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ABSTRACT 
 
Small Unmanned Aircraft Systems (sUAS) are recognized as potentially 
important remote-sensing platforms for precision agriculture. A nitrogen rate 
experiment was established in 2013 with ‘Ranger Russet’ potatoes by applying 
four rates of nitrogen fertilizer (112, 224, 337, and 449 kg N/ha) in a randomized 
block design with 3 replicates. A Tetracam Hawkeye sUAS and Agricultural 
Digital Camera Lite sensor were used to collect imagery with near-infrared (NIR), 
red and green bands with pixel sizes from 1 to 4 cm. Colored tarps were set out 
for each flight for an empirical calibration of digital numbers to spectral 
reflectances; however, the camera footprint was too small to have the tarps in 
each image. Two spectral indices were calculated from the color-infrared 
imagery, the normalized difference vegetation index (NDVI) and the green 
normalized difference vegetation index (GNDVI). NDVI and GNDVI from the 
tarp digital numbers were correlated to NDVI and GNDVI calculated from tarp 
spectral reflectances.  The slopes and intercepts of the calibration equations varied 
  



with the exposure time, which was set by the sensor. For images without the tarps, 
the exposure time was used to determine which calibration equation was used. 
Variation of NDVI and GNDVI over the growing season followed changes of leaf 
area index or plant cover. Comparison of GNDVI with NDVI was expected to 
enhance sensitivity to differences of leaf chlorophyll content; but only plots with 
the low N treatment were detectable. The value of sUAS for precision agriculture 
is information and its relevance to management. A first law of precision 
agriculture is proposed, “it’s the sensor, not the platform.” 
 
Keywords:      Remote sensing, unmanned aerial vehicles, Solanum tuberosum 
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INTRODUCTION 
 
 Remote sensing is generally considered an important geospatial technology for 
precision agriculture; however satellite images were frequently not useful because 
of large pixel sizes, infrequent revisit times, long waits between acquisition and 
delivery, and clouds. Small unmanned aircraft systems (sUAS) are seen as 
potential remote sensing platforms for precision agriculture, because low flight 
altitudes result in smaller pixel sizes (Herwitz et al., 2004; Hunt et al., 2005; 
Lelong et al., 2008; Zhang and Kovacs, 2012). In a report for the UAS trade 
group, the Association of Unmanned Vehicle Systems International (AUVSI), 
Jenkins and Vasigh (2013) conclude that the needs for agricultural remote sensing 
will lead to large increases in domestic UAS sales.   
 Many technologies for precision agriculture are deployed on ground-based 
vehicles, such as “on-the-go” nitrogen sensors (Shanahan et al., 2008). Aerial 
photography from manned aircraft is used to detect crop diseases (Johnson et al., 
2003) and nitrogen deficiency (Blackmer et al., 1996; Scharf and Lory, 2002). So 
the question is not, are UAS useful for precision agriculture, but rather do UAS 
have better value compared to alternatives? Therefore, it was necessary to 
establish baselines of routine sUAS-image collection and analysis before 
comparisons were made with established technologies. We used these flights as 
an opportunity to conduct experiments for technology development and 
assessment, and not to establish better farming practices.  
 The main goal of precision farming is to reduce production costs while 
maintaining yields by applying fertilizer and pesticides when, where, and with the 
correct amounts that will provide the greatest benefit. Potatoes are a crop where 
both under- and over- fertilization of nitrogen cause problems with tuber yield and 
quality (Alva, 2004), so over-application of fertilizers as “insurance” is 
counterproductive. Furthermore, nutrients are stored underground in the 
developing tubers, so there may be few detectable changes aboveground that 
could be detected with remote sensing.  Wu et al. (2006) found that nitrogen-
deficiency in potatoes could be detected towards the end of the growing season 
with QuickBird imagery, but the cost of the imagery and interference by clouds 
limit the ability to make timely management decisions.  Pixel sizes of Quickbird 
multispectral data are 2.44 m, so these pixels are still spectral mixtures of leaves, 



soil and shadows. Our hypothesis is that sUAS imagery would help better manage 
potatoes because having fewer mixed pixel sizes would increase sensitivity to 
changes in growth and leaf chlorophyll contents (Hunt et al., in press). We tested 
this hypothesis by varying the amount of nitrogen to irrigated potatoes and 
compared growth and chlorophyll contents with imagery acquired with a small 
UAS. 
 

METHODS 
 

Experimental design and field measurements 
 
 The study was conducted at Oregon State University’s Hermiston Agricultural 
Research and Extension Center (HAREC) in the Columbia River Basin. HAREC 
is located at 45.81944°N and 119.28333°W, at an elevation of 180 m. The 
average annual precipitation is 266 mm, with 51 mm during the growing season, 
so all crops rely on irrigation. July is the hottest month with average high and low 
temperatures of 32°C and 14°C, respectively. The soil type is a Hermiston Silt 
Loam (Coarse-silty, mixed, superactive, mesic Cumulic Haploxeroll).  
 A fertilization experiment with potatoes (Solanum tuberosum L. ‘Ranger 
Russet’) was established using a randomized block design with 4 rates of nitrogen 
fertilizer and 3 replications for a total of 12 plots (Fig. 1). Slow-release coated 
urea (ESN, Agrium Advanced Technologies, Loveland, CO) was applied on 25 
April 2013. Each plot was 12 rows wide, with a row spacing of 87 cm.  Based on 
the soil type, the potato variety, and the long growing season, the typical rate of N 
application at this location is 337 kg/ha (= 300 lbs/acre).  
 

 
 
Fig. 1. Different rates of nitrogen fertilizer (kg/ha) were applied to irrigated 
potatoes (‘Ranger Russet’) at the Oregon State University’s Hermiston 
Agricultural Research and Extension Center (HAREC).  The image is a true-color 
aerial photograph acquired on 25 July 2013 (pixel size was about 8 cm).  



 
 Plant nitrogen status was determined using several methods. On 22 June and 5 
August 2013, leaf chlorophyll concentrations were estimated using a Konica-
Minolta SPAD-502 meter (Osaka, Japan). Furthermore, chlorophyll 
concentrations were measured for 1-cm leaf disks after extraction with dimethyl 
sulfoxide (Hunt and Daughtry, 2014). Petiole nitrate concentration was 
determined for 20 leaves (fourth leaf from top) on 1 June and the two dates above. 
LAI was measured using a Decagon Devices (Pullman, WA) AccuPAR model 
LP-80.  
 

Image acquisition and analysis 
 
 A Tetracam, Inc. (Chatworth, CA) Hawkeye parafoil (Fig. 2) was selected for 
this study because its open design and large payload capacity allowed different 
sensors to be flown and tested. The sensor was a Tetracam Agricultural Digital 
Camera Lite (ADC-Lite) for acquiring color-infrared aerial photographs. The 
camera has a red-green-blue Bayer pattern filter, but without a hot mirror filter to 
block NIR from the CMOS detector. A yellow filter is added to remove blue light, 
so the blue channel records the NIR digital number (DN). We created our own 
color correction matrix for Tetracam’s PixelWrench software based on soil color. 
The DN for the green and red channels included NIR, so the blue channel DN is 
used to subtract the NIR component from each band in PixelWrench.  The focal 
length of the lens was 8.5 mm, exposure time was automatic, and the other 
camera settings were kept constant over the growing season. Images were saved 
in the 10-bit raw format and converted to TIFF images without gamma or white 
balance corrections. 
 

 
 
Fig. 2. A Tetracam small Unmanned Aircraft System (sUAS) is shown taking off 
with a Tetracam Agricultural Digital Camera Lite for acquisition of near-infrared 
(NIR), red, and green images.  
 
 The color-infrared photographs from the sUAS were not georegistered or 
stitched together. Instead, photographs were selected and examined individually 



for coverage of the experimental plots. With the ExelisVIS (Boulder, Colorado) 
program, Environment for Visualizing Images (ENVI), each plot in one picture 
was outlined as a “Region of Interest”, and mean digital numbers (DN) were 
determined. When a single plot was found on multiple images, DN from most 
nadir image were used. 
 We set out five tarps with different colors (Fig. 3) to calibrate DN using an 
empirical line with targets of known reflectance (Moran et al., 2003). Because of 
the low sUAS altitude above ground level during flight, almost all photos missed 
the tarps during a single flight. On several days, the sUAS missed the tarps 
completely. With rapid changes in the incident light level, tarp DN varied so 
calibration with an empirical line was not successful. We tried adjusting DN 
based on incident solar radiation measured every five minutes at the HAREC 
weather station (http://solardata.uoregon.edu/Hermiston.html), but the results 
were not good.  
 

 
 
Fig. 3. Calibration tarps were set out for each flight. Tarps were 2.8 m by 2.8 m. 
  
 Another method for reducing the effects of varying light on DN is the 
calculation of normalized difference spectral indices (Lebourgeois et al., 2008). 
From the NIR, red and green bands (Fig. 4), two spectral indices were calculated: 
    NDVI = (NIR – Red)/(NIR + Red)        [1] 
    GNDVI = (NIR – Green)/(NIR + Green)      [2] 
where: NDVI is the widely-used normalized difference vegetation index (Tucker, 
1979); and GNDVI is the green normalized difference vegetation index (Gitelson 
et al., 1996). For images that included the tarps, DN-based NDVI and GNDVI 
were compared to reflectance-based NDVI and GNDVI (Hunt et al., 2005, 2010) 
to calculate calibration equations and determine how calibrations changed over 
the growing season.  
 Spectral indices have different sensitivities to chlorophyll and LAI (Daughtry 
et al., 2000). Because NIR reflectance is not affected by changes in chlorophyll 
content, and the red reflectance is only minimally affected (Fig. 4), NDVI is a 
better estimate of LAI (Daughtry et al., 2000). The green reflectance is strongly 
affected by differences in chlorophyll content (Fig. 4); GNDVI is hypothesized to 
have more sensitivity to chlorophyll content than to LAI (Daughtry et al., 2000). 
We tested the hypothesis that the differential sensitivities of an index to 
chlorophyll and LAI could be used as a measure of the nitrogen status. The 



differential sensitivity would be expressed as differences in the slope of a 
regression line between two spectral indices.  

 
Fig. 4.  Spectral reflectances of leaves were simulated with different chlorophyll 
contents using the PROSPECT leaf optics model (Feret et al., 2008).  Along the 
top are the wavelength ranges of various multispectral bands.  
 
Table 1.  Treatment averages of leaf nitrogen and canopy measurements. Shaded 
cells indicate values that are significantly different from other N rates on that date. 
 

Measurement Applied nitrogen rate 
112 kg/ha 224 kg/ha 337 kg/ha 449 kg/ha 

Petiole NO3 (%) 6/1 1.44 2.06 2.17 2.32 
Petiole NO3 (%) 6/22 0.54 1.21 1.40 1.57 
Petiole NO3 (%) 8/5 0.35 0.45 0.90 1.06 
Chlorophyll (ȝg/cm2) 6/22 20.9 25.8 23.1 28.8 
Chlorophyll �ȝJ�FP2) 8/5 11.0 14.3 19.3 22.4 
SPAD (value) 6/22 42.0 46.6 45.8 46.5 
SPAD (value) 8/5 30.0 34.1 40.7 43.9 
LAI (m2/m2) 6/22 2.0 3.0 3.3 3.4 
LAI (m2/m2) 8/5 0.6 1.5 1.8 1.9 

 
 

RESULTS AND DISCUSSION 
 

 At the beginning of June, potatoes fertilized with the lowest N rate (112 kg/ha) 
were already showing nitrogen deficiency symptoms based on the standard petiole 
NO3 test (Table 1). On August 5, petiole NO3 concentrations in plots with the 224 
kg/ha N rate were also below the established range for N sufficiency (Alva, 
2004). The rank-order of the petiole NO3 concentrations show that the four rates 
of fertilizer application created a range of conditions from nitrogen deficiency to 
sufficiency throughout the growing season (Table 1), which should be detectable 
by remote sensing.  



 On June 22, potatoes with 112 kg/ha applied N had significantly lower 
chlorophyll concentrations, SPAD values, and leaf area index (Table 1).  On 
August 5, plots with 224 kg/ha applied N had lower chlorophyll concentrations 
and SPAD readings, but not lower LAI (Table 1).   

 
Flights and image calibrations 

 
 While the flight path of the Tetracam Hawkeye sUAS was controlled and 
logged by autopilot software, the actual sensor position was difficult to control 
because wind gusts caused the payload frame to sway. Adaption to wind 
conditions led to many early morning flights, which is not optimal for data 
acquisition by remote sensing.  
 

 
 
Fig. 5.  Color-infrared image of the calibration tarps acquired on June 22, 2013. 
From left to right, the tarps are red, beige, dark blue, gray, and light green (see 
Fig. 3). Pixel sizes varied between 1 and 4 cm, depending on altitude and view 
angle. In this image, pixel size was 1.2 cm.   
 
 One of the initial sources of error was the color correction matrix included in 
Tetracam’s PixelWrench software.  Without the spectral response function of the 
sensor, the best matrix could not be determined. A new color correction matrix 
was calculated from the soil spectral response, and the digital numbers for each 
tarp were reasonable (Fig. 5) based on the previously-measured tarp reflectances 
from Hunt et al. (2005).  
 NDVI and GNDVI from the image digital numbers for the tarps were linearly 
related to the spectral indices calculated from tarp reflectances. Slopes of the DN-
NDVI versus reflectance-NDVI (Fig. 6) were about equal for the different dates.  
However, there were large differences in the intercepts for the DN-NDVI 
calibrations (Fig. 6A). We thought that differences in incident light intensity were 
mostly accounted for by normalization (dividing by the sum of the bands), so that 
variation in the calibration lines would have been caused by differences in either 
light spectral quality (white balance), degradation of the tarps or the CMOS 
sensor, or differences in sensor noise caused by air temperature. There was little 



progression of the intercepts over time, so degradation of the sensor or tarps 
probably was not significant.   

 

 
 

Fig. 6.  Comparison of (A) NDVI and (B) GNDVI calculated from tarp digital 
numbers with the index calculated from tarp reflectances over the 2013 growing 
season. The line colors indicated the camera exposure times: blue – 172 ȝs, green 
– 258 ȝV� and red – 344 ȝs. The points are not shown for clarity. 
 
Table 2.  Correlation coefficients (r) between the calibration intercepts (Fig. 6) 
and other variables. The critical r for Į = 0.05 is 0.456, so all correlations were 
significant. 
 Intercept Irradiance 

(W m-2) 
Temperature 
(ºC)  

Exposure 
time (ȝs) 

Intercept 1.00    
Irradiance (W m-2) 0.781 1.00   
Temperature (ºC) 0.553 0.484 1.00  
([SRVXUH�WLPH��ȝV� -0.880 -0.854 -0.496 1.00 

 
 The intercepts of the NDVI calibrations (Fig. 6A) were highly correlated to 
camera exposure time and solar irradiance (Table 2).  NDVI calibration intercept 
was less correlated with temperature (Table 2), and was not correlated with either 
day of the year or time of day (data not shown).  Furthermore, the slopes of the 



NDVI calibrations were significantly correlated with camera exposure time.  
Correlations of GNDVI calibration coefficients with exposure time and irradiance 
were smaller than those for NDVI because the relationships were more non-linear 
(Fig. 6B).  
 Sensor calibration is important when comparing data acquired on different 
dates or different locations. While the ideal goal was calibration of DN to 
reflectances, calibrated spectral indices from DN can be used to monitor crops 
over the growing season. Flights at low altitudes with sUAS will need methods of 
calibration other than an empirical line. Some sensors have up-looking elements 
to determine incident solar radiation, but unless the directions of the up-looking 
and down-looking elements are controlled, calibrations for these sensors will be 
problematic. 
 

Analysis of nitrogen deficiency symptoms with sUAS 
 
 Inspection of the images acquired on any single date clearly showed the three 
plots with 112 kg/ha N applications (Fig. 7). There is more space between the 
rows for the low N plots compared the other plots, indicating lower vegetation 
cover. However, determining cover using sampling methods (Booth et al., 2006, 
2008) leads to a large range of estimates for a single plot because of a range of 
view angles from nadir to off-nadir. When the entire plot is averaged together, 
lower vegetation cover is related to lower NDVI and GNDVI.  
 

 
 
Fig. 7.  A color-infrared image acquired on 14 June 2013 selected to show the 3 
plots fertilized with low rates of nitrogen (see Fig. 1).   
 
 NDVI and GNDVI increased during early vegetative growth, were unchanged 
during tuber initialization and bulking, and then declined during maturation (Fig. 
8A,C). Short-term changes were likely caused by sensor exposure times (Table 
2); for example on 26 June, there was a large decrease in both spectral indices 
(Fig. 8A,C). Unfortunately, this was one date when the calibration tarps were 
missed during the flight (Fig. 6). We used the camera exposure times recorded in 
the image metadata to determine the appropriate calibration equation. There was a 



large difference between the uncorrected and corrected values of NDVI and 
GNDVI (Fig. 8), and the spectral indices did not have as much day-to-day 
variation. The corrections increased the separation of NDVI and GNDVI among 
treatments (Fig. 8B,D), but only the low N plots (112 kg N/ha) were significantly 
different from the others.   
 

 
 
Fig. 8.  Change in spectral indices over the 2013 growing season: (A) NDVI 
calculated from DN; (B) NDVI corrected with tarp calibration equations; (C) 
GNDVI calculated from DN; and (D) GNDVI corrected with tarp calibration 
equations. June 22 is day 173 and August 5 is day 217.  
 
 Calibration of NDVI and GNDVI using the tarps were needed to compare plots 
on a single day and within a growing season because of the differences in 
equations based on the camera exposure time.  It is likely that if exposure time 
was constant, then calibration would not be required to detect differences within a 
field. However, determining the appropriate management options based on the 
imagery would difficult without calibration. 
 From experiments and model simulations, NDVI and similar NIR-red indices 
have greater sensitivity to biomass, LAI, and fractional vegetation cover, and have 
less sensitivity to differences in leaf chlorophyll content. Because of the green 
band, GNDVI is more sensitive to chlorophyll content compared to NDVI (Fig. 
4), and may be somewhat less sensitive to LAI. Combination indices (Daughtry et 
al., 2000; Haboudane et al., 2002) exploit these differences when both leaf area 
and chlorophyll content are changing.  



 To determine the contribution of chlorophyll content to the changes in spectral 
indices, GNDVI was plotted versus NDVI. Based on Fig. 4, GNDVI should 
decrease more with lower chlorophyll contents relative to NDVI, so a regression 
line of GNDVI versus NDVI should have a larger slope and a lower intercept.  
The regression line between GNDVI and NDVI for the 112 kg N/ha treatment 
followed the prediction (Fig. 9).  The differences among the regression equations 
for the other three treatments were not significantly different (Fig. 9), following 
the pattern of the measured chlorophyll contents (Table 1).  
   

 

 
 
Fig. 9.  Comparison of corrected GNDVI and NDVI for separation of the effects 
of chlorophyll content and LAI.  
 
 A combination of the green band and the red band forms another spectral index 
sensitive to both chlorophyll concentration and LAI; sometimes the index is 
referred to as the normalized green-red difference index (NGRDI; Tucker, 1979; 
Hunt et al., 2005). Perhaps because of the problem with the Tetracam ADC color 
correction matrix, calibrations using the tarps were too variable, so only 
uncalibrated NGRDI could be compared to the field data (data not shown). 
Unexpectedly, variation of NGRDI was similar to uncalibrated NDVI (Fig. 8A) 
and not uncalibrated GNDVI (Fig. 8C). Having sensors with greater spectral 
resolution will be required to distinguish areas having slow growth caused by 
nutrient deficiencies from areas having slow growth caused by other stresses. 
Bands on chlorophyll’s red edge (710-730 nm wavelength) have been shown to be 
more sensitive to smaller differences in chlorophyll concentration compared to 
visible bands (Hunt et al., 2011, 2013). Low-mass, hyperspectral sensors or 
multispectral sensors with user selectable bands may become available for sUAS 
in the near future (Honkavaara et al., 2013). 



 
CONCLUSIONS 

 
 The first objective of this study was to establish a baseline for routine sUAS 
overflights for quantitative monitoring of agriculture. After initial problems with 
the Tetracam Hawkeye and other sUAS were solved, frequent flights were made 
and data were acquired. The image data agreed with the field data on the 
differences of LAI and chlorophyll content among treatments. The most important 
lesson from the routine data collection was the need for more frequent and 
thorough calibration of the sensors flown.  
 There are many sUAS companies being established in response to perceived 
demand for precision agriculture (Jenkins and Vasigh, 2013); however, the value 
produced by sUAS for agriculture will be crop information and its relevance to 
management. We would like to propose the first law of precision agriculture, 
which is particularly relevant to sUAS, “it’s the sensor, not the platform.” 
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