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ABSTRACT 
 
Future economic and environmental demands on agricultural production require a 
more efficient use of resources. Excessive use of nutrients may cause leaching, 
whereas deficits could lead to impediments in tapping full yield potential. As part 
of an ongoing research project, we investigated the ability to increase nitrogen 
efficiency for winter wheat fertilization using Artificial Neural Networks (ANN) 
and Support-Vector-Machines (SVM). Based on a high-resolution yield 
prediction, a site-specific economic optimal nitrogen amount was determined 
according to the maximum Nitrogen Cost-free Revenue. Results showed an 
increase in nitrogen efficiency of about 30 % (ANN) and 10 % (SVM) compared 
to uniform treatment (UT). However, a decrease in yield level of about 0.6 t ha-1 
occurred using the ANN-based strategy. 
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INTRODUCTION 
 
     Over the last decade, economic and environmental demands on agricultural 
production have been consistently increasing. The realization of the European 
Union Water Framework Directive claims less leaching of nutrients (esp. 
nitrogen) into ground and surface waters. At the same time, farmers are required 
to maximize their economic outcomes with regard to increasing prices for fuel, 
pesticides or fertilizer to succeed within competitive markets. Following this, it is 
crucial to make use of the natural yield potential of a field. Due to heterogeneity 
within a field, this potential is spatially highly variable and, hence, requires site-
specific management approaches. However, nitrogen fertilization is widely 
carried out in a uniform way based on the experience of the farmer. 
     Prior work has been done by Weigert (2006) who used an ANN approach to 
determine site-specific fertilization (Wagner et al., 2006). During the years  
 
 
 



2005 to 2011, his approach resulted in an average nitrogen efficiency increase of 
20 % concurrently with an economical benefit of about 25 EUR ha-1 compared to 
conventional uniform treatment (Wagner, 2012). However, there has been some 
evidence to conclude that ANN predictions might be widely imprecise at specific 
tasks (yield prediction) whereas SVM approaches often outperform ANN 
(Russ, 2009; Russ 2012). 
     This paper focuses on two data mining approaches to realize site-specific 
nitrogen fertilization for winter wheat with regard to an economically optimal 
amount of nitrogen. It should emphasize the advantages of a site-specific 
fertilization with decision rules from ANN and SVM methods especially 
compared to those of conventional fertilization. A major focus is put on the 
nitrogen efficiency of each of the approaches. 
 

MATERIALS AND METHODS 
 
     The methodological concept for data mining approaches is based on three 
major steps: [1] the generation of datasets consisting of empirical training 
examples to present to the self-learning algorithms, [2] the training of the 
self-learning algorithms (ANN and SVM) based on that training data to derive 
prognosis models and the validation of their predictions, and [3] the application of 
the prognosis model in a field trial and the comparison to the outcomes of uniform 
treatment (UT). 
 

Creation of training examples 
 
     Prior to in-field application, it was necessary to train both data mining models 
(ANN and SVM) to predict the yield for any specific position in the field at the 
point in time of each of the three split applications. To best illustrate the 
characteristic combinations of a field’s properties and their resulting yield, a 
winter wheat field trial was set up. Parameters accounting for heterogeneous 
conditions of the field were measured and used to create high-resolution maps. 
High spatial resolution at low-cost measuring and short-term availability was 
preferred for this study. Thus, we used the apparent soil electrical conductivity 
ECa (Geonics EM38, horizontal mode), historical yield maps (from available past 
combine data logs), and spectral measurements of the Red Edge Inflection Point 
(REIP) measured by the Yara-N-Sensor at EC development stage 32 and 49 
(equivalent to Zadoks scale stage 32 and 49) for describing a field’s 
heterogeneity. Additionally, we set up a randomized nitrogen application design 
for the same field trial consisting of 36 different nitrogen amount combinations 
for each of the three split nitrogen applications (SA1, SA2, SA3). These nitrogen 
combinations ranged from 0 to 270 kg ha-1 cumulatively (Fig.).  
     At the time of harvesting the field trial, a combine with yield logger was used 
to determine yield at any position within the field. All spatial data that reflect 
heterogeneity was further assigned to a certain spatially corresponding yield using 
ESRI ArcGIS 10.2 (nearest neighbor). Based on the distance of each assigned 
parameter to the closest yield value, those points that were below a certain 
proximity threshold were flagged valid (otherwise: non-valid). Only in the case 
that a yield point got all corresponding parameters within the defined threshold 



distance did it qualify to be used as training points for the self-learning 
algorithms. 
 

Training of the self-learning algorithms 
 
The nitrogen fertilization levels for each of the split applications along with the 
spatially corresponding parameters (ECa, historical yield, REIP) were taken as 
input (predictors), whereas the harvested yield at the end of the field trial’s 
growing season was taken as the output (target) for the data mining algorithms. 
     The training examples were used subsequent within the data mining 
algorithms. These were carried out separately for each split application. Thus, the 
included input parameters used for training were chosen according to their 
availability at the time of each split application. For the first yield prediction (at 
SA1), only historical yield maps, maps of ECa, and the amount of applied 
nitrogen at SA1 were used as input. Additionally, for the second yield prediction, 
a canopy spectral measurement of the REIP at SA2 (EC growth stage 32) and the 
amount of applied nitrogen at SA2 were used (additional parameters were 
included in the third split application). An overview of the available parameters at 
each split application is given in Table 1. For the training of the three ANN and 
SVM models, the software package IBM Modeler 15 was used. 
 
 
Table 1.  Parameters used for training of the ANN and SVM at the time of each 

split application based on the specific parameter availability. 

Prediction Time of SA1 Time of SA1 Time of SA1 
target 
 

yield yield yield 

predictors historical yield historical yield historical yield 
 ECa ECa ECa 
 N1[1] N1[1] N1[1] 
  N2[2] N2[2] 
  REIP32[4] N3[3] 
   REIP32[4] 
   REIP49[5] 
[1] nitrogen amount at SA1, [2] nitrogen amount at SA2, [3] nitrogen amount at 
SA3, [4] spectral canopy measurement at EC stage 32 (Zodaks stage 32), 
[5] spectral canopy measurement at EC stage 49 (Zodaks stage 49) 
  



 
Applying the predictive models 

 
     To apply the trained algorithms to the nitrogen fertilization in field, another 
field trial was set up in a completely randomized block design, consisting of four 
treatments with four repetitions. 
     For the application, spatial units were defined along the tracks as 36 x 6 m 
plots according to the working width of the fertilizer spreader (Rauch AGT). 
Within those plots, the same input parameters as used in the training were 
averaged and passed on to the trained algorithms. Parameter selection within each 
set corresponded to its availability, and hence, differed between SA1, SA2, and 
SA3. For each split application, the optimal amount of nitrogen needed to be 
determined beforehand. Therefore, the algorithms, iteratively, estimated a set of 
various crop yields for every possible applicable nitrogen amount for each plot. 
Based on this, the Nitrogen Cost-free Revenue (NCfR, Eq. 1) was calculated 
according to the price expectation for winter wheat of about 234 EUR t-1 
(LFL, 2013) and a nitrogen price of 1.08 EUR kg-1 N (LWK, 2013). Those 
combinations (predicted yield and nitrogen amount) were found optimal which 
resulted in the highest NCfR value (considering one split application at a time). 
 
(Eq. 1) 

ܴ݂ܥܰ = ൫ ܻௗ ή ௐܲ൯ െ (ܰ ή ேܲ) 
 
with: 
NCfR = Nitrogen Cost-free Revenue 
ܻௗ= predicted yield 
ௐܲ= expected price for winter wheat 
ܰ= nitrogen amount 
ேܲ= price for nitrogen fertilizer 

 
 
     Results obtained by either approach were further compared to outcomes of UT 
via an analysis of variances (ANOVA). Considering that ANOVA does not 
account for spatial dependencies, results obtained from this test may be biased 
regarding spatial influences. Thus, we additionally attempted to mitigate such 
drawbacks by applying a two-step procedure based on linear models provided by 
the SAS proc-mixed routine (SAS 9.3, SAS Institute Inc.). This procedure 
ensured that small-scale autocorrelation and large-scale trends (e.g., soil quality) 
were considered. 
  

 



 
RESULTS 

 
In regards to outcomes, ANOVA shows no statistically significant yield reduction 
for ANN and SVM modeling strategies when compared to UT. Average yield for 
each of the strategies is around 10 t ha-1. SVM and ANN show a monetary benefit 
of 28 EUR ha-1 and 65 EUR ha-1, compared to UT (Table 2). Thus, nitrogen 
efficiency is improved considerably by about 10 % for the SVM approach and 
34 % for the ANN approach. 
 

Table 2.  ANOVA results for the different treatments of the field trial. 

Treatment Yield 
[t ha-1][1] 

Applied nitrogen 
[kg ha1-] 

NCfR 
[EUR ha-1] 

Nitrogen efficiency 
[kg t-1] 

UT 10.2 199 1475[2] 19.5 
ANN 10.1 130 1540[2] 12.8 
SVM 10.2 179 1503[2] 17.5 
[1] Least Square Means (Estimates), [2] based on wheat price at the time of harvest 
(166 EUR t-1) 
 
     However, when spatial dependencies are factored in, statistically significant 
crop yield differences are observed between the ANN and UT strategy, with a 
yield reduction of about 0.6 t ha-1 for the ANN-based approach. In contrast to 
these findings, no statistically significant yield differences occur between SVM 
and UT (Table 3). The average cumulated amount of nitrogen applied for each 
strategy ranges considerably between 130 kg N ha-1 (ANN) and 199 kg N ha-1 
(UT). Considering the ANN-based strategy, fewer amounts of nitrogen, however, 
result in a lower crop yield. In contrast, using the SVM approach, less nitrogen 
applied (179 kg N ha-1) still resulted in the same level of crop yield (as compared 
to UT). Differences in NCfR for each of the strategies show that only the SVM 
appears to have a monetary advantage of about 13 EUR ha-1 compared to UT. 
Further comparison with the UT strategy shows improved nitrogen efficiency by 
about 10 % with SVM and 30 % for the ANN based approach (Figure 1). 
 
 

Table 3.  Results for the different treatments based on the 
geo-statistical approach from SAS. 

Treatment Yield 
[t ha-1][1] 

NCfR 
[EUR ha-1] 

Nitrogen efficiency 
[kg t-1] 

UT 10.2 1478[3,4] 19.5[3] 
ANN 9.5[2] 1436[3,4] 12.8[3] 
SVM 10.2 1491[3,4] 17.5[3] 
[1] Least Square Means (Estimates) based on SAS yield 
estimation, [2] ANN estimate significantly different compared 
to UT and SVM, [3] results based on SAS yield estimates and 
actual applied nitrogen, [4] based on wheat price at the time of 
harvest (166 EUR t-1) 



 
 

 
Figure 1.  Nitrogen efficiency based on the average cumulated applied nitrogen 

for each treatment. 

 
 

DISCUSSION 
 
     Considering the results of the ANOVA, the data mining approaches 
outperform the UT strategy significantly. However, spatial dependencies have to 
be considered, as it is impossible to have consistent laboratory conditions on the 
field trial. This leads to unbalanced preconditions for each treatment. In the case 
of the ANN-based strategy, average ECa was significantly higher than those of the 
other treatments. ECa was determined to be significantly important within the 
estimated geo-statistical crop yield model determined by SAS. Due to the higher 
average ECa, the ANN-based strategy seemed to be spatially advantaged, which 
the SAS model tried to compensate for. Consequently, the crop yield estimate 
from SAS for the ANN treatment was reduced significantly. In contrast, the 
average historical yield for the ANN strategy was not different from those of the 
UT strategy but had less influence within the SAS model. The positive correlation 
between ECa and crop yield, which the SAS model reflected, was also found by 
Wagner et al. (2006). In contrast, Huang et al. (2005) generally found the opposite 
relation between both parameters. Considering this, the evaluation of the results 
from the SAS estimation seemed to be not completely clear. 
     As of the current stage of this field trial, it has become apparent that economic 
evaluations are most reliable when using actual applied nitrogen and actual 
harvested crop yield. However, geo-statistical adjustments of yield were used to 
take spatial effects into account. Since this estimated variable was set in relation 



to actual applied amounts of fertilizer – instead of also using actual obtained 
yield – inaccuracies in estimating monetary benefits may have occurred but have 
not been further investigated at this point. 
 

CONCLUSION 
 
     Based on the results we have reason to conclude that data mining tools are 
suitable for further optimizing the application of nitrogen. In our study, nitrogen 
inputs needed for growing winter wheat could be reduced to varying degrees. As 
nitrogen efficiency has been increased to a considerable extent, the use of data 
mining tools, and especially the use of SVM for fertilization shall be emphasized. 
Nonetheless, there are inaccuracies in the evaluation of the results that need to be 
further investigated. 
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