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ABSTRACT 
 
Huanglongbing (HLB) or citrus greening disease is an extremely dangerous 

infection which has severely influenced the citrus industry in Florida. It was also 
recently found in California and Texas. There is no effective cure for this disease 
reported yet. The infected trees should be identified and removed immediately to 
prevent the disease from being spread to other trees. The visual leaf symptoms of 
this disease are green islands, yellow veins, or vein corking; however, starch 
accumulates on infected leaf and causes some blotchy mottle which is the finest 
diagnostic leaf symptom. Still it is not easy to decide the blotchy mottle is the 
results of starch accumulation or nutrient deficiency. Starch can rotate the 
polarization planar of light at a specific waveband. In this study, a vision sensor 
was developed based on this property of starch to detect the blotchy mottle on 
HLB infected citrus leaf and differentiate it from similar symptoms caused by 
nutrient deficiencies. A highly sensitive monochrome camera and 10 high power 
narrow band LEDs at 591 nm were used in this sensor. Also a polarizing film and 
a polarizing filter were mounted in perpendicular directions in front of the LED 
panel and the camera lens correspondingly. Therefore, the camera receives the 
minimum reflection. Since starch rotates the polarization planar of light, the 
sensor is able to highlight the accumulation of starch on the leaf. The narrow band 
polarized illumination condition was compared to non-polarized natural white 
light for leaf samples in healthy, HLB symptomatic, and nutrient (zinc) deficient 
conditions. The result showed that the developed vision sensor increasingly 
highlighted the HLB symptomatic areas on the leaf which contained more starch. 
Additionally, the separability among four different citrus leaf classes were 
compared before and after being ground, to investigate if the starch in ground 
infected leaves can be identified as good as unground leaves. The results showed 
that the freeze-dried ground leaves had more uniform brightness; but the starch 
accumulation could be identified more clearly. 
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INTRODUCTION 

 
Citrus greening disease which is also called Huanglongbing (HLB) is an 

extremely destructive psyllid-spread infection in citrus. The insect can carry the 
bacteria and transfer it to healthy trees when they feed leaves. It was first seen in 
south Florida in 2005; however, today it can be seen in the entire state of Florida 
as well as some parts of California and Texas. Bitter taste, uneven shape, and 
irregular color are some indications of the HLB disease. But one of the visible 
symptoms of HLB is yellowish islands on the leaf which is due to the 
accumulation of starch. Although this symptom can be used for human-based 
infection identification, it would be very inaccurate most of the time because 
some nutrient deficiencies (such as zinc and magnesium deficiencies) generate 
similar symptom. Although, no effective treatment has been reported for HLB 
disease yet, an early diagnosis and elimination of the HLB affected trees can 
prevent more spread of the infection and avoid a huge loss. 

Several HLB diagnostic approaches have been examined and introduced by 
researchers. These approaches can be categorized by human inspection (Futch et 
al., 2009), laboratory based starch measurement (Gonzalez et al., 2012), 
laboratory based qrt-PCR test (Hansen et al., 2008), airborne imaging (Li et al., 
2011), and vision/spectroscopy based (Mishra et al., 2007; Pourreza et al., 2013) 
methods. Etxeberria et al. (2009) showed that an HLB affected citrus leaf includes 
an excessive amount of starch accumulation. They introduced a laboratory based 
starch measurement method to diagnose the symptomatic areas on the leaf and 
confirm if the symptoms were due to HLB disease or nutrient deficiency. 
However, their method required sample collection and laboratory works which 
was time consuming and labor intensive.  

Kim et al. (2009) analyzed color microscopic images to identify the HLB 
infection on citrus leaf. They achieved an overall accuracy of 87% in HLB 
diagnosis using textural features extracted from the citrus leaf images.  

Researchers showed that spectroscopy of ground citrus leaves can reveal the 
HLB status of samples. Hawkins et al. (2010) achieved the accuracy of over 95% 
in recognizing HLB affected leaves from healthy samples by analyzing the 
reflectance data of ground leaves in the mid-infrared band. Sankaran et al. (2010) 
employed a mid-infrared spectroscopy to classify ground leaves into HLB 
positive, HLB negative, or nutrient deficient classes and they obtained the 
accuracy of over 90% in HLB identification. In another study (Windham et al., 
2011), the reflectance of ground leaves were used to identify HLB affected 
samples from healthy, nutrient deficient, and also other citrus disease. They 
obtained true positive rates of over 92% for different classes. 

In our previous study (Pourreza et al., 2014), it was shown that the excessive 
starch level on HLB affected citrus leaves can be highlighted using the proposed 
image acquisition system. Later another vision sensor was developed which 
improved the efficiency of the original prototype. Therefore, the main objective of 
this study was to evaluate the performance of the proposed vision sensor and to 
confirm its efficiency. The specific goals were: (1) to assess the improvement in 
HLB identification achieved using the narrow band illumination and polarizing 
filters in comparison with a natural imaging condition, and (2) to compare the 



effect of starch accumulation on the images of citrus leaves and ground leaf 
samples. 

MATERIALS AND METHODS 
 

Data Collection 
 
Two datasets of Hamlin sweet orange leaves were collected from citrus trees in 

the Citrus Research and Education Center (CREC), University of Florida (Lake 
Alfred, Florida). The first dataset included 60 samples of HLB-negative, HLB-
positive and zinc-deficient leaves which were used to compare the images 
acquired by the proposed vision sensor with those of the same samples obtained 
with a regular digital color camera. The second dataset included another 30 
samples of HLB-negative, HLB-positive and Zinc-deficient leaves which was 
employed to compare the citrus leaf images before and after being ground. A qrt-
PCR examination (Hansen et al., 2008) was performed on all the 90 samples in 
both datasets to confirm the HLB status of the leaves. The qrt-PCR test was 
conducted in the U.S. Sugar Corporation’s Southern Gardens processing plant 
(Clewiston, FL). 

 
Image acquisition 

 
According to the results of the previous study (Pourreza et al., 2014), the 

accumulated starch in an HLB infected leaf causes a rotation in the light’s 
polarization mainly around 600 nm. This capability was employed to develop a 
vision based sensor which was able to highlight the HLB symptomatic areas on an 
affected leaf with excessive amount of starch. The vision sensor included a 
monochrome camera (DMK 23G445, TheImagingSource, Bremen, Germany) 
with high sensitivity at 591 nm, and 10 high power (10 W) narrow band LEDs 
(LZ4-00A100, LED Engin, San Jose, California) concentrated at 591 nm (Fig. 1a) 
which were mounted in a 13 × 19 × 15 cm wooden box (Fig. 1b). Five LED 
drivers (RCD-48, RECOM, Brooklyn, New York) were used to power the LEDs 
as shown in Fig. 1c. A wide lens with 6 mm focal length was used for the camera 
to maximize its depth of field. Also one linear polarizer was installed in front of 
the camera’s lens and another polarizing film (visible linear polarizing laminated 
film, Edmund Optics, Barrington, New Jersey) with a perpendicular direction to 
the camera filter was fixed in front of LED panel (Fig. 1b). Using this setting, the 
camera only receives the minimum reflection. 

 

 
Fig. 1.  Image acquisition system: (a) the box dimensions, (b) a front view of 
the LEDs panel, and (c) LED drivers and the camera inside the box. 



Discriminant analysis 
 
In order to compare the separability between the classes, Fisher ratio was used 

as the separability index and it was calculated using the features extracted from 
the images. Fisher ratio is defined as a ratio of the between-class variability to the 
within-class difference (Han et al., 2013). Equation 1 shows the Fisher ratio for 
one feature in a 2-class problem. 
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Where ߤ and ߤ are the means and ߪ and ߪ are the standard deviations in 
class ݅ and ݆ and ܨ shows the degree of the class separability in the direction of 
the corresponding feature. However, two features (gray values’ mean and 
standard deviation) were employed in this experiment and the effect of both of 
them on a single separability index was needed. Therefore, a Fisher’s linear 
discriminant analysis (LDA) was used to reduce the dimensions of feature vector 
to one for each pair of classes (Bishop, 2006). Then the Fisher ratio was 
calculated for the corresponding pair of classes. In Fisher’s LDA, a function is 
employed to project the vector ݔ down to one dimension (equation 2). 
ݕ =  (2)                ݔ்ݓ
The projection method in the Fisher’s LDA was employed because it optimizes 

the weight vector (w) by maximizing the separation between the projected classes 
and minimizing variation within each projected class (equation 3). 
ݓ ן ܵௐିଵ(ଶ െଵ)              (3) 
Where ܵௐ is the total within class covariance matrix, and ଵ and ଶ are the 

mean of class one and two correspondingly. Using this projection, the Fisher ratio 
was computed between each pair of classes; however, there were four classes and 
consequently a separability index considering all four classes was needed. For this 
purpose, an arithmetic average of Fisher ratios for all possible pairs of classes was 
computed (equation 4) and considered as the general separability index (ܨ) for 
comparison of HLB identification efficiencies between sensor images and RGB 
images. 
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Where ܲ and ܲ are proportional to the number of samples in classes ݅ and ݆, 
and ܥ indicates the number of classes. 

 
Imaging conditions evaluation 

 
The images of the citrus leaf samples in the first dataset were acquired in a 

completely dark room with the vision sensor from a distance of 80 cm. Therefore, 
the leaf samples only received the narrow band polarized light produced by the 
sensor. In order to evaluate the HLB identification efficiency of the sensor, 
another set of images from the same dataset were created using a regular color 
(RGB) digital camera (EOS Rebel T2i, Canon, Tokyo, Japan) and common indoor 
fluorescent light. All the RGB images were captured with a manual mode using 
shutter speed of 0.04 s, focal ratio of F4.5, and sensitivity of ISO800 to confirm 
the imaging condition uniformity and prevent the effect of camera settings on the 



evaluation results. The histograms of the red, green, blue, and gray (average of 
red, green, and blue)  components of the RGB color space and relative luminance 
(Y), blue-difference (Cb), and red-difference (Cr) components of the YCbCr color 
space were extracted from the symptomatic areas on each leaf and compared with 
the same symptomatic areas on the images captured by the vision sensor. Also the 
mean and standard deviation features of the leaf area were extracted from the 
vision sensor images and seven color components of the color images to evaluate 
the separability among the four classes of HLB-positive, zinc-deficient HLB-
positive, zinc-deficient HLB-negative, and HLB-negative leaves. 

 
Samples conditions evaluation 

 
The leaf images in the second sample set were compared with the same 

samples after being ground; to investigate if the starch in ground infected leaves 
can be identified as good as unground leaves. For grinding process, first the 
samples were placed in a ceramic mortar and freeze-dried with liquid nitrogen 
(Sankaran et al., 2010) and then they were ground using a ceramic pestle. The 
gray values’ means and standard deviations were extracted from both leaves and 
ground leaf images to evaluate the separability indexes (Fisher ratio) as explained 
in the previous section. 

 
 

RESULTS 
 

Dataset Validation 
 
The number of required cycles for the fluorescent intensity to reach the 

threshold is considered as the cycle threshold (CT) in a qrt-PCR test. Li et al. 
(2006) suggested the CT value threshold of 33 to decide the HLB status of a 
sample. According to their study, a CT value smaller than 33 indicates the HLB-
positive status, while a CT value over 33 does not show any HLB infection for the 
corresponding sample.  

The first dataset included 20 zinc-deficient and 40 non-zinc-deficient samples. 
Based on the qrt-PCR test results 20 out of 40 non-zinc-deficient samples were 
HLB-positive and the other 20 samples were HLB-negative. Within the zinc-
deficient class, 10 samples had the CT values below 33 and the rest of samples in 
this class had the CT values over 33. Therefore, the zinc-deficient class was 
divided into two subclasses of zinc-deficient HLB-positive (10 samples) and zinc-
deficient HLB-negative (10 samples) classes. 

The second dataset contained 10 HLB-positive, 10 HLB-negative samples in 
the non-zinc-deficient superclass. Seven samples within the zinc-deficient class 
had the CT values smaller than 33 and three zinc-deficient samples had the CT 
values bigger than 33. So they were subcategorized in zinc-deficient HLB-
positive and zinc-deficient HLB-negative classes, correspondingly. 

 
 

 



Comparison of imaging conditions 
 

The arithmetic averages of separability indexes of 0.528, 0.201, 0.196, 0.136, 
0.135, 0.134, 0.114, and 0.003 were achieved for the vision sensor, Cb component 
(YCbCr), Cr component (YCbCr), green component (RGB), Y component 
(YCbCr), gray component (RGB), red component (RGB), and blue component 
(RGB) respectively. Figure 2 shows the pairwise Fisher ratios for top three 
images including the vision sensor (green columns) and two components of color 
images (blue and purple columns). The Fisher ratios for vision sensor images 
were much bigger than the other two color components for all pairs of classes 
except for the HLB-negative/HLB-positive and HLB-negative/zinc-deficient 
HLB-positive pairs in which the ratios were quite similar. The minimum 
separability index (0.286) was achieved for the pair of HLB-positive/zinc-
deficient HLB-negative (Cr component) and the maximum separability index 
(27.94) was obtained for the pair HLB-negative/zinc-deficient HLB-negative in 
vision sensor images. 

 
Comparison of samples conditions 

 
Figure 3 shows the pairwise Fisher ratios for samples in the second dataset 

before and after being ground. The arithmetic averages of separability indexes of 
0.415, and 0.559 were obtained for the samples before and after grinding 
correspondingly. The Fisher ratios did not change a lot after grinding for all 
samples except for the HLB-negative/zinc-deficient HLB-negative pair in which 
the separability index increased extremely after grinding. The minimum 
separability index (0.097) belonged to the pair of HLB-positive/zinc-deficient 
HLB-positive after grinding.  

 

 
Fig. 2.  Comparison of the pairwise Fisher ratios between the top three 
images: Vision sensor and Cb and Cr components of the YCbCr color space.  



 
Fig. 3.  Comparison of the pairwise Fisher ratios between samples before and 
after grinding. 

 
DISCUSSION 

 
The purpose of this study was to assess the HLB diagnosis efficiency of the 

proposed vision sensor. Two experiments were designed for this purpose in which 
the performance of the proposed method was compared with other methods. The 
dataset in each experiment contained four classes of citrus leaves including HLB-
positive, HLB-negative, zinc-deficient HLB-positive, and zinc-deficient HLB-
negative samples. Two image descriptors, gray values’ mean and standard 
deviation, were extracted from each sample image and were used for data 
analysis. A separability index was introduced in this paper to numerically indicate 
how good the classes were distinguishable.   

The vision sensor which was developed for the HLB diagnosis purpose was 
able to acquire the minimum reflection of a sample at 591 nm. In the first 
experiment, the images acquired by the vision sensor were compared to the color 
images of the same samples taken by a commercial color camera. Seven color 
components were extracted from the color images and the separability indexes 
were calculated for six possible pairs of classes individually. Then the arithmetic 
average of all six separability indexes was used to indicate the overall 
separability. The results confirmed an improved separability between the four 
classes in the vision sensor images compared to the color components. The HLB-
positive/zinc-deficient HLB-negative and HLB-negative/zinc-deficient HLB-
negative pairs of classes were more separable in the vision sensor images (figure 
2). However, the separability indexes for HLB-positive/HLB-negative, and zinc-
deficient HLB-positive/zinc-deficient HLB-negative pairs were fairly similar in 
the vision sensor images and Cb and Cr components. Generally, the HLB-
positive/HLB-negative separability decreased within the zinc-deficient superclass 
because zinc deficiency generates some symptoms similar to HLB infection 
symptoms. It can be concluded that the HLB diagnosis is more difficult for zinc-
deficient citrus leaves. 



In the second experiment, the citrus leaf images acquired by the vision sensor 
were compared before and after being ground to determine if the starch 
accumulation is more detectable for ground leaves. Generally citrus leaves were 
brighter after being ground with a more uniform brightness. Back sides of a citrus 
leaf was brighter than its front side and after grinding, both sides of the leaves 
were mixed and could be seen by the sensor. That might be the reason of brighter 
gray values in the ground leaf images. The arithmetic average of Fisher ratio 
(separability index) increased slightly after grinding. The separability indexes 
between HLB-positive/HLB-negative classes increased within both zinc-deficient 
and non-zinc-deficient samples. It can be inferred that the starch accumulation 
was better detectable in the ground leaves, even though it was well highlighted in 
the unground leaves. 

This vision sensor can be mounted on a tractor or an unmanned aerial vehicle 
(UAV) along with a differential Global Positioning System (DGPS) to conduct an 
automatic on-the-go diagnosis and create a map of HLB disease distribution in the 
grove. 

 
CONCLUSION 

 
In this study, a vision sensor was introduced for HLB disease diagnosis and its 

performance was assessed in two experiments. A customized illumination system 
along with two polarizing filters were designed for the vision sensor to enable it 
highlight the HLB infection symptoms on the citrus leaf and differentiate them 
from nutrient deficiency symptoms. The results showed that the recommended 
illumination at 591 nm and proper use of polarizing filters improved identification 
of the HLB symptom (starch accumulation). Further it was illustrated that the 
starch accumulation in the ground citrus leaves were better detectable compared 
to unground leaves; however, the separability indexes achieved form analyzing 
the unground leaf images were good enough for an on-the-go HLB diagnosis 
system. A set of inexpensive components were used to assemble the proposed 
vision sensor and it can be reproduced with less than a thousand dollars. 
Therefore, it can be a very worthy investment especially for small growers to 
conduct a constant HLB disease monitoring in their grove and prevent a huge loss 
in the future. 
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