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ABSTRACT 
 
The visible-near infrared (Vis-NIR) based real-time soil sensor (RTSS) is 
found to be a great tool for determining distribution of various soil properties 
for precision agriculture purposes. However, the developed calibration models 
applied on the collected spectra for prediction of soil properties were 
site-specific (local). This is found to be less practical since the RTSS needs to 
be calibrated separately for every field. General calibration approach is 
expected to minimize this limitation. This paper describes the feasibility of 
general calibration model developed from two types of paddy field and to 
compare the performance of the calibration models. For this purpose, Vis-NIR 
reflectance spectra of fresh soil were acquired at two fields (organic and 
inorganic paddy fields). Fresh soil samples were also collected from these two 
fields for analysis of moisture content (MC), organic matter (OM), total 
carbon (TC) and total nitrogen (TN) in the laboratory.  Three calibration 
models were then developed for each soil properties using partial least square 
regression (PLSR) technique coupled with full cross-validation. The first 
model (CM1) was developed using dataset from organic field, second model 
(CM2) was from inorganic field and the third model (general model – CM3) 
was developed from combination of dataset from both fields. The performance 
of the three calibration models were compared based on the determination of 
coefficient (Rval

2), root mean square error of validation (RMSEval) and residual 
prediction deviation (RPD). Results showed for MC and OM, CM3 produced 
highest prediction accuracy with Rval

2 of 0.90 and 0.95. For TC and TN, CM1 
 
 



produced the highest accuracy. CM2 produced the lowest accuracy for all the 
soil properties. This result could be used as a step towards establishment a 
robust general calibration model for agriculture soil. 
 
 
Keywords:     calibration model, visible-near infrared, real-time soil sensor, 
organic, inorganic 
 
 
 

INTRODUCTION 
      

The visible-near infrared based real-time soil sensor (Vis-NIR RTSS) is 
found to be a great tool for describing distribution of various soil properties 
for precision agriculture purpose. It has been proven to be a rapid, 
inexpensive and relatively accurate tool for measuring soil properties. 
Furthermore, this sensing technology offers on-line measurement of soil 
properties at fine resolution sampling which may reduce the cost of producing 
map for precision agriculture application (Kodaira and Shibusawa, 2013). 

At the heart of visible-near infrared (Vis-NIR) spectroscopy technique 
is the calibration model that relates reflectance spectra to soil properties 
measured by the laboratory analysis (reference value). In previous studies, 
researchers tended to develop local calibration model for each field they 
measured with Vis-NIR spectroscopy (Kodaira and Shibusawa, 2013, 
Mouazen et al., 2005). In other words, the developed calibration models 
applied on the collected spectra for prediction of soil properties were 
site-specific (local). This found to be less practical since the RTSS needs to be 
calibrated separately for every field. As consequences, the employment of 
RTSS for describing soil variability would become less time and cost 
effective because soil sampling and soil laboratory analysis need to be carried 
out every time when developing calibration model for every different field. 
General calibration approach is expected to minimize this drawback even 
though the accuracy of the model might less accurate but still good enough to 
be acceptable for farm management in precision agriculture application.  

In order to establish a robust general calibration model, the Vis-NIR 
spectra and soil sample need be collected from a wide geographic range. 
Malley et al. (2004), Viscarra Rossel et al. (2006), and Stenberg et al. (2010) 
have drawn soils from a wide geographic range and thus do not directly 
address the use of reflectance spectroscopy to determine the soil properties for 
specific field. Estimation of soil properties in these studies has had varying 
degrees of success. The objective of this paper is therefore to describe the 
feasibility of general calibration model developed from two paddy fields that 
have different soil management (organic and inorganic) and to compare the 
performance of the calibration models. This study is a step towards 
developing a prediction models that could be applied to all Japan paddy field 
whatever the agricultural management history. We believe this is how 
predictive models are used in practice. 

 
 
 



MATERIALS AND METHODS 
 

Experimental Site 
 

Japan country consists of four main islands which are Honshu, 
Hokkaido, Kyushu and Shikoku. The first field experiment was conducted at 
an organic paddy field at Matsuyama City of Ehime Prefecture in Shikoku 
Island, Japan (33º8’N, 132º8’E) (Fig. 1). This site comprises a number of 
small paddy fields where organic farm management is implemented. Field no. 
437 (58.3m x 21.7m) was selected for this study. The experiment was 
conducted after paddy harvesting in autumn 2012. The average, maximum and 
minimum temperature of the day were 20.8, 26.3 and 14.5 Ԩ, respectively. 
The soil texture of the field was described according to three depths as 
follows: 52.82% sand, 24.71% silt and 22.47% clay at a depth of 10cm, 
54.55% sand, 21.02% silt and 24.43% clay at a depth of 15cm, 66.29% sand, 
11.82% silt and 21.89% clay at a depth of 20cm. 

The second field experiment was carried out at an inorganic paddy farm 
at Yamatsuri City of Fukushima Prefecture in Honshu Island (36o52’N, 
140o25’E) (Fig.1). The average, maximum and minimum temperatures of the 
day were 7.9, 10.9 and 4.9 Ԩ, respectively. Inorganic farm management was 
implemented at this site. The experiment was conducted after the paddy 
harvesting season in early winter 2013. Two fields selected for this study were 
Field 2 (0.27 ha) and Field 5 (0.41 ha). The soil textures of the two fields were 
described as follows: 66.0% sand, 13.6% silt and 20.4% clay of field 2 and 
62.1% sand, 16.2% silt and 21.7% clay of field 5. 

 
 
 

 
 
 
 
 
 
 
  
 

Fig. 1. Location of the experimental site (a) Matsuyama in Shikoku Island 
and (b) Fukushima in Honshu Island 

 
 

Real-time Soil Sensor 
 

The RTSS used for this study was SAS1000, SHIBUYA MACHINERY 
Co., Ltd. (Fig. 2). It comprises of sensor unit’s housing, a touch panel, soil 
penetrator and the housing for the probes. The sensor unit’s housing consists 
of a personal computer, differential global positioning system (DGPS) receiver, 
150-W Al-coated tungsten halogen lamp as a light source and two 
spectrophotometers. The first spectrophotometer is for Vis (350 to 1100 nm), 

(a) (b) 



has a 256-linear diode array while the second spectrophotometer is for NIR 
(950 to 1700 nm), has a 128-pixel linear diode array of multiplexed InGaAs. 
In the probe housing, two optical fibers were used to guide the light from the 
light source (halogen lamp) and illuminate the underground soil surface with 
an area of about 50 mm in diameter. The underground soil Vis-NIR 
reflectance spectra were then collected through an additional optical fiber 
probes to the two spectrophotometers. The probe housing is also equipped 
with a micro CCD camera to capture, record and display the images of 
uniform soil surfaces while the RTSS running across the field. The saved 
images were then used to detect outlier in the calibration and prediction 
process. In addition, a laser line marker located close to the optical fiber was 
used to monitor distance variations between the soil surface and the micro 
optical devices. 

 
 
 

 
 
 
 
 
 
 
 

Fig. 2. Real-time Soil Sensor SAS1000 
 
 

Spectra Acquisition and Soil Sampling 
 

For the first field experiment (organic farm, Matsuyama), the Vis-NIR 
reflectance spectra at range of 350 to 1700 nm were acquired at three depths: 
0.10 m, 0.15 m and 0.20 m from the soil surface by adjusting the gage wheels 
of the RTSS. At each depth, the tractor attached with the RTSS was travelled 
on 4 transects at spacing of 5 m and at speed of 0.25 ms-1. When the RTSS 
was running on the track, the soil penetrator tip with a flat plane edge ensured 
uniform soil cuts and the soil flattener following behind formed a trench with 
a uniform underground surface. The Vis-NIR reflectance spectra of the 
underground soil were acquired automatically from the bottom of the trench at 
every 4 s and this resulted in the Vis-NIR reflectance spectra being sampled at 
distance of every 1 m.  

At each depth, two sets of twenty soil samples were subsequently 
collected at the bottom of the trench (5 samples at each transects) in-line with 
the RTSS’s tracks. In total, there were 2 sets of 60 soil samples collected. 
However, due to the RTSS encountering obstacle at one point at a depth of 
0.20 m, invalid spectra were acquired at that particular point. Hence, the soil 
sample corresponding to that single point was omitted from each set. Finally, 
only 59 soil samples of each set were collected from Matsuyama field. 

For the second field experiment (inorganic farm, Fukushima), the 
Vis-NIR soil reflectance spectra were acquired at 0.15 m depth on two fields 



(Field 2 and Field 5). The similar spectra range as in the first experiment was 
acquired at every 3 s while the tractor travelling at speed of 0.28 ms-1. This 
resulted in the Vis-NIR reflectance spectra being sampled at every 
approximately 0.84 m distance  

Two sets of 63 and 67 fresh soil samples were then collected from Field 
2 and Field 5 respectively along the RTSS’s tracks for analysis of moisture 
content (MC), organic matter (OM) and total carbon (TC) in laboratory.  In 
total, there were two sets of 130 soil samples collected.  
     The first sets of soil samples collected from both fields were sent to 
Tokyo University of Agriculture and Technology Laboratory (TUAT) to 
determine the amount of MC and OM by applying oven-dried and loss ignition 
combustion method respectively. The second sets were sent to Agriculture 
Product Chemical Research Laboratory (APCRL) to determine the amount of 
TC using Tyurin’s method and TN using Kjeldahl method.  

 
Spectra Pre-treatment and Calibration Model Development 

 
Prior to the development of calibration models, all collected 

underground Vis-NIR soil reflectance spectra were converted to absorbance 
using the Beer-Lambert’s Law. The absorbance spectra were then converted to 
5-nm-interval data by the interpolation method using Data Monitor Software 
(Shibuya Seiki Co., Ltd.). The original absorbance spectra range was from 350 
to 1700 nm. To enhance weak signals and remove background noises, the 
absorbance spectra were pre-treated using second derivative Savitzky and 
Golay method. Moreover, both edges of the wavelengths were removed as 
these parts of the spectra were unstable and rich in noise. Hence, the spectra 
range of 500 to 1600 nm was further used for developing calibration models. 

The calibration models were developed by applying the partial least 
square regression (PLSR) technique coupled with full-cross validation to 
establish the relationship between the amount of soil properties obtained by 
chemical analysis (reference values) with the pre-treated Vis-NIR soil 
absorbance spectra. These were performed using the Unscrambler X10.2 
software. For each of the soil property, three calibration models were 
developed. The first model (CM1) was developed using the dataset (spectra 
and reference values) from Matsuyama field, the second model (CM2) was 
developed using the dataset from Fukushima field and the third model (CM3) 
combined the dataset from both fields. In the calibration process, outliers were 
detected by checking the residual sample variance plot after the PLSR. 
Individual samples located far from the zero line of residual variance on the 
validation views were considered to be outliers and excluded from the analysis. 
The performance of the three calibration models for each of the soil property 
was then assessed based on the value of coefficient of determination (Rval

2), 
root means square error of prediction (RMSEval) and residual prediction 
deviation (RPD) produced from the PLSR analysis. RPD is given by the ratio 
of standard deviation (SD) of the reference dataset to the root mean square 
error of full cross-validation (RMSEval) 

The best calibration model that possesses maximum Rval
2 and RPD but 

minimum RMSEval in the regression analysis for each soil property was then 
used to provide quantitative prediction and mapping of the respective soil 



properties using ArcGIS Ver10.0 software. The soil maps were interpolated 
using the inverse distance weighing (IDW) method. 

 
RESULTS AND DISCUSSION 

 
Soil Compositions and Spectra Properties 

 
The statistic result (Table 1) of the laboratory soil chemical analysis 

shows that the Fukushima soil possesses higher content of all the soil 
properties especially MC with the mean value is 32.94 %. However, the 
variability of Matsuyama field is higher than Fukushima field based on the 
coefficient of variation (CV) of both fields. By merging the both fields’ data, 
the variability of the soil properties is higher than the just Fukushima field. 
However for Matsuyama field, the merging data increased the variability of 
only MC and OM but not TC and TN. The higher variability of Matsuyama 
field might be due to the soil samples were collected at three different depths 
unlike Fukushima, where the samples were collected at just single depth (0.15 
m). 

The mean 2nd derivatives of absorbance spectra for the two fields are 
depicted in Fig. 2. The spectral data were analyzed by principal component 
analysis (PCA). The two-dimensional scatter plot of PCA gives information 
about patterns among the samples (Fig. 3). The closer together samples were 
in the scatter plot, the more similar they were in composition as reflected in 
their spectra. The majority of samples were from the Fukushima field and 
these formed a fairly tight group based on their spectral properties. The 
samples from the Matsuyama field tended to separate from the Fukushima 
group along the PC-1 axis. From this PCA scatter plot also, the discrimination 
on the spectra for different depths of Matsuyama field can be observed. 

 
Table 1. Statistical results of soil chemical analysis on soil properties in 
calibration dataset 

 Calibration Dataset  Statistics MC (%) OM (%) TC (%) TN (%) 

Matsuyama 
(CM1) 

N 59 59 59 59 
Mean 18.25 5.21 1.23 0.13 
Min 11.77 3.85 0.50 0.07 
Max 23.63 6.30 1.94 0.18 
SD 2.47 0.61 0.42 0.03 
CV 13.53 11.75 33.79 23.50 

Fukushima 
(CM2) 

N 130 130 130 130 
Mean 32.94 7.65 1.65 0.15 
Min 26.36 6.11 1.13 0.11 
Max 40.12 9.13 2.10 0.19 
SD 3.06 0.61 0.23 0.02 
CV 9.28 7.94 13.80 12.87 

Matsuyama and 
Fukushima 
(CM3) 

N 189 189 189 189 
Mean 28.35 6.89 1.52 0.15 
Min 11.77 3.85 0.50 0.07 
Max 40.12 9.13 2.10 0.19 
SD 7.40 1.29 0.35 0.03 
CV 26.12 18.67 23.40 17.63 



 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The mean of 2nd Derivative of absorbance spectra of Matsuyama 
and Fukushima soil  
 
 
 
 
             
 
 
 
 
 
 
 
 
 
 
 
F-2 : Fukushima Field 2,  F-5 : Fukushima Field 5,  M-10cm : Matsuyama at depth of 10cm, M-15cm : Matsuyama 

at depth of 15cm,  M-20cm : Matsuyama at depth of 20cm 

 
Fig. 4. Score plot of the 189 samples on the first two principal components 
explaining the variance in the Vis-NIR spectral data.  
 

 
 

Comparison of Calibration Models 
 

The PLSR results of the calibration and validation were obtained as 
shown in Table 2. Based on the determination of coefficient (Rval

2) and root 
mean square error of validation (RMSEval), CM3 that combined datasets of 
soil from both fields are resulted in the highest accuracy for MC and OM with 
the Rval

2 are 0.90 and 0.95 respectively. For TC and TN, CM1 (dataset from 
Matsuyama only) produced highest model accuracy with Rval

2 and RMSEval 
are 0.88 and 1.38 for TC, 0.85 and 0.26 for TN. The lowest model accuracy 
for all the soil properties is CM2. 

Wavelength (nm) 



According to Chang (2001) Values of RPD larger than 2 are considered 
excellent, between 1.4 and 2 are good and below 1.4 are unreliable. Referring 
to this classification, CM1 and CM3 showed excellent calibration models for 
all the soil properties. CM2 was only regarded as excellent calibration model 
for TN and good for other soil properties. The scatter plots of the CM3 models 
are depicted in Fig. 5. 

Results from this study show that the combination of the calibration 
dataset from two fields of different soil management gave a wider range of 
dataset and resulted in better prediction. The low accuracy of CM2 is expected 
due to the small variation of Fukushima soil properties. This is consistent with 
a study by Sudduth (2010) who found that when variation in the parameter of 
interest was small, generally poor estimations of OM was obtained at the field 
scale. Furthermore, as reported by Bricklemyer (2011), field moisture content 
is one of the factors that can reduce the accuracy of Vis-NIR method. This 
might be another reason for low accuracy of CM2 model as the Fukushima 
soil is high in moisture content (Table 1). Moreover, Terhoeven-Urselman 
(2010) noted that the calibrations might have been stronger if soil reference 
analysis (laboratory soil analysis) had been done in a short period of time and 
at the same time for all large number of samples. For laboratory soil analysis 
of Fukushima soil for the reference values, the large samples of Fukushima 
(130 samples) were not analyzed at the same time in a short period of time. 
Unlike Matsuyama, the soil analysis was performed for all the 59 samples on 
the same day and in a short period of time. 

 
 

Table 2. Summary of Partial Least Square Regression (PLSR) 

aCalibration Model. CM1: Matsuyama model, CM2: Fukushima model, CM3: Fukushima and 
Matsuyama model, bNumber of samples used in the model, SD : standard deviation, RPD : 
residual prediction deviation 
 
 

Soil 

Properties 

Calibration 

Modela Nb 

Calibration  Validation 
SD RPD 

Rcal Rcal
2 RMSEcal  Rval Rval

2 RMSEval 

MC [%] 

CM1 53 0.97 0.94 0.97  0.94 0.88 1.40 3.95 2.82 

CM2 117 0.88 0.77 1.38  0.85 0.73 1.52 2.89 1.90 

CM3 170 0.96 0.93 1.30  0.95 0.90 1.55 4.77 3.08 

OM [%] 

CM1 53 0.93 0.87 0.22  0.91 0.82 0.26 0.61 2.35 

CM2 117 0.91 0.82 0.24  0.87 0.77 0.28 0.58 2.07 

CM3 170 0.98 0.97 0.22  0.97 0.95 0.28 1.28 4.57 

TC [%] 

CM1 53 0.95 0.91 0.13  0.94 0.88 0.15 0.43 2.87 

CM2 117 0.91 0.83 0.09  0.85 0.72 0.12 0.22 1.83 

CM3 170 0.95 0.90 0.11  0.93 0.87 0.13 0.36 2.77 

TN [%] 

CM1 53 0.96 0.92 0.01  0.92 0.85 0.01 0.03 3.00 

CM2 117 0.91 0.82 0.01  0.85 0.73 0.01 0.02 2.00 

CM3 170 0.93 0.87 0.01  0.92 0.84 0.01 0.03 3.00 



 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 5. Scatter plot of measured values versus Vis–NIR predicted values of 
CM3 using partial least squares regression (PLSR) coupled with full 
cross-validation datasets for: (a) MC, (b) OM, (c) TC and (d) TN 
 
 

Soil Properties Mapping 
 

The RTSS also acquired other spectra in between the sampling points on 
transects of Matsuyama and Fukushima fields. For Matsuyama field, the 
number of spectra acquired was 145 at depth of 0.10 m, 269 at depth of 0.15 m 
and 377 spectra at depth of 0.20 m. For Fukushima field, 723 spectra were 
acquired at Field 2 and 1715 at Field 5. All these unknown spectra were 
predicted using calibration model CM3 to determine the amount of the soil 
properties. The predicted values were then used to generate soil map using 
ArcGIS 10 (ESRI, USA) mapping software. The inverse distance weighting 
(IDW) method was used for the spatial interpolation. In order to allow for 
useful comparisons between measured and predicted maps, the same number 
of classes for both maps was used for every soil properties. Fig. 6 compares 
between maps of laboratory measured and predicted of MC and OM of 
Fukushima Field (Field 2 and Field 5), taken as an example. A comparison 
between maps of measured and predicted MC and OM shows similarity, which 
was also achieved for TC and TN (maps are not shown). 
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Fig. 6. Comparison of measured and predicted map of MC and OM for 
Field 2 ( a and c) and Field 5 (b and d) 
 
 

CONCLUSIONS 
 

Three spectroscopic calibration models based on Vis-NIR underground 
reflectance spectra of two different fields (organic and inorganic farm) have 
been developed. The third calibration model (CM3-general model) that 
incorporated soil from both fields improved the accuracy of CM2 model for all 
soil properties and CM1 model for MC and OM. The generalization of the 
model has good potential for minimizing the repetitiveness of developing 
calibration model every time for every different field. However, the calibration 
sample selection methods need to be optimized which covering as much of the 
soil variation as possible within all samples and within the calibration samples. 
Moreover, validation using independent samples is required in additional study. 
Thus, incorporation of more soil samples from various types of cultivation 
fields at other region of Japan is necessary in future studies as to improve the 
generality and robustness of the calibration model that could be applied to all 
Japan soils whatever the agricultural management background. Even though 
samples used for model validation were not independent of those used for 
calibration, the result from this study nevertheless could be used as a step 
towards establishment of a robust general calibration model for various type of 
agriculture soil. 
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