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ABSTRACT 
 

     Successful variable-rate applications of agricultural inputs such as lime rely on 
the quality of the input data. Systematic soil sampling is the most common 
method used for creating variable rate prescription maps. The low density of 
economically feasible sampling has been primarily responsible for the typical 
inaccuracy of lime prescription maps. To increase sampling density, on-the-go 
sensing technology was developed for the mapping of soil pH and other relevant 
attributes. In this study, two fields in eastern Nebraska were mapped using both 
on-the-go mapping and systematic grid sampling approaches. Ten random 
validation locations in each field were used to compare the prescribed liming rate 
with lime requirement based on the traditional buffer pH test. The data collected 
were used to compare three soil acidity management scenarios: 1) uniform rate 
liming; 2) variable rate liming based on systematic grid sampling, and 3) variable 
rate liming based on sensor-based mapping. In general, sensor-based maps were 
better predictors of soil pH, buffer pH and lime requirement than field average or 
grid-based maps. 
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INTRODUCTION 
 

Sustainability and profitability of agricultural production are major challenges 
faced by farmers today. Due to growing global demand for agricultural produce, 
rising fertilizer prices, and mounting environmental concerns, farmers must be 
able to optimize their production through informed decision-making (Gebbers and 



Adamchuk, 2010). Precision agriculture offers an opportunity to reduce 
production costs while increasing yield and/or protecting the environment by 
treating agricultural land according to local needs. Variable rate liming is one of 
the most promising precision agriculture technologies (Bongiovanni and 
Lowenberg-DeBoer, 2000). However, the quality of variable rate lime 
prescription maps remains one of the main considerations when it comes to non-
uniform treatments of fields with spatially variable soil acidity (Bianchini and 
Mallarino, 2002; Viscarra Rossel and Walter, 2004; Brouder et al., 2005).  

The most widespread practice used to prescribe variable rate liming has been 
grid sampling. Typically, one sample analyzed by a soil testing laboratory 
represents at least 1 ha of land. As one sample per hectare can be insensitive to 
short-range soil variability, researchers have explored opportunities to 
economically map soil pH at a denser scale. For example, on-the-go sensing using 
the Veris® Mobile Sensing Platform (MSP, Veris Technologies, Inc., Salina, KS) 
enables soil pH to be measured at scales of 20-30 samples/ha along with apparent 
soil electrical conductivity (ECa). Adamchuk et al. (2007) has shown that soil pH 
maps produced from data collected by on-the-go sensing are more accurate than 
those obtained using traditional grid sampling methods. However, this does not 
necessarily imply that using sensor-based data will generate superior lime 
recommendation maps. That question is addressed in this study. 

Acidity in the soil can be thought of as having two forms: active and reserve. 
The active acidity consists of free-moving hydrogen ions, which quickly bond 
with any available bases. Reserve acidity consists of hydrogen ions which are 
bound only loosely. When active acidity is neutralized by reacting with a small 
amount of base, these loosely-bound hydrogen ions break their bonds and become 
active, preserving an acidic equilibrium. Since a simple (water) pH measurement 
relates only to active acidity, more information is needed to determine a soil’s 
lime requirement (Van Lierop, 1990).  

Lime requirement (LR) is the amount of lime to be added to a soil to 
neutralize the active acidity as well as a significant portion of the reserve acidity. 
The reserve acidity can be influenced by the presence of organic matter, 
exchangeable aluminum, clay content, weathering, parent material, metallic 
oxides, etc. (Carter, 1993). While the active soil pH is easily measurable on-the-
go, due to the multivariate nature of reserve acidity, its overall nature must be 
tested for each specific situation. Conventionally, when grid-based soil samples 
are analyzed, a buffer pH test is performed. A soil’s buffer pH is determined by 
adding measured quantities of a base to the soil solution (e.g., Woodruff, 1948).  

The LR derived from a buffer pH test can also vary due to cultivation depth 
and with the nature of the liming material applied. Therefore, it is important to 
adjust LR according to the depth of sampling and tillage practice. Other properties 
to consider are the neutralizing capacity, the calcium carbonate equivalent (CCE), 
and the physical state of the limestone (Nathan et al., 2006; Ferguson, 2006). For 
example, the University of Nebraska-Lincoln lime requirement algorithm 
(Ferguson et al. 2006; Mamo et al., 2009) can be expressed as: 
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where LR is 60% CCE (aglime) lime requirement (Mg/ha) and BpH is Woodruff 
buffer pH (Woodruff, 1948). 

The objectives of this study are: 1) to generate lime requirement maps using 
different mapping approaches (average application rate, 1-ha grid sampling, and 
on-the-go sensor mapping); and 2) to compare these maps in terms of the 
accuracy of soil pH, buffer pH, and lime requirement predictions. 
 

MATERIALS AND METHODS 
 

Site Descriptions and Data Collection 
 

Strnad field (47.6 ha), in Nance County, Nebraska, consists mainly of gently 
sloping Moody silty clay loam (fine-silty, mixed, superactive, mesic Udic 
Haplustolls), an excellent farming soil with a typical topsoil pH between 5.6 and 
7.3. In the northern and southwest parts of the field one finds highly sloped, 
highly eroded Crofton silt loam (fine-silty, mixed, superactive, calcareous, mesic 
Udic Ustorthents), with a typical pH in the range of 7.4 to 8.4 near the surface. 
Toward the northeast, the field descends to meet the southern branch of Skeedee 
Creek, along which Crofton silt loam is the primary soil. In the transition areas, 
severely eroded Nora silt loam (fine-silty, mixed, superactive, mesic Udic 
Haplustolls) with moderate slopes is found. Nora silt loam typically exhibits a soil 
pH between 5.6 and 7.3 in the upper 15 cm. Though these eroded soils play an 
important role in drainage patterns in the field, they are minimally represented in 
the study area.  
 

 
Fig. 1. Maps of Strnad field’s soil series (a) and shallow (0-30 cm) ECa (b). 

 
Just south of the Platte River in Saunders County, Williams field (20.2 ha) is 

chiefly composed of three moderately eroded soil classes: Pohocco silty clay loam 
(fine-silty, mixed, superactive, mesic Typic Eutrudepts) on the western half, with 
Yutan eroded Judson complex and Yutan eroded Aksarben silty clay loams (fine-
silty, mixed, superactive, mesic Mollic Hapludalfs) on the eastern half. Each of 
these soils is susceptible to erosion. The typical pH of Yutan soils is 6.0 in the 
upper 20 cm of soil, while the pH of the Pohocco loam is typically around 7.2. 

In this study, traditional grid sampling was represented by collecting one 
composite sample (consisting of 5-6 20-cm deep cores obtained with a manual 
probe) in each 1-ha square grid cell from around the center of the grid within a 



3 m x 3m area. All samples collected manually were analyzed by Ward 
Laboratories, Inc. (Kearney, NE) for a variety of soil attributes, including soil pH 
(1:1 soil-water solution) and Woodruff buffer pH. 

In both fields, sensor data collection was performed using Veris® MSP, which 
employs antimony ion-sensitive electrodes and measures active acidity. Soil pH 
was measured 10-15 cm deep with an average of 10 s between samples, while 
mapping at 4-8 km/hr travel speed using a 15-m width between passes. In 
addition, ECa measurements relating to the soil’s ability to conduct electrical 
charge were obtained. In many instances, ECa involves soil texture, moisture, and 
metallic ion content, among other properties, and can be used to distinguish soil 
classes within a field (Mulla and McBratney, 2000). Soil pH and ECa maps 
combined are therefore expected to be useful in predicting buffer pH, which is 
directly related to the lime requirement. The Manifold® System (Manifold Net 
Ltd, Carson City, NV) software package was used to process spatial data. 

 

 
Fig. 2. Maps of Williams field’s soil classes (a), and shallow (0-30 cm) ECa (b). 
 

In addition to 1-ha center-point square grid sampling, additional samples were 
collected for sensor calibration (10 samples) as well as for validation purposes, 
totaling 24 from Strnad field and 25 from Williams field. While locations for 
calibration samples were manually established following Adamchuk et al. (2008), 
locations for validation samples were established randomly. Table 1 summarizes 
the number of independent measurements obtained in each field. 



Table 1. Number of sampling and measurement locations. 
Sampling/measuring Strnad field Williams field 

Grid-based sampling (1-ha) 50 24 
Calibration samples 10 10 
Validation samples 14 15 
On-the-go soil pH measurements 1698 610 
On-the-go ECa measurements 19717 7024 

 
Data Processing 

 
A lime prescription map shows a surface array of lime requirement values 

predicted in each field location. This process typically involves interpolation 
(Brouder et al., 2005), which means that lime requirement values obtained with a 
non-continuous function (e.g., equation 1) cannot be used. One way to address the 
issue is to interpolate the buffer pH instead of the lime requirement and then apply 
equation 1. Unfortunately, commercial laboratories do not measure the buffer pH 
if the soil pH is found to be greater than 6.5, as no lime is needed. Therefore, to 
predict the buffer pH for neutral and alkaline soils (pH > 6.5), a continuation of 
the linear relationship between soil and buffer pH was assumed:  

 
pHaaBpH ⋅+= 10     (2) 

 
where pH is soil pH in a 1:1 soil-water solution; a0 and a1 are regression 
parameters. 

In addition to this “no-constraints” model (equation 2), it was assumed that 
7.0 BpH (a critical value for equation 1) corresponds to pH of 6.5 (one constraint): 

 
    ( )5.60.7 * −+= pHaBpH     (3) 
 
Also, another constraint was added to assume that when pH is equal to 8.0, 

BpH = 8.0 as well: 
 
    pHBpH 67.07.2 +=     (4) 
 
Once BpH was defined for every sample analyzed in the laboratory, Lab pH 

and Lab BpH values corresponding to grid sampling locations were interpolated 
to the extent of all field boundaries, using ordinary kriging interpolation with all 
points involved and a spherical semivariogram model to obtain a 5 x 5 m pixel 
size surface. Similarly, Sensor pH and ECa measurements were interpolated with 
only 10 neighbor points involved (Manifold software default). 

The four surfaces were used to find interpolated values corresponding to 
calibration and validation sampling locations. The ten calibration samples for 
each field were used to define the relationships between Sensor pH and Lab pH 
(equation 5) as well as between Sensor pH integrated with ECa and Lab BpH 
(equation 6). 
 

pHSensorbbpHLab ⋅+= 10    (5) 
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For each field, partial cases were considered to include: 1) b1 = 1 – data shift; 

2) b0 = 0 – data scale; 3) b0 = 0 and b1 = 1 – original data; 4) c1 = 1 and c2 = c3 = 0 
– data shift; 5) c2 = c3 = 0 – linear regression without ECa; and 6) c3 = 0 – no 
interaction term. An appropriate model was selected as the one providing the 
lowest root mean squared error (RMSE) with the fewest parameters. Thus, when 
regression parameters were not significantly different from either 1 (multiplier of 
a significant variable) or 0 (intercept or multiplier of a non-significant variable) at 
α = 0.05, they were omitted from further regression analysis.  

Once the best site-specific model for predicting Lab pH and Lab BpH using 
on-the-go sensor data was defined, interpolated surfaces of sensor data were 
transformed to obtain the corrected Sensor pH (predicted Lab pH and Lab BpH) 
maps. Later, all BpH maps were translated into LR maps using equation 1. 

Additionally, field average estimates were calculated by averaging all grid pH 
points for pH, all grid BpH points for BpH, and applying equation 1 to the 
averaged BpH value to obtain LR. For Williams field, the field average estimate 
resulted in zero lime requirement. Therefore, the field was split in two halves 
(eastern and western) and the average liming prescription was calculated for each 
half separately, as only the eastern half had acidic and slightly acidic soils.  

Having developed full Lab pH, Lab BpH, and LR maps from each of the three 
main sampling schemes, validation locations were used to compare corresponding 
values from 1) field average estimate; 2) interpolated grid-based map; and 3) 
sensor-based map with laboratory values. 
 

RESULTS AND DISCUSSION 
 

 Lab pH and Lab BpH were linearly related with R2 = 0.80 for Strnad field and 
R2 = 0.36 for Willams field using all samples with Lab pH of 6.5 and less 
analyzed in the laboratory (Fig. 3). This relationship yields R2 = 0.97 if only 
calibration samples are used in both fields. Based on the RMSE values (Table 2), 
the one-constraint model (equation 3) appeared to be the most appropriate to 
predict BpH values for Lab pH > 6.5. Following equation 3, a* for Strnad field 
was 0.78, while a* for Williams field was 0.74. This way, equation 1 can be used 
despite the lab practice of not measuring BpH for soils with pH > 6.5. 

The raw on-the-go Sensor pH and Lab pH measurements for ten calibration 
samples (Fig. 4) were correlated with R2 = 0.90 for Strnad field and R2 = 0.91 for 
Williams field. A 0.27 unit increase of soil pH was used for site-specific 
correction of Sensor pH data for Strnad field (Table 3) as the slope of simple 
linear regression was not significantly different from 1. In Williams field, on the 
other hand, the different rate of sensor responses to changes in soil pH in the 
alkaline range made complete linear regression justifiable (b0 = -5.3 and b1 = 
1.82). It appears that for both fields, the sensor-based approach showed a more 
detailed delineation of acidic and alkaline areas (Fig. 5, Fig. 6). However, general 
spatial trends of soil pH remained similar. 
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Fig. 3. Relationships between pH and BpH for Strnad (a) and Williams (b) fields. 
 
 

Table 2. RMSE values for three different alkaline soil BpH prediction models. 
Model Strnad Field Williams Field 

Equation 2 (no constraints) 0.16 0.19 
Equation 3 (one constraint) 0.16* 0.20 
Equation 4 (two constraints) 0.20 0.20 

* Bold values indicate the model selected. 
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Fig. 4. Relationships between Sensor pH and Lab pH for Strnad (a) and Williams 
(b) fields. 
 

(a) (b) 

(a) (b) 



Table 3. RMSE values for four different Lab pH prediction models. 
Model (equation 5) Strnad Field Williams Field 

b0 ≠ 0 and b1 ≠ 1 (linear regression) 0.36 0.29* 
b0 ≠ 0 and b1 = 1 (data shift) 0.42 0.50 
b0 = 0 and b1 ≠ 1 (data scale) 0.40 0.49 
b0 = 0 and b1 = 1 (raw data) 0.49 0.52 

* Bold values indicate the model selected. 
 

  
Fig. 5. Point and interpolated maps of soil pH for Strnad field based on 1-ha grid 
sampling (a) and on-the-go mapping (b). 
 

 
Fig. 6. Point and interpolated maps of soil pH for Williams field based on 1-ha grid 
sampling (a) and on-the-go mapping (b). 
 

The raw on-the-go Sensor pH and Lab BpH measurements (Fig. 7) were 
correlated with R2 = 0.85 for Strnad field and R2 = 0.96 for Williams field. A 
simple 0.80 unit increase of Sensor pH has been used to make site-specific 
prediction of Lab BpH in Strnad field (data shift in Table 4). As was the case with 
Lab pH in Williams field, the relationship between Sensor pH and Lab BpH did 
not produce a slope equal to 1 (c0 = -2.8 and c1 = 1.50). Using only the 10 
calibration samples, Lab pH and Lab BpH were highly correlated for both fields 
(R2 = 0.97), and addition of ECa measurements in the regression model was not 



beneficial. Maps of Lab BpH obtained from interpolated grid-based 
measurements, corrected Sensor pH measurements, and an average of grid-based 
measurements were converted into LR maps using equation 1 (Figs. 8 and 9). 
These maps can be used for an actual variable rate application of lime. Once 
again, overall spatial patterns were shown to be similar in both fields. However, 
both fields have areas of discrepancy between the two variable rate liming maps 
(Fig. 10).  

 

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

4.5 5.0 5.5 6.0 6.5 7.0 7.5

Sensor pH (raw measurements)

La
b 

Bp
H

Calibration data
Validation data
1:1 line
Accepted model

 

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

4.5 5.0 5.5 6.0 6.5 7.0 7.5

Sensor pH (raw measurements)

La
b 

Bp
H

Calibration data
Validation data
1:1 line
Accepted model

 
Fig. 7. Relationships between Sensor pH and Lab BpH for Strnad (a) and Williams 
(b) fields. 
 

Table 4. RMSE values for four different Lab BpH prediction models. 
Model (equation 6) Strnad Field Williams Field 

c0 ≠ 0, c1 ≠ 1, c2 = 0, and c3 = 0 (regression) 0.24 0.16* 
c0 ≠ 0, c1 = 1, c2 = 0, and c3 = 0 (data shift) 0.25 0.30 
c0 ≠ 0, c1 ≠ 1, c2 ≠ 0, and c3 = 0 (no interaction) 0.27 0.16 
c0 ≠ 0, c1 ≠ 1, c2 ≠ 0, and c3 ≠ 0 (full regression) 0.22 0.16 
c0 = 0, c1 = 1, c2 = 0, and c3 = 0 (raw data) 0.84 0.61 

* Bold values indicate the model selected. 
 

From the visual relationships between corresponding values for both 
calibration and validation datasets (Figs. 11 through 16) as well as R2 values for 
linear regressions between corresponding laboratory measurements and map 
predictions of Lab pH, Lab BpH, and LR (Table 5), sensor-based maps overall 
were better predictors of Lab pH, Lab BpH, and LR than either grid-based 
interpolated maps or field average maps. RMSE values (the root of the mean 
squared difference between corresponding map predictions and measurements) 
summarized in Table 6 also indicate reduction in prediction errors when using 
sensor-based estimates. 

In addition to the overall comparison, two points in each field (A and B in 
Strnad field, C and D in Williams field) were identified in the areas with greater 
discrepancy between grid-based and sensor-based maps (Figs. 11-16). In each 
case, the spatial variability of soil pH resulted in grid-based map predictions 
which were less accurate than maps based on sensor data. 

(a) (b) 



 
 
 
  

 

 
 Fig. 8. Contour maps of LR for Strnad field based on 1-ha grid sampling (a), on-
the-go mapping (b), and field average (c). 
 

 
Fig. 9. Contour maps of LR for Williams field based on 1-ha grid sampling (a), on-
the-go mapping (b), and field average (c). 
 

Each of the fields presented in this study has a relatively strong spatial 
structure. As a result, even a coarse (1-ha) grid sampling was sufficient to reveal 
the overall field pattern. In addition, the close association between soil pH and 
buffer pH suggests that LR rates could be defined using either measurement. 



Therefore, there was no benefit derived from adding ECa measurements to the 
regression analysis predicting buffer pH using sensor data. Although LR RMSE 
values were lower for sensor-based data, they were relatively high and similar in 
order to those obtained for either grid-based or field average data (Table 6). Most 
of the uncertainties can be attributed to systematic differences between Sensor pH 
and Lab pH/BpH and, to an even greater extent, are the result of the spatial soil 
variability at short ranges, as corresponding sensor measurements and grid soil 
sampling may have occurred more than 10 m apart. 
 
  
 
 
 
 

 

 
Fig. 10. Contour maps of the difference between LR maps based on 1-ha grid 
sampling and on-the-go sensing for Strnad (a) and Williams (b) fields. Points A, B, 
C, and D are examples of sampled locations with substantial disagreement between 
grid-based and sensor based maps. 
 

In addition, it is important to note that the LR recommendation used in this 
study relies on the prescription rate varying in a relatively short range of BpH 
values (6.3 to 7.0). This means that either direct estimation or prediction errors 
typically observed with any mapping strategy result in a significant LR estimation 
error (1.1 Mg/ha per 0.1 pH). In addition, the fixed application rate over the 18-24 
m swath of a lime applicator with equipment application error creates an 
additional level of uncertainty. That is why a variable rate liming prescription 
mechanism is expected to rely on a smoothing factor to allow a larger array of 
unbiased measurements to define LR. As shown in this study, with a significantly 
greater number of such measurements using on-the-go sensing technology, it is 
feasible to bring the level of LR prediction uncertainty to a spatial scale less than 
or equal to the width of fixed rate application. Dealing with both types of 
uncertainties is a logical next step in variable rate liming research. 
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Fig. 11. Relationships between measured Lab pH and predictions obtained using 
three different methods (grid-based sampling, on-the-go sensing, and field average) 
for calibration (a) and validation (b) datasets (Strnad field).  
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Fig. 12. Relationships between measured Lab BpH and predictions obtained using 
three different methods (grid-based sampling, on-the-go sensing, and field average) 
for calibration (a) and validation (b) datasets (Strnad field). 
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Fig. 13. Relationships between measured LR and predictions obtained using three 
different methods (grid-based sampling, on-the-go sensing, and field average) for 
calibration (a) and validation (b) datasets (Strnad field).  
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Fig. 14. Relationships between measured Lab pH and predictions obtained using 
three different methods (grid-based sampling, on-the-go sensing, and field average) 
for calibration (a) and validation (b) datasets (Williams field).  
 
 

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

6.0 6.5 7.0 7.5 8.0
BpH, Predicted

La
b 

B
pH

Grid-based
Sensor-based
Average

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

6.0 6.5 7.0 7.5 8.0
BpH, Predicted

 L
ab

 B
pH

Grid-based

Sensor-based

Average

 
 
Fig. 15. Relationships between measured Lab BpH and predictions obtained using 
three different methods (grid-based sampling, on-the-go sensing, and field average) 
for calibration (a) and validation (b) datasets (Williams field). 
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Fig. 16. Relationships between measured LR and predictions obtained using three 
different methods (grid-based sampling, on-the-go sensing, and field average) for 
calibration (a) and validation (b) datasets (Williams field).  
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Table 5. Summary of R2 values for the relationships shown in Figs. 11 -16. 

Map Dataset 
Strnad field Williams field 

Grid Sensor Grid Sensor 

Lab pH 
Calibration 0.62* 0.81* 0.91* 0.91* 
Validation 0.05 0.58* 0.37 0.79* 

Lab BpH 
Calibration 0.65* 0.85* 0.90* 0.96* 
Validation 0.15 0.50* 0.54* 0.84* 

LR 
Calibration 0.45 0.75* 0.73* 0.87* 
Validation 0.03 0.64* 0.36 0.46 

* - significant relationships with R2 > 0.5. 
 

Table 6. Summary of RMSE values for the relationships shown in Figs. 11 -16. 

Map Dataset 
Strnad field Williams field 

Grid Sensor Average Grid Sensor Average 

Lab pH 
Calibration 0.67 0.42 0.89 0.30 0.50 0.85 
Validation 0.70 0.52 0.71 0.77 0.62 0.88 

Lab BpH 
Calibration 0.47 0.25 0.68 0.25 0.16 0.71 
Validation 0.53 0.41 0.58 0.44 0.33 0.53 

LR, Mg/ha 
Calibration 2.62 1.69 3.72 1.98 1.30 3.95 
Validation 3.54 2.37 3.61 1.92 1.97 2.08 

 
CONCLUSIONS 

 
In this study, the quality of soil pH, buffer pH, and lime requirement maps 

was compared for three mapping methods: grid-based sampling, on-the-go 
sensing, and field average. In two Nebraska production fields, it was shown that 
lime application maps based on sensor data with ten calibration points provided 
better delineation of acidic soil areas that needed lime than grid sampling or field 
average methods. After following the overall statistics as well as individual field 
locations, it appeared that agreement between actual laboratory measurements and 
corresponding map values was improved when spatial structure was recognized 
using a greater number of measurements, such as when using an on-the-go soil 
sensing approach. When defining a site-specific relationship between 
corresponding Sensor pH and Lab pH/BpH measurements, it is not always 
necessary to adjust each parameter of a corresponding regression model because 
the slope of response and/or the average of all corresponding measurements may 
not differ significantly. A more involved analysis will be performed to investigate 
the combined effect of LR prediction uncertainties and variable rate application 
errors.  
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