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ABSTRACT

In this article, we present an innovative electronic system designed for the detection and the counting of moths in open fields of tomatoes. Moth traps are placed in the field and coupled with microphones that capture sounds produced by moth flight. These signals are sent to a platform to estimate remotely and in real time the number of trapped moths through signal processing techniques. The proposed method is based on the continuous analysis of the signal on sliding temporal windows. In every window in which an event is detected, a Linear Predictive Coding (LPC) analysis is performed in order to characterize the spectrum and classify the event as “moth event” or not. The quantitative evaluation on real data has proved the accuracy and the robustness of the proposed method. An optimal classification threshold leads to a true positive rate above 80% for a corresponding false positive rate around 5% on the tested data.
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INTRODUCTION

     Nocturnal moths are a major agricultural pest in many parts of the world. It causes severe damage to open fields of tomatoes and many other plants (cotton, tobacco). Scientists, engineers and public health officials are interested in monitoring moth population because of its ecological and economic impact [Raman et al., 2007]. Especially, counting automatically the presence of moths enables farmers to regulate the use of pesticides depending on the actual population present in the field. So far, the number of captured insects in sex pheromone traps has given some indication about the population. However, the traps are rarely properly inspected, thus leading to inaccurate results.
     The purpose of this work is the development of a moth activity monitoring system based on an electronic device that captures and transmits sounds. This system is coupled with a signal processing software that analyses remotely and in real time the acquired signals in order to detect and count moth events. Classical pheromone traps are equipped each with a microphone, connected to a gateway, which in turn transmits the acquired signal to a platform through a Machine to Machine (M2M) network. This article focuses on the signal processing part deployed on the platform. 
     Research on the detection of insects from sound signals produced during the flight started more than fifty years ago [Mankin et al., 1994; Caprio et al., 2001] and is still relevant [Raman et al., 2007; Mankin et al., 2011]. The main idea developed in the proposed approaches is to extract from the signal some spectral features that characterize flight sounds, and use them for detection and identification. In order to characterize the spectrum of mosquito flight sounds, Raman used a series of nine values corresponding to four average energies around each harmonic (peak) and five average energies between the harmonics (inter-peaks). To be identified as a mosquito, these nine values needed to meet the threshold requirements listed in a given table [Raman et al., 2007]. Several spectral features have proved useful for the identification of red palm weevils, including the Fourier transform [Mankin et al., 2000; Hetzroni et al. 2004], the dominant harmonic [Potamitis et al. 2009] and linear-frequency cepstral coefficients [Pinhas et al., 2008; Potamitis et al., 2009].
     In the domain of bird identification, Anderson used the Dynamic Time Warping (DTW) for the automatic analysis of continuous recording of bird songs [Anderson et al., 1996]. The vector features are derived from the log magnitude of Fast Fourier Transform (FFT). The DTW algorithm compares an input signal with a set of predefined templates representative of categories chosen by the investigator. Instead of DTW, Chang-Hsing used the averaged linear predictive cepstral coefficients (ALPCC) and the averaged mel-frequency cepstral coefficients (AMFCC) [Chang-Hsing et al., 2006].
    Linear Predictive Coding (LPC) has been widely used for speech encoding and recognition [Vipulsangram et al., 2012; Chang-Hsing et al., 2006] for its ability to model the formants that characterize the sounds produced by the vocal track. We propose to rely on this technique for the identification of moths since moth wing flutter results in a in a line spectrum whose envelope is characteristic of this insect.
     The rest of the paper is organized as follows. We first describe the proposed method, composed of three main parts, pre-processing, event detection and identification. Then we present experimental results obtained from real data before concluding.


MATERIALS AND METHODS

     Moth recordings are characterized by the spectral components of the signal captured by the microphone. Indeed, the periodic wing flutter results in a line spectrum, containing a fundamental between 40Hz and 100Hz and harmonics. Our approach is based on the continuous analysis of the signal on sliding windows. It is made up of two main parts: event detection and identification. The event detection aims at selecting the windows that may contain a moth flight recording and at rejecting all the others. Then, the identification algorithm is applied on the selected windows, in order to perform a spectral analysis and decide if the event corresponds actually to a moth or not. Finally, the rate of the windows labeled as “moth event” provides a pertinent estimation of the evolution of the moth population.
     Acquisition and pre-processing: The microphone on the trap can record ambient sound with high-fidelity. It was deployed in open tomato fields from June through the end of August, in 2011, 2012 and 2013. The captured signal is sampled at 44.4 KHz and encoded on 16 bits by the digital sound recorder. Considering that the useful information is contained in the first ten harmonics of the spectrum, we propose to subsample the signal with a subsampling factor equal to 20, leading to a final sampling rate equal to Fs=2.2KHz. In this way, much less data has to be sent from the gateway to the platform through the M2M network, reducing both the transmission and the computation costs. The re-sampling is preceded by an anti-aliasing filter, a 10th-order Butterworth filter whose cutoff frequency is set to Fc=1.1 kHz. A high-pass filter with cutoff frequency equal to 40 Hz filters the subsampled signal, in order to eliminate its continuous component and attenuate the energy of the lowest frequencies that cannot be produced by a moth signal.
    For our experimentations, we reorganized the available data as follows. We extracted, from the acquisitions performed during the 3 agricultural seasons, 400 minutes of recordings containing moth events and we stored the extracted signal in 40 different files, containing each a signal of 600 seconds. Three files were used for training the system and the other 37 files were used for testing.
    Event detection: The input signal, sampled at 2.2KHz, is split into overlapping windows, each corresponding to a 8.13s recording. The temporal shift between two overlapping windows is equal to 749 ms, ensuring the continuity of the analysis. A window is accepted as a possible moth event if the two following conditions are satisfied: first, the signal energy is the highest at the central part of the window; second, the power of the signal on the entire window is higher than a given threshold. The power of the signal is estimated using the Root Mean Square (RMS),




whereis the total number of samples in the considered window and  is the value of the ith sample. The window is accepted as a possible moth event if


where RMSseuil is a detection threshold set by the user.
    Feature vector extraction: The identification algorithm is based on Linear Predictive Coding (LPC). The LPC analysis aims at determining the coefficients ai of a Finite Impulse Response (FIR) filter of order P that can predict a signal xn from past samples:





The sample is approximated by a linear combination of the last P samples. The coefficients ai of the prediction filter are calculated by minimizing the power of the residual error, i.e. the mean square difference between the input signal  and the predicted signal . The frequency response of the synthesis filter H(Z), defined by

,
models the spectral envelope of the input signal. In our application, we experimentally set P=39, which is enough to properly model the sound produced by moth flight. Figure 1 shows the spectrum calculated on a temporal window containing a moth event, in blue, and the frequency response of the corresponding synthesis filter, in red. It can be seen that the synthesis filter response matches closely the signal spectrum near the spectral peaks. Thus, the P coefficients provided by the LPC analysis are used as feature vector for identification purpose.
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Fig.1: Signal spectrum (blue) and frequency response of the synthesis filter (red).


    Moth identification: The identification module is based on a classification algorithm, which classifies the tested event, represented by its vector of LPC coefficients, in one of the two following classes “moth event” or “other event”. Here we propose to compare the LPC coefficients of the tested event with the typical LCP coefficients of a moth event, obtained through a supervised training phase performed on real recordings. The Mahalanobis distance is used for the comparison, since it allows taking into account the statistical properties of the LPC coefficients of moth events. Let us denote by  the tested feature vector containing the P LPC coefficients calculated on the tested window, and by XNOC and NOC the mean feature vector and the covariance matrix modeling a moth event, both calculated during the training phase. The Mahalanobis distance is defined by


where MT denotes the transpose of matrix M and M-1 its inverse. This distance, which can be viewed as a measure of similarity, is low when the two compared vectors are similar, higher otherwise. Consequently, the obtained value is compared to a decision threshold D, in order to accept or reject the tested event as “moth event”. Let us denotes by C(X) the class of the vector X:


The definition of the threshold D is crucial: if chosen too low, actual moth events will be rejected (false rejection), if set too high, too many other sounds will be counted as moths events (false acceptation). So, the choice of D results from a compromise, as it will be shown in the next section.

[image: ]
Fig.2: Spectrogram and oscillogram of moth flight sounds. The boxes indicate the windows containing a moth event which are involved in the training phase.
     The estimates of XNOC and NOC are obtained through a supervised learning phase. We selected carefully 63 windows from three different audio files, each window containing a moth event. The LPC coefficients were calculated on every window, providing a set of 63 feature vectors. The mean vector XNOC and the covariance matrix NOC were classically estimated from these learning vectors. The obtained values were used in the testing phase performed on the 37 remaining audio files, for the calculation of the Mahalanobis distance. Figure 2 shows the windows extracted from one of the three audio files and used in the learning process.

QUANTITATIVE EVALUATION

     Method: We have performed a quantitative evaluation of our approach. The main two parts of the system, namely event detection and moth recognition, have been studied separately and then jointly, with respect to the two parameters of the algorithm: the detection threshold RMSseuil and the decision (classification) threshold D. Finally, a global evaluation of the complete system has been done. ROC curves have been calculated to this aim, representing the true positive rate (TPR) as a function of the false positive rate (FPR),




where TP denotes the number of “True Positives”, i.e the number of moth events correctly classified as “moth event”, FN the number of “False Negatives”, i.e. the number of moth events badly classified as “other event”, FP the number of “False Positives”, i.e. the number of events badly classified as moth event, and TN the number of “True Negative”, i.e. the number of events correctly classified as “other event”. The best performances correspond to a TPR close to 1 with a FPR close to 0. 
     Evaluation of the detection step: In this part, we have evaluated the performance of the event detection step only and studied the influence of the detection threshold RMSseuil. Figure 3 shows the temporal windows corresponding to the studied events, with colors explaining how to measure the true positive rate (TPR) and the false positive rate (FPR). ROC (Receiver Operating Characteristic) curves can then be drawn, expressing the TPR as a function of the FPR for several operating points, i.e. several detection thresholds RMSseuil.
Three different threshold values RMSseuil were used in our experiments: 0.001, 0.0008 and 0.0002. The TPRd and the FPRd of Figure 4 were calculated on the test set which consisted in 37 files of audio recording (370 minutes). 

[image: ]
Fig. 3: TPd, FNd, TNd and FPd measurements.

     The lowest FPRd (<0.2) is obtained for the highest detection threshold (0.001) while the higher TPRd (>0.95) is obtained for the lowest threshold (0.0002). The true positive rates TPRd are very similar for the three thresholds (near 0.9) while the false positive rate FPRd are very distinct, ranging from 0.12 to 0.93. We can conclude that decreasing the threshold does not improve significantly the moth detection while it increases significantly the number of events to be processed by the recognition module. 

[image: ]
Fig.4: ROC curve evaluating the detection algorithm

     Evaluation of the recognition step: The classification step has been studied independently in order to evaluate its ability to discriminate between moth events and other events and get objective arguments to set the decision threshold D. Considering the windows selected by the first step of the algorithm, we have compared the classification result with the ground truth, as illustrated in Figure 5. The time intervals were no window is selected are not considered.

[image: ]
Fig. 5: TPc, FNc, TNc and FPc measurements.

Different decision threshold values D have been tested, ranging from 30 to 5000, allowing tracing ROC curves (Fig. 6) for the three detection thresholds RMSseuil previously mentioned. As before, the assessment covers only the test set.
[image: ]
[bookmark: _Ref371670136]Fig.6: ROC curves evaluating the recognition algorithm for the 3 detection thresholds RMSseuil.

     Several points are worth noting. First, the maximum values of TPRc are very close for the three curves (around 0.9) and are obtained with the highest decision threshold D=5000. On the contrary, there is a strong difference between the FPRc values. For example, for D=1000, the FPRc is equal to 0.4 for a selective RMSseuil=0.001 while it is equal to 0.14 for a less selective RMSseuil=0.0008. To explain that, one has to notice that the number of events processed by the classifier depends on this parameter: the lower the detection threshold, the higher the number of events to process. The decreasing of FPRc with the detection threshold RMSseuil is due to the increasing of the number of true negatives (TN) at the denominator, which demonstrates very good properties regarding the specificity of the classifier. On the other hand, the decreasing of the detection threshold does not increase the TPRc, it even tends to decrease it slightly, which indicates that the classifier is not sensitive to moth events of low power. In overall, a decision threshold D close to 1000 seems to lead to good performances, with a TPRc around 90%. 
     Global Evaluation: This evaluation aims at characterizing the complete system, including both the detection and the recognition steps and at setting the optimal couple of parameters (RMSseuil, D). As illustrated in Figure 7, the number of true positives, false positives, true negatives and false negatives can be calculated by:


Then, the TPRT and FPRT values are given by the following equations:


[image: ]
Fig. 7: TPT, FNT, TNT  and FPT measurements for the complete system.

Figure 8 shows the ROC curves calculated for the three detection thresholds RMSseuil. The curves are almost similar, however with slightly better performances for a detection threshold equal to 0.0008. We obtain good recognition performances for the couple of parameters (RMSseuil=0.0008, D=1000), with a TPRT equal to 0.83 for a FPRT around 0.05. However, the computation cost is significantly higher compared to another configuration given by (RMSseuil=0.001, D=1000), which leads to slightly worse results. This point has also been studied and will be presented in the following sub-section.

[image: ]
Fig.8: ROC curves evaluating the complete system on the test data, as function of the threshold D, for three RMSseuil values.

    Another evaluation criterion is given by the recognition rate R, calculated by dividing the number of detected moths TPT by the number of actual moths (ground truth). 


Figure 9 shows the recognition rate as a function of the decision threshold D for the three detection threshold RMSseuil, calculated this time on both the training and the test sets. As expected, the three curves are very close to each other, however with performances a bit worse for the highest detection threshold (0.001). For the two other RMSseuil values, 0.0008 and 0.0002, the recognition rate converges to 0.9 as the decision threshold D increases. These results are in accordance with the ROC curves presented in the previous global evaluation.
     Influence of the detection threshold: The remaining issue now is how to set the detection threshold, given that several couples of parameters (RMSseuil, D) can lead to very similar results. Figure 10 shows the total number of detected events, the ground truth (actual moth events) and the number of events finally detected and identified as moths by the entire process, for a decision value D=1000 and for the three detection thresholds RMSseuil. It is worth noting that the number of moths detected by the whole system is almost the same in the three cases (as observed on the curves of the recognition rate) but that the number of events processed by the classifier is very different. A good choice could be RMSseuil= 0.001 since it enable us to identify 82% of the moths for a lower computation cost. Setting RMSseuil=0.0008 improves the recognition rate (+ 5%) but multiplies the number of events to be classified by a factor 2.5.
     Detecting moth in real time: Monitoring the population of moths is of great interest for farmers, since it enables them to detect the arrival of this pest and treat the cultures at the right time. Figure 11 shows the number of moths detected every day, along a period of 40 days (summer 2011). The red curve indicates the ground truth while the blue one indicates the number of moths detected by the proposed system (TPT). The parameters here are RMSseuil=0.001 and D=1000. Both curves are close to each other, with very similar shape. As farmers are more interested in the evolution of the population rather than in the absolute number of trapped moths, we can conclude that the proposed method satisfies to the requirements in terms of reliability and accuracy.
[image: ]
[bookmark: _Ref371673540]Fig.9: Recognition rate as a function of the decision threshold (training and test sets).

[image: ]
[bookmark: _Ref371673799]Fig.10: Comparison between the number of events processed by the classifier, the ground truth (actual number of moths) and the number of detected moths, for three detection thresholds.
[image: ]
Fig.11: Temporal evolution of the number of detected moths.

CONCLUSION AND PERSPECTIVES

     We presented a new system for the automatic detection of moths from sounds captured with a standard microphone, based on two steps, detection and recognition of moth events. The method is based on the recognition of the spectral features of the sound produced by moth flying. The quantitative evaluation on real data has proved the accuracy and the robustness of the proposed method, which will enable farmers to monitor the moth population in real time. We found that the detection threshold has little influence on the global performances. However, choosing a low value leads to many selected events and consequently more processing. Then, the quantitative analysis enabled us to set an optimal decision threshold, which finally leads to a true positive rate above 80% for a corresponding false positive rate around 5% on the tested data. Further work will focus on the implementation on the M2M network, for an efficient and low-cost operational system. We plan to optimize our code for a deployment of the pre-processing and detection steps on the gateway, in order to minimize the transmission cost.
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