damage. The ranges of 
spatial correlation calculated for each vegetation index summarized the average 
extent of crop injury, which changed by replication. Although there were not 
significant differences between vegetation indices for assessing the extent of 
injury for cotton or corn, comparison of the level and extent of damage between 
both crops was based on the analysis of the CVI data. Higher CVI ranges 
observed for corn indicated a larger damage area compared to the cotton crop. 
The comparison of frequency distribution of the CVI residuals for cotton and corn 
indicated that corn was more susceptible to glyphosate injury than cotton. These 
results provide evidence of the potential for remote sensing images, collected 
from a low-altitude aerial platform, to indirectly assess the effects of glyphosate 
drift from aerial application in cotton and corn. 
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