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ABSTRACT 
 
In recent years, unmanned airborne systems (UAS) have gained a lot of interest 
for their potential use in precision agriculture. While the imagery from color 
infrared (CIR)-enabled commercial off-the-shelf cameras onboard UAS is 
appealing to facilitate crop scouting, the application of quantitative spectral 
analyses is influenced by a range of confounding factors. In contrast to satellite 
(and conventional airborne) imagery, typical UAS datasets are (1) subject to 
unknown and highly varying irradiance due to the ability to fly in all weather 
conditions at all times of the day, (2) using uncalibrated sensors and compressed 
and distorted digital numbers, preventing conversion to reflectance factors in an 
efficient and broadly applicable way, and (3) characterized by a very high spatial 
resolution causing a significant amount of soil and shadow noise to be visible at 
the sub-canopy level. When directly applying vegetation vigor indices (such as 
the NDVI) that have been historically designed to work using reflectance factors 
derived from satellite imagery at the canopy level and at a much coarser 
resolution than UAS imagery, these characteristics may compromise the validity 
of the resulting maps. While it is clear that calibrated algorithms are needed to 
produce maps that need a high level of confidence for decision making and 
prescription mapping, we recognize the need for simple crop scouting strategies 
based on automated and out-of-the-box data gathering practices to identify 
problem areas in a field, prior to more in-depth analytical approaches, which can 
be applied later after crop scouting has been done using the simpler approach. 
Here, we visualize the effects described above on a realistic scenario, and quantify 
the influences of soil and shadow noise on relative, uncalibrated vegetation vigor 
indices, using a Trimble UX5 UAS equipped with different filters. The multiple 
band combinations obtained in this way allow the calculation of several 
vegetation vigor index maps, which are then evaluated against handheld Trimble 
GreenSeeker NDVI measurements. Our goal is to describe potential pitfalls in 
using only a relative NDVI based on default UAS-based imagery for crop 
scouting, and to suggest ways to increase our understanding of UAS-based 
imagery for crop scouting.  
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INTRODUCTION 
 
     Worldwide, the adoption of precision agriculture techniques in order to 
increase land productivity is rising sharply, with more than 30% of US Mid-
western famers estimated to use some form of precision farming to date (Mulla, 
2013). Most notably, the advent of remote and proximal sensing techniques has 
enabled service providers and crop growers to get the relevant data for adjusting 
management practices from the field zonal level down to a grid cell level in a 
timely manner. Although the spatial, spectral as well as temporal resolution of 
conventional (satellite and airborne) remote sensing products has dramatically 
increased lately, getting visible color and near-infrared (NIR) imagery is 
inherently limited to cloud-free conditions for the field at the time of overpass. In 
humid regions, this can result in the inability to get remote sensing data on crucial 
days around seeding, plant emergence, early growth stages, and before harvesting. 
Additionally, the cost per hectare is often prohibitively expensive for relatively 
small farms or agronomists managing several fields scattered across a relatively 
small area. On the other hand, driving sensor-equipped tractors across entire fields 
for the sole purpose of mapping can be a time consuming and expensive process 
and is not always desirable because of potential damage to crops and soil. 
Moreover, gathering several variables such as different vegetation vigor index 
(VVI) maps and dense soil or crop surface models using proximal sensing only 
may require several sensor setups. Also, proximal active optical sensors tend to 
monitor only the upper parts of a canopy of vegetation due to the loss of spectral 
irradiance over the distance from the sensor to various depths of the canopy.  
     In recent years, autonomous unmanned aircraft systems (UAS) have gained a 
lot of interest as a tool in between proximal and conventional remote sensing to 
deal with the drawbacks of both approaches in gathering timely information on 
the current state of fields, both before and after plant emergence. Besides 
multirotor platforms that have the ability to carry heavy imaging payloads such as 
multispectral or even hyperspectral cameras to do detailed spot analyses and to 
identify specific causes for growth issues, initial field and crop scouting is often 
done using a small and fast-flying fixed wing UAS (typically up to 1 m wide and 
weighing in at less than 3 kg). These typically allow mapping of intra-field 
variability of areas around 500 ha using a commercial, off-the-shelf very high 
resolution visible color camera, often modified to capture the NIR in addition to 
some of the visible colors (known as color infrared, CIR), in a highly automated 
workflow from flight planning to image processing. Next to the ability of 
delivering a georeferenced visible or false color orthomosaic on the same day or 
overnight at resolutions out of reach for spaceborne and conventional airborne 
mapping (2.5 – 15 cm ground sample distance, GSD), the inherent 
photogrammetric generation of a dense crop surface or bare terrain model with 
pixel-level accuracy during image processing of UAS imagery is a significant 
added advantage compared to other remote or proximal sensing techniques. 
     Although regulations imposed on the commercial exploitation of this emerging 
technology are still notoriously stringent in some countries (most notably the US), 
the ease-of-use and relatively affordable cost (especially in highly frequent use) 
have led to forecasts estimating more than 82 billion USD economic impact of 
UAS in agriculture in the first decade after commercial airspace integration in the 



US alone, with around 80% of the total commercial UAS market devoted to 
precision agriculture (West, 2014). 
     Regardless of the obvious advantages of UAS as a data gathering tool to 
overcome some of the issues related to conventional proximal and remote sensing, 
some difficulties remain with the quality of the collected imagery and the 
interpretation of these images that have been obtained from commercial cameras 
mounted on UAS, primarily in the quantitative analysis of spectral signals for leaf 
chlorophyll-related N assessments, variable rate prescription mapping, and yield 
forecasting. In fact, while recent advances in image processing algorithms have 
solved issues such as the orthorectification of the imagery, some of the biggest 
advantages of UAS also directly result in the biggest difficulties in the 
quantitative analysis of the imagery. First, the ability (and the resulting common 
practice) of flying over a field of interest in a diverse range of weather and light 
conditions on different times of the day, causes the spectral irradiances to vary 
greatly between and even within flight datasets, as opposed to satellites revisiting 
an area at a specific time of the day, and covering vast areas under the same 
irradiance conditions at once. Even for cloudless conditions over fields of interest, 
the very high resolution imagery also includes small shadows and dark soil 
patches in between leaves that are not resolved in the GSDs associated with 
satellite imagery and that may confound spectral analyses. The overall reflectance 
of a canopy is affected by these shadows and patterns of bright and dark soils, 
especially for NIR wavelengths where leaves are quite translucent. Next, the off-
the-shelf commercial cameras used in UAS often lack any radiometric and 
spectral sensor calibration in an absolute sense. Furthermore, since all of the RGB 
Bayer pixel filters on the sensor are sensitive to a certain part of the red-edge (RE) 
and NIR radiation as well, all visible color band digital numbers (DNs) in CIR 
imagery are affected by out-of-band radiation to a certain extent, making it 
difficult to get pure spectra from a single flight. Moreover, to facilitate fast data 
handling, the use of in-camera (unspecified) gamma correction and the use of 8-
bit JPEG compression of imagery (as opposed to using image sensor data in 14-
bit uncompressed linear RAW format) is common practice. Lastly, non-linear 
blending algorithms are commonly implemented during the mosaicking of 
orthorectified images. While this makes the mosaics visually appealing and free 
of obvious seam lines, the radiometric qualities may be affected. The latter factors 
cause the linear relationship between reflectances of surface materials and digital 
data to be lost, and prevent the conventional conversion of pixel DNs to 
reflectance factors used in physically calibrated remote sensing algorithms. 
Efforts such as mounting an irradiance sensor on the UAS or using spectral 
calibration panels and measurements in the fields can have their merit, but are 
typically very expensive, time consuming, and not always applicable (e.g. under 
rapidly moving clouds). 
     Although many vegetation vigor indices were originally designed to work on 
linear, uncompressed DNs or even reflectance factors and give meaningful values 
at the canopy level (such as the NDVI), most UAS-based research has continued 
to use (only) out-of-camera JPEG DNs to calculate these indices on very high 
resolution imagery including sub-canopy features. Some studies were able to 
show that the influence of the JPEG compression in quantitative analyses can be 
rather limited in some specific cases of UAS-based mapping (Lebourgeois et al., 



2008; Lelong et al., 2008), although these findings cannot be generalized. The 
apparent ease of use with which JPEG DNs, blended into a seamless orthomosaic, 
can be plugged into the NDVI, has led to a large number of studies relying 
mainly, if not only, on the so-called relative NDVI calculated in this way to reveal 
contrasts in crop fields and to find out where vegetation vigor is clearly affected. 
Success has varied (Hunt et al., 2010; Lebourgeois et al., 2012; Zhang and 
Kovacs, 2012). 
     While we highly recommend that actual prescription mapping for decision 
making and variable rate application should be done based on calibrated spectral 
algorithms, we do also recognize the need for easy, automated crop scouting 
based on compressed out-of-camera UAS data and common image processing 
algorithms to pinpoint issues in fields prior to more in-depth analyses. However, 
due to the difference in the data characteristics for which conventional vegetation 
vigor indices were designed, as opposed to the data characteristics on which the 
indices are applied, the unassuming use of only a relative NDVI may lead to 
entirely unwarranted conclusions, as a number of factors significantly influence 
the resulting values.  
     The goal of this study is to identify some of these factors, demonstrate them on 
real data resulting from day-to-day UAS operations, and to present ways in which 
the reliability of relative (uncalibrated) VVI maps for crop scouting based on out-
of-camera imagery may be improved. Ultimately, we want to raise awareness on 
the pitfalls in the use of only a relative NDVI for decision making and to simply 
suggest alternative approaches, rather than claiming a definitive way to get highly 
accurate results based on data that are inherently prone to a number of spectrally 
confounding factors. 
 
 

MATERIALS AND METHODS 
 
Test site, image acquisition and field data 
 
     The flight area consists of farmland located in Assenede, Belgium, at 
approximately 51.23° N, 3.78° E, comprising 1 km  of fields with barley, winter 
and summer wheat, potato, maize, grass and some cover crops, all managed under 
uniform application regimes. 
     Flights were executed using the Trimble UX5 UAS, a 2.5 kg electrically 
driven fixed wing platform with a wingspan of 1 m, capable of flying fully 
automated from launch to landing in winds of up to 18 m s-1 and light rainfall 
while covering up to 2 km  at 3 cm GSD in a 50 min flight. The camera used for 
agricultural projects with the Trimble UX5 is a modified Sony NEX-5T from 
which the internal NIR-blocking filter has been replaced by transparent glass. 
With a pixel pitch of 4.8 µm, the 16 megapixel (MP) APS-C format sensor 
ensures a very high dynamic range and signal-to-noise ratio with the ability to 
store imagery in 14-bit linear uncompressed RAW alongside 8-bit JPEG, although 
in this study only JPEG imagery was used to reflect the common practice of UAS-
based crop scouting. The acquisition of different visible and NIR band 
combinations during different flights using the same camera is possible through 
the use of external bandpass filters that can be placed in the standard screw mount 



filter holder in the bottom of the UX5 airframe. In order to make the best 
decisions for this study, the best cut-on and cut-off wavelengths for filters were 
determined based on a spectral response analysis of the camera using a 
monochromator with the camera set to JPEG (fig. 1), as response curves vary 
significantly between JPEG and RAW. 
     Two seasons were covered by the flights: a late winter flight on 19 Mar. 2014 
and a late spring flight on 28 May 2014 covering the same central area. 
Meteorological conditions differed for both flights, with no cloud cover and low 
solar elevation angles during the winter flight and heavy cloud cover with light 
rain during the spring flight. Each flight was planned at 100 m above ground level 
resulting in around 750 images per flight at 3 cm GSD. On each day, imagery was 
acquired in R(b1):G(b2):B(b3) using a Schneider Optics 486 UV/NIR blocking 
filter (passing 380 – 700 nm), and R(b1):G(b2):NIR(b3) obtained by a Schneider 
Optics 040 orange filter (with a cut-on at 530 nm, blocking all blue light). 
Additionally, on 28 May NIR(b1):G(b2) imagery was also acquired using a 
Schneider Optics IF 062 green filter (passing 490 – 580 nm and above 780 nm). 
Since the blue band (b3) appeared to have the highest sensitivity to the NIR (> 
800 nm) and the 040 orange filter blocks out all visible light to which the blue 
pixels are sensitive, this band was consequently used as the NIR band for the 
RGNIR imagery. However, as the 062 green filter still transmits some visible 
light in the sensitivity range of the blue pixels, but all red light and the red edge 
are effectively blocked out by the filter, the red band (b1) of the NIRG imagery 
was used as the NIR band. 
     In order to compare the UAS data to another commonly accepted form of crop 
scouting, field verification data on vegetation vigor were collected by walking 
across the fields with a handheld Trimble GreenSeeker and georeferenced with 
centimeter level accuracy using a Trimble R8 RTK GNSS. 
 
 

 
 
Figure 1.  Relative spectral response of the full spectrum modified Sony NEX-5T 
onboard the Trimble UX5 in JPEG mode.  



This resulted in 75 and 120 point measurements on each day, respectively, 
comprising all relevant terrain types from bare soil over juvenile plants to dense 
canopy cover for the different species. In order to get an NDVI reading over a 
circular patch to facilitate digitizing on raster imagery, the GreenSeeker was 
triggered during a circular sweeping motion resulting in a circular coverage with a 
radius of 16 cm on the crop canopy level for which the average NDVI value was 
noted. 
 
Image processing 
 
     Out-of-camera JPEG imagery was processed in the usual workflow with the 
fully automated Trimble Business Center Aerial Photogrammetry Module (TBC 
APM), generating a dense colored point cloud and an orthomosaic at 3 cm GSD. 
At least 5 ground control points (GCPs) measured with a Trimble R8 RTK GNSS 
were used to process each dataset to ensure pixel-level alignment of the different 
orthomosaics, and to make sure GreenSeeker measurements were plotted on the 
correct pixels. At least 10 additional points per dataset were not used during 
processing in order to serve as independent accuracy check points.  
 
Image analysis 
 
     All analyses were carried out in ESRI ArcGIS 10.2. Table 1 summarizes the 
VVI maps that were extracted from the orthomosaics for each day. In addition to 
the well-known conventional vegetation indices, we chose to include an 
alternative approach in the form of principal components analysis (PCA). The 
rationale behind this approach was to find an easy to use, relative (non-calibrated) 
equivalent for the so-called Tasseled Cap (TC) approach that has been developed 
for multispectral satellite data such as Landsat, resulting in equivalent brightness, 
greenness and yellowness components, with the difference that the TC 
components require customized coefficients that are not the same as the 
coefficients automatically generated by a PCA. Once the components mainly 
corresponding to brightness and greenness were identified, the brightness map 
was classified using a non-supervised isocluster algorithm with 5 classes to 
identify and mask shadow areas. 
     To investigate the relationship between the different VVI values derived from 
the orthomosaics with the Trimble GreenSeeker measurements, some 
preprocessing steps were implemented. First, a 16 cm radius buffer was generated 
around the GNSS measured GreenSeeker points. Next, UX5-based VVI pixel 
values within the buffer were averaged 5 x 5 to a 15 cm grid for extraction. After 
extraction, the 15cm pixel values belonging to the same buffer were again 
averaged to match the footprint of the imagery-based VVI values to the single 
averaged GreenSeeker readings.  
     For a specific field, the relation of VVI values to soil characteristics was 
investigated based on the bare earth digital elevation model (DEM) generated 
during image processing of the 19 Mar. 2014 dataset on the one hand, and the best 
performing VVI map of the 28 May 2014 dataset on the other hand (fig. 2B and 
5A). 
 



Table 1. Vegetation vigor indices (VVI) calculated at 3 cm GSD based on the 
processed UAS datasets. 

 
Date Bands VVI Remarks 

 
19 Mar. 2014 RGNIR NDVI (b3 – b1) / (b3 + b1) 
  GNDVI (b3 – b2) / (b3 + b2) 
   

TSAVI 
ݏ × (ܾ3െ ݏ × ܾ1 െ ܽ)

ܽ × ܾ3 + ܾ1െ ܽ × ݏ + 0.18 × (1 +  (ଶݏ
  with a = intercept and s = slope of the 

b3/b1 bare soil line 
  PCA-2 

 
2nd component of Principal Components 
Analysis using b1, b2 and b3 as input 
 

28 May 2014 RGNIR NDVI same as above 
  GDNVI same as above 
  TSAVI same as above 
  PCA-1 1st component of Principal Components 

Analysis using b1, b2 and b3 as input 
 NIRG GNDVI (b1 – b2) / (b1 + b2) 
   

GTSAVI 
ݏ × (ܾ1െ ݏ × ܾ2 െ ܽ)

ܽ × ܾ1 + ܾ2െ ܽ × ݏ + 0.18 × (1 +  (ଶݏ
  PCA-1 1st component of Principal Components 

Analysis using b1 and b2 as input 
 

    
   
In order to mitigate the influences of field management patterns such as planting 
furrows that were not present in the first dataset, both datasets were downsampled 
to a 3 m grid prior to data extraction. 
 
   

RESULTS AND DISCUSSION 
 
     Based on RTK GNSS-measured independent check points not used during 
image processing, the average horizontal root mean squared error (RMSE) for all 
datasets was 3.2 (± 0.3) cm while the average vertical RMSE for all datasets was 
3.5 (± 0.4) cm, proving the pixel-level alignment accuracy necessary to perform 
multitemporal analyses or multiband calculations based on two orthomosaics. 
     Visual interpretation of the true and false color orthomosaics shown in fig. 2 
and 3 already revealed important patterns and contrast differences in some band 
combinations that cannot be seen in others, most notably in discerning the earliest 
growth stages of crops on bare soil.  



 
 
Figure 2. Orthomosaics of the 19 Mar. 2014 flights. A: R(b1):G(b2):B(b3) using 
the 486 UV/NIR blocking filter. B: R(b1):G(b2):NIR(b3) using the 040 orange 
filter. The red box in the NE corner of the RGNIR orthomosaic indicates the 
location of the DEM shown in fig. 6. The green dots indicate the 75 locations of 
Trimble GreenSeeker measurements. c = clover; b = barley (Feekes growth stage 
4); bs = bare soil; g = grass; mu = mustard (senesced); ww = winter wheat 
(Feekes growth stages 1-3).  
 
 

 
 
Figure 3. Orthomosaics of the 28 May 2014 flights. A: R(b1):G(b2):NIR(b3) 
using the 040 orange filter. B: NIR(b1):G(b2) using the 062 green filter. 
Brightness and contrast differences between fig. 2B and fig. 3A are primarily due 
to a different histogram stretching. Diagonal banding in some fields is due to 
moiré occurring on row crops when zoomed out, disappearing when zooming in 
to the plant level, revealing the actual crop rows. The dots indicate the 120 
locations of Trimble GreenSeeker measurements. c = clover; b = barley (Feekes 
growth stage 10.5); gg = grass grazed; gu = grass ungrazed; ma = maize (VE 
growth stage); p = potato (growth stage II-III); sw = summer wheat (Feekes 
growth stage 4), ww = winter wheat (Feekes growth stages 8-10).  



     Even so, the calculation of VVI maps revealed more contrasts and additional 
properties on these earliest growth stages that were not visually apparent from the 
false color orthomosaics (fig. 4 and 5). For the 19 Mar. 2014 RGNIR dataset, the 
NDVI already showed meaningful patterns, with a linear fit (r ) of 0.78 to 
GreenSeeker measurements (table 2). However, both the NDVI and GNDVI were 
clearly affected by shadows cast by buildings, trees, and even small terrain 
elevation changes and herbaceous vegetation, with coincidentally few 
GreenSeeker measurement points falling within shadow areas (fig. 4D). 
 
 

 
 
Figure 4. A: The 19 Mar. 2014 VVI map with the highest correlation to Trimble 
GreenSeeker measurements: TSAVI. While distinguishing wet bare soil in the NE 
field from emerging winter wheat in Feekes growth stage 3 in the central south 
field was impossible on fig. 2A (RGB), and while distinguishing dry bare soil in 
the NE field from emerging winter wheat in Feekes growth stage 1 on the same 
soil type in the NW field was also almost impossible on fig. 2B (RGNIR), the 
contrasts are very clearly visible in this TSAVI map. B: Selected area from the 
TSAVI map, where large shadows barely influence the VVI values. C: Same area 
as fig. 4B, showing the NDVI superimposed with the 1st cluster from the 
isocluster unsupervised classification of the 1st principal component (brightness) 
of the PCA based on the RGNIR orthomosaic, shown in black. Note how pixels 
affected by large tree shadows as well as small shadows caused by microrelief in 
the terrain and herbaceous vegetation are accurately identified. D: Same area as 
fig. 4B and 4C, showing the NDVI only. Note how shadow areas identified in fig. 
4C are affected by artificially high NDVI values. 
 



     The PCA based on RGNIR data from 19 Mar. 2014 resulted in 2 immediately 
meaningful components, with the 1st component representative of brightness and 
the 2nd component corresponding to greenness. While the greenness component 
performed only slightly below the TSAVI (show in fig. 4A) in relation to 
GreenSeeker measurements, the 1st isocluster class obtained from the brightness 
component accurately identified all shadow (and water) areas in the image (fig. 
4C). This layer could potentially be used to mask out all shadow areas within the 
NDVI map for interpretation, and it is conceivable that the 1st component could be 
used to modify the NDVI to mitigate brightness fluctuations from the beginning. 
 
 

 
 
Figure 5. A: The 28 May 2014 VVI map with the highest correlation to Trimble 
GreenSeeker measurements: PCA-1 based on the NIRG dataset. The red line 
around the NE field shows the extent of the PCA-1 map that was used to correlate 
the VVI values to the DEM obtained from the 19 Mar. 2014 RGNIR dataset (see 
also fig. 2B). B: zoomed area of the NIRG-based PCA-1 map. Note how in the 
NE field potato plants on the furrow ridges and some weeds in between the rows 
are clearly visible, in sharp contrast to the bare soil of the furrows in between the 
rows. Note also how tractor tracks and the ditch running north to south in the 
western part of the image are clearly visible as showing low VVI values. In the 
SE part of the image, green clover patches can be clearly distinguished in the dry 
grass field. C: same area as in fig. 5B, showing the 28 May 2014 VVI map with 
the lowest correlation to Trimble GreenSeeker measurements: NDVI based on the 
RGNIR dataset. Note the large amount of soil noise in between potato rows and 
plants, and the ditch and tractor tracks showing abnormally high NDVI values. 
Also, the green clover patches in the dry grass field are very hard to discern.  



     Next to shadow issues in the NDVI map of the 19 Mar. 2014 RGNIR dataset, 
it was also impossible to find a hard threshold separating bare soil from fields 
with very sparse vegetative cover in the earliest growth stages based on the 
NDVI. Although the greenness component of the PCA did allow for a clear 
separation, contrasts were further amplified by the TSAVI, which had the added 
advantage of noticeably mitigating shadow areas as well (fig. 4A and 4B). 
However, due to few GreenSeeker measurements in shadow areas, it is yet 
unclear to what extent shadows are effectively removed in the TSAVI, and 
whether this can be generalized to other datasets as well. 
     In contrast to the 19 Mar. 2014 dataset, VVI maps based on the RGNIR dataset 
of 28 May 2014 correlated very poorly (if at all) to GreenSeeker measurements 
(table 2). Even in the absence of direct sunlight and hence strong shadows, both 
the NDVI and GNDVI artificially highlighted small open spaces in vegetation 
canopies, such as tractor tracks and ditches, with the highest NDVI values 
typically around rather than on individual plants (fig. 5C). Soil noise was also 
significant, to the extent that crop rows and emerging vegetation could not be 
separated from bare soil, and isolated green plants were barely distinguished from 
surrounding dry, short grass cover. Remarkably, as opposed to the 19 March 
dataset, soil-adjusted VVI maps based on the RGNIR dataset did not perform 
much better. 
     On the other hand, VVI maps based on the NIRG imagery for the same date 
did yield remarkably better correspondence with GreenSeeker measurements 
(table 2), especially soil-adjusted VVI maps and specifically the 1st principal 
component, in this case corresponding to greenness (fig. 5A), which allowed 
excellent separation between bare soil and emerging vegetation and crop rows, 
while accurately discriminating open spaces in the crop canopy such as from 
tractor tracks (fig. 5B).  
 
Table 2. Linear relation coefficients of the different UAS-based vegetation vigor 
indices (VVI) with GreenSeeker measurements. The strongest relationship for 
each date is shown in bold. 
 

Date Bands VVI R  
 

19 Mar. 2014 RGNIR NDVI 0.74 
  GNDVI 0.66 
  TSAVI 0.83 
  PCA-2 

 
0.81 
 

28 May 2014 RGNIR NDVI 0.04 
  GDNVI 0.16 
  TSAVI 0.17 
  PCA-1 0.12 
 NIRG GNDVI 0.45 
  GTSAVI 0.79 
  PCA-1 0.83 

 
    



     It is yet unknown what caused the remarkably low correlations of the VVI 
maps based on RGNIR imagery on 28 May 2014 in comparison with the NIRG 
data from that same day on the one hand, and the good results from RGNIR data 
on 19 Mar. 2014 on the other hand. A part of the explanation may be found in the 
presence of water on leaves and the (much darker) humid soil due to the light rain 
on 28 May, which may have been better accounted for by the elimination of out-
of-band RE radiation with the 062 green filter. However, it is unknown how the 
062 green filter would have performed in getting NIRG imagery and producing 
VVI maps in the 19 Mar. 2014 conditions, as that filter was not yet available on 
the first flight day and we have not yet had any opportunities to use the filter in 
similar conditions since. Specifically for the TSAVI, the performance differences 
can be partly explained by the obvious difference in total irradiance, as JPEG DNs 
were used while all soil-adjusted vegetation vigor indices normally require the use 
of reflectance factors. Another effect of irradiance differences between both dates 
can be seen in the PCA, where for the RGNIR as well as the NIRG analysis of 28 
May, the 1st rather than the 2nd component represented greenness, while the 2nd 
component related to brightness (as opposed to the 19 March analyses).  
     In relating aerial VVI maps to ground-based GreenSeeker NDVI values, we 
want to point out that GreenSeeker NDVI readings are related to conditions in the 
upper parts of a vegetation canopy only, due to the fact that the GreenSeeker is an 
active optical system that uses a source of visible light and NIR close to the 
canopy. Both the spectral irradiance of this source, and the reflected radiation, 
decrease with distance, in accordance with the inverse square law. Therefore, the 
vast majority of reflected radiant energy being sensed by the GreenSeeker is for 
the part of the canopy that is closest to the sensor. By contrast, the reflected NIR 
radiation in aerial imagery comes from the entire canopy. So, it is possible that the 
GreenSeeker NDVI data differ from aerial imagery-related VVI data just due to 
how leaves may differ between the top of the canopy and the lower parts. 
     Although we were primarily looking for linear relationships between VVI 
maps and GreenSeeker measurements, logarithmic regressions have also been 
tested in preliminary analyses. Also, it was investigated whether combining RGB 
and RGNIR orthomosaics from two flights on the same day in the calculation of 
VVI maps (with visible color bands taken from the RGB imagery in order to get 
spectral signals unaffected by out-of-band radiation) would improve the 
correlations. While r  results based on logarithmic regression and RGB-RGNIR 
combined datasets could typically deviate by ± 0.05 from linear r  values based on 
single orthomosaic-derived VVI maps, fundamental trends did not change at all. 
     As the GreenSeeker NDVI measurements are known to saturate on dense 
vegetation canopies while some imagery-based vegetation vigor indices are 
theoretically less sensitive to saturation, we also inspected the graphs for any 
signs of saturation which would result in VVI points to bend upwards from a 
certain GreenSeeker NDVI level. However, we did not find any signs of 
saturation in one type of measurement that did not occur in the other.  
 
 
 
 



 
 
Figure 6. A: 6cm DEM obtained from the 19 Mar. 2014 RGNIR dataset, after 
plowing but before potato planting furrows had been created. A central depression 
can be seen, where the clay density is historically higher than the surroundings. 
The elevation difference between the lowest part in the central depression and the 
highest points surrounding the depression are in the order of 0.5m. B: Analysis 
showing the relation between potato NIRG-based PCA-1 VVI values on 28 May 
2014 as obtained from the area delineated in red in fig. 5A, and elevation as 
derived from fig. 6A. The predictive nature of the soil (and hence the elevation) 
patterns on vegetation vigor can be best approached by a 2nd degree polynomial 
function (r  = 0.71). 
 
 
     The maximum obtained r  values in this study are very comparable to what 
other studies have found based on Trimble UX5 and Trimble Gatewing X100-
derived, out-of-camera JPEG-based VVI maps related to ground-based vegetation 
measurements, at least when considering other vegetation vigor indices than the 
NDVI, potentially using other band combinations using different filters (e.g. 
Melchiori et al., 2014). Although these r  values demonstrate that meaningful 
patterns can be inferred from the imagery, some gaps and outliers remain.  
     To our knowledge, there are no studies getting better correlations with 
physical, ground-measured vegetation parameters based on out-of-camera JPEG 
processing, illustrating the need for calibrated algorithms based on uncompressed, 
linear RAW data processing to get more precise VVI maps as a basis for 
quantitative input calculations such as prescriptions maps for variable rate 
application. Also, it must be noted that, while providing good correlations with 
Trimble GreenSeeker measurements on any one day, even the best VVI maps in 
this study did not show any consistency over time. For instance, thistles that 
clearly showed an increase in vigor from the first flight to the next, with 
GreenSeeker NDVI values increasing from 0.80 to 0.86, showed decreasing 
TSAVI values from 0.017 to 0.009 over time. This is illustrative of relative, 
uncalibrated VVI maps due to working on compressed, distorted JPEG DNs 
rather than reflectance factors or otherwise calibrated signals. Hence, these 
relative VVI maps can provide valuable insights for crop scouting on any single 
day, but cannot be interpreted in a multitemporal context without applying 
calibration algorithms on linear uncompressed RAW data. 



     Besides GreenSeeker measurements, an attempt was also made to correlate 
VVI values to other variables such as soil characteristics. Due to a lack of 
ancillary soil data, a correlation analysis was based on elevation, which, for one 
specific field, was known to be determined by clay density (with compaction 
levels being higher in the central depression than on the surrounding elevated 
parts). The height difference between the central depression and the elevated 
surroundings is hardly, if at all, noticeable in the field, but in wet winters, the 
central depression is often flooded by rain. Starting from a bare soil elevation 
model before furrow management and planting on 19 Mar. 2014, values of the 
downsampled greenness component of the NIRG dataset on 28 May were clearly, 
though not linearly, determined by the soil pattern (r  = 0.71). This predictive 
effect of elevation (and hence compaction levels) on vegetation vigor two months 
later, regardless of furrow management activities that partly, but not entirely 
obscured the elevation differences, was not apparent from any of the RGNIR 
vegetation vigor maps or the GNDVI based on NIRG data on 28 May (-0.14 < r  
< 0.42).  
     Overall, these results highlight the need for flexible band combinations 
through the use of different external filters, enabling the calculation of VVI maps 
that are more robust to influences of irradiance and soil, in order to enable reliable 
crop scouting based on processing out-of-camera JPEG imagery from modified 
commercial cameras onboard UAS. 
 
 

CONCLUSION AND PERSPECTIVES 
 
     While the general applicability of the alternative approaches discussed in the 
paper remain to be tested for rigidity across all scenarios, high correlations of 
aerial orthomosaic-based VVI maps with Trimble GreenSeeker NDVI values can 
be achieved. This demonstrates that UAS-based crop scouting using out-of-
camera JPEG imagery and readily available image processing techniques is very 
promising. At the same time, the results highlight the fact that although a simple 
NDVI using this approach may sometimes reveal meaningful patterns, there is a 
significant risk of inferring invalid conclusions related to crop vigor, depending 
on the conditions, when relying only on the NDVI. The ability to work with 
multiple external filters on the Trimble UX5 in order to get different band 
combinations and work with alternative vegetation vigor indices, as opposed to 
relying only on the image-based NDVI, appears to be crucial for reliable crop 
scouting, greatly improving correlations with accepted quantitative ground-based 
crop scouting techniques. Even so, more precise data for multitemporal analysis 
and quantitative prescription mapping for variable rate application can only be 
gathered by applying calibrated algorithms to uncompressed linear RAW data. 
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