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ABSTRACT 
 
     In recent years control systems have been used to alleviate the task of 
harvesting machinery operators. Automation allows the operator to spend more 
time on other tasks such as coordinating transport. Moreover, such control 
systems guarantee constant performance throughout the day whereas an operator 
gets tired. 
The perfect control system anticipates on the harvest condition, just like an 
experienced operator would. The operator makes a visual assessment of the 
condition in terms of amongst others crop density in front of the machine, and 
acts upon it. At present automatic control systems do not have this information, 
which makes it hard to compete with experienced operators. 
A lot of research has been performed into sensors to measure the harvest 
condition in front of the machine. In this paper a different approach is taken. The 
harvest properties in front of the machine are predicted based on earlier 
measurements near the current location. The technique is based on the assumption 
that the variation of these properties is continuous. As new measurements become 
available, the model of the field is updated. 
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INTRODUCTION 
 
In recent years a lot of efforts have been made to implement capacity control 
systems on combine harvesters (Coen et al., 2008a, Coen, 2009). One of the 
approaches proposed for capacity control is Stochastic Model-based Predictive 
Control (Coen et al., 2010a,b). An advantage of this approach is that it can easily 
include predictions of process variables in its control strategy. The predictions 
generated in this paper can thus be easily used in the capacity controller. 
However, in order to design a capacity control system that has the same 
performance as the ideal operator, the system has to have access to the same 
information as the operator. The operator also sees the field in front of the 
combine harvester, and remembers how the combine harvester behaved in the 
field next to the current position. Some work has been done by Saeys et al. (2009) 
to measure the crop density in front of the combine with a laser scanner. Next to 
laser sensor approaches, it is also possible to use a pendulum, as described by 



Hammen et al. (1991). The deviation of the pendulum from its equilibrium 
position is a measurement of the crop density. One of the disadvantages of this 
system is that it measures the crop density very close to the combine. This 
measurement is not much sooner than the measurement obtained from the CNH 
feed rate sensor, which measures the torque on the straw elevator and the header. 
This paper focuses on adding a location specific memory to the control system. 
This way measurement such as crop density performed by the combine harvester 
on one location can be used to predict the crop and field conditions on a 
neighboring location.  Based on these earlier measurements the field condition in 
front of the combine harvester will be predicted online. Examples of relevant field 
characteristics are:  

• Field slope: It has been shown that the effective combine capacity 
decreases uphill, because the losses increase. If the slope information is 
available, the combine can slow down before the losses actually increase. 
If the system waits till the losses increase, it would always respond too 
late. Because of the delay it would take quite some time before the losses 
return to their normal levels. 

• Crop density: The crop density varies throughout the field because of 
varying sunlight conditions, different soil types and varying fertilizer 
distribution. If the crop density in front of the machine is known, the 
controller can anticipate on crop density variations just like an operator 
would. 

• Moisture content: The moisture content of the crop has significant impact 
on threshing and cleaning process. Normally the moisture content can only 
be measured in the straw elevator, at the end of the cleaning process. This 
means that it is impossible to adjust the threshing and cleaning system on 
time. By predicting the moisture content based on earlier measurements, it 
is possible to adjust the machine settings on time. 

These are just a few examples of biological variables that can be predicted based 
on earlier measurements. The prediction is based on the assumption that all these 
variables can only vary continuously.  
 

FIELD MODEL 
 
The purpose of this field model is to predict biological characteristics of the crop 
and the field. These variables always show the following characteristics: 

• The measurements are not exact, but corrupted by noise. 
• To be predicted variables are linked to the field, and not to the machine 

state. In other words, if a variable has a certain value at spot A, it will have 
a similar value at all spots B which are in the vicinity of A. 

• The variables vary continuously; no sudden changes of the variables are 
possible. 

• The variable is a measurement of some biological quantity, which implies 
that one can assume a smooth first and second order derivative. 

On the machine GPS position information is available such that the measurements 
can be related to a position in the field. The above requirements are important to 
select a suitable model structure.  In order to use the prediction of a variable 



online, the model also needs to be calculated and adapted online. Computational 
requirements thus should be minimized. For this work the GPS location and the 
GPS altitude measurements are used. Based on these measurements it should be 
possible to predict the slope of the field. Note that the accuracy of any GPS 
system is much lower in the vertical direction than in the horizontal direction. The 
performance of the model may be improved by including the inclination 
measurements on the machine. 
 

Model concept 
 
A lot of different techniques can be used to use the previous measurements to 
predict the field characteristics in front of the machine. One could for instance 
store all the measured data in a database, and calculate a weighted average of the 
measurements surrounding the spot in front of the combine. The weighting 
function would than depend on the distance of each of the measurements to the 
location to predict. An alternative is to train a neural network to predict the 
variable based on the surrounding measurements. However, neither of these 
techniques takes into account that we are dealing with biological properties. The 
large variation of the distance to the nearest measurement may also have an 
adverse effect on the quality of the prediction. 
The approach taken in this paper is to fit a model to the field measurements, and 
to update this model online. Since the shape of such a biological variable across a 
field may be very capricious, a numerical (instead of an analytical) model is 
chosen. First of all a grid is defined, with for instance a resolution of 1 meter. This 
leads to a matrix F, of which each element is a model value at one point on the 
grid. This is a very flexible model, since this can take on any desired shape. 
Of course these model values need to be calculated. The calculation of the model 
values takes the following effects into account: 

• Measurements: The measurements which have already been made, pull the 
model values in the direction of the measured values. Each measurement 
is attributed to one position on the grid (and thus in the matrix). 

• Minimal derivative: In nature the curve of any object varies as little as 
possible. Things tend to level out. This also applies to the crop density and 
the terrain slope. During the modeling phase the derivative between two 
neighboring model values is penalized. In other words, the model surface 
can only deviate from a plane if measurements pull sufficiently hard. 

• Minimal second derivative: In nature curves also vary smoothly. So, the 
first derivative should not change unless it is strictly necessary. 

It is clear that all the above mentioned effects are important, but of course, they 
need to be balanced with each other, which is a tuning exercise. 
 

Mathematical description 
 
Let us now formalize the above presented approach in a mathematical description. 
First of all the measured values are discretized into a matrix. This transformation 
from geographically continuous measurement value to matrix element consists of 
the following steps: 



1. Convert the GPS coordinates (latitude, longitude) into the WGS84 
Geodetic Coordinate system. This way the position is expressed in meters. 

2. The matrix dimensions are aligned with the North-South and East-West 
axis of the globe. The first value’s x- and y-component are stored as offsetx 
and offsety. This only happens when the first measurement value is added. 

3. A new coordinate (x0, y0) = (x0, y0) − (offsetx, offsety) is defined. 
4. The continuous coordinates are then transformed into discrete coordinates. 

In this work the resolution of the measurement matrix is set to 5 meters. 
Of course this is a trade-off between computation time and accuracy. 
However most combine harvesters will normally not come closer than 5 
meters to each other since the headers are often wider than 5 meters. If 
several measurements correspond with the same matrix element, the 
average measurement for that matrix element is taken. 

5. The measurement matrix is automatically enlarged if measurements 
outside the current measurement matrix are encountered. 

A model matrix, which contains the model values, with the same size as the 
measurement matrix is created. The model values are obtained from the following 
optimization problem: 
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where ai,j the model value at position (i, j), ti,j the measured value at the same 
position and ci,j indicates if a measurement is available at the position (i, j). Of 
course, all these different terms need to be weighted, which is done by the 
parameters tβ , ,iδβ , , jδβ , 2 ,iδ

β  and 2 , jδ
β . Normally the weighting factors are 

taken identical for both directions (i and j). Thus there are actually three 
parameters to be tuned, namely tβ  to weigh the measured values, δβ to weigh the 
first order derivative and 2δ

β  to weigh the second order derivative. Since the 
number of target value terms is unknown, all terms are first normalized with tγ , 

δγ  and 2δ
γ , and then weighted with their respective factors. One could add an 

additional requirement to these parameters without loss of generality, namely:  



 2 1t δ δ
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which reduces the number of parameters to be tuned to two. The first derivatives 
of equation (1) are defined as: 

 , 1, ,( , )
2

i j k l k la a a
k l

i
δ
δ

+ −
=  (4) 

 , , 1 ,( , )
2

i j k l k la a a
k l

j
δ
δ

+ −
=  (5) 

The second order derivatives are defined as: 
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Note in equation (1) that the first order derivative is also calculated for points 
surrounding the measurement (or model) matrix. In general, from equation (4), (5)
, (6) and (7) follows that the model values near the area to be optimized, are also 
taken into account. Special precautions are needed to either: 

• Use the model values outside the current measurement matrix 
• Or, modify the objective function such that the derivatives only take 

values inside the measurement matrix into account. This is the default 
situation if no model values outside the measurement matrix are known. 

Minimizing the problem shown in equation (1) comes down to solving the 
following system of equations: 
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In other words, for each model value, a linear equation is added to the system. 
Take for instance the second order derivative along the i direction of equation (6). 
If one use the following notational convention: 
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where al stands for the left element, ac the central element and ar the right 
element. For every element of the model matrix, there is a term like equation (6) 



in equation (1). As shown in equation (8), the derivative of equation (1) needs to 
be calculated for each model value. If one only takes the second derivative along 
the i direction into account, this already leads to three components in the 
derivative of the model value ai,j. After all, ai,j can be the left, central or right 
Table 1: The contribution of equation (6)  to the derivative of equation (1) to ai,j. 
The contributions of al, ac and ar in equation (10) are listed separately. 
 ak−2,l ak−1,l ak,l ak+1,l ak+2,l 
al   0.5 -1 0.5 
ac  -1 2 -1  
ar 0.5 -1 0.5   
TOTAL 0.5 -2 3 -2 0.5 
 
element of equation (6). First of all, calculate the derivatives of equation (6) to al, 
ac and ar, this yields: 

 

22
,

2

22
,

2

22
,

2

0.5 0.5

2

0.5 0.5

i j
l c r

l

i j
c l r

i j
l c r

r

c

a
a a a

a i

a
a a a

a i

a
a a a

a i

δδ
δ

δδ
δ

δδ
δ

  
  = − +     
  
  = − −     
  
  = − +     

 (10) 

Now, let’s calculate the contribution of equation (6) to the derivative of equation 
(1) to ai,j , with ai,j a model value in the middle of the model matrix (no boundary 
effects). This can be summarized in Table 1. The effect of the other terms of 
equation (1) is calculated analogously. 
 

Example 
 
To illustrate the algorithm GPS data from a field of a little over 1 ha in the 
neighborhood of Leuven is used. The field profile is modeled based on the 
coordinates and the altitude measurement of the GPS. Of course the same strategy 
can be used to model for instance crop density. The measured altitudes are shown 
in Figure 1. 
If the resolution of the model grid is set to 5 meters, the measured field leads to a 
matrix of about 15 by 40 elements. To show the ability of the model to 
extrapolate, an area of 50 by 50 elements is modeled. This means this problem 
contains 2500 model values to be optimized (50 times 50). Given the resolution of 
5 meters this corresponds to a field of about 6.25 ha. This problem takes 43 
minutes to solve. It should however be noted that no efforts whatsoever were 
made to make a numerically and computationally optimal implementation. A 
significant speed-up is probably possible. The result is shown in Figure 2. 
Note the model capability to make a smooth extrapolation of the field towards 
unvisited areas. Of course, this is only the best guess since there are no 
measurements, but it gives an idea what to expect in that area. This may be very 



useful to optimize the operation of the combine harvester. The model is not as 
smooth as it should be in the areas where there are measurements present. This 
can be improved by changing the tuning parameter of equation (1). In the example 
of the next section the effect of the tuning parameters is illustrated. 

 
Figure 1: The measurements of the field used in the example. The field size is 
about 1ha, with a clear sink in the middle. On the left the measured points are 
plotted, on the right a mesh presentation is shown. 
 

 
Figure 2: The calculated field model (off-line implementation) 

 
ONLINE MODEL UPDATE 

 
Online application of this technique adds two extra requirements to the algorithm, 
namely: 

• The computational complexity has to be acceptable. Online application 
requires the algorithm to run at regular time intervals, for instance once 



every 10 seconds. Thus it has to be feasible to do so on hardware available 
on a machine. 

• A system of updates has to be devised, to allow adding new information to 
the existing model. 

Online model 
 
The major computational cost is solving the system of equations. In order to be 
able to perform the model update online, the system size will have to be limited. 
The most logical approach is to only optimize the model values over part of the 
field. In other words, model values in a neighborhood around the current position 
are updated, and the other model values are kept as boundary conditions. 
For the second order derivative to work correctly, at least 2 values in all directions 
around the current position need to be taken into account. This is illustrated 
below: 

 
where ‘◊’  indicates the current combine position. ‘x’ are positions where the 
measurement value is taken into account, if present. In this case a range of 2 
values around the current position is taken. ‘■’ denotes positions of which the 
model value (if present) is used as boundary conditions for the first and second 
order derivatives. ‘□’ denotes positions of which the model value (if present) is 
only used as boundary conditions for the second order derivative. 
To have an idea of the feasibility of this model in an online environment, the 
execution times are recorded for different ranges of the local model. These tests 
were performed in Matlab on a Windows XP machine (Intel 2.0Gz, 1GB RAM). 
Note that no efforts were made to optimize the implementation of the algorithm. 
The results are shown in Table 2. Note that the execution time is recorded with 
Matlab, which implies that very low times are not accurately measured. This is 
probably the reason that the standard deviation remains constant for the first few 
model spans. The computation time is acceptable, but increases rapidly with the 
model span. The average execution time doubles for each increase (with 1) of the 
model span. This is to be expected, since the problem size (number of variables) 
increases quadratically with the model span, and the solution time of a system of 
equation is known to be O(x3) with x the number of variables. The average 
execution times are plotted in Figure 3. 
Tests have shown that a model span of 3 already yields quite good results (with a 
position resolution of 5 meters). Of course, if the resolution is increased, a larger 
model span will be needed to reach the same model characteristics. 
Since the dataset contains a little over 2200 measurements, the online model 
calculation with updates takes less time to calculate the entire field model, than 



the offline version (the offline version takes a little over 1 second per 
measurement). 
 
Table 2: Computation time required for one update step of the algorithm for 
different model spans. A model span 2 means that two measurement values in 
every direction around the combine position are taken into account. 

Model Time (s) 
Span Mean Std Median Min Max 

2 0.0108 0.0073 0.0150 0 0.0150 
3 0.0230 0.0078 0.0160 0.0150 0.0320 
4 0.0502 0.0068 0.0470 0.0460 0.0780 
5 0.1253 0.0078 0.1250 0.1090 0.1410 
6 0.2816 0.0135 0.2810 0.2500 0.3130 
7 0.7439 0.0315 0.7500 0.6560 0.8130 

 
 

 
Figure 3: The average execution times as presented in Table 2. Note the steep 
increase in computation time in function of the problem size. 
 

 
Example 

 
For the online implementation a span 3 values is used. This means that in every 
time step the model values in an area of 7 7×  ( 2 3 1× + ) are optimized. There is 
little or no benefit in taking larger equation spans. This can be expected since the 



mathematical description defines the field behavior very locally. This is necessary 
to obtain a heavily nonlinear surface as shown in Figure 2. 
The second order term is actually the most important term to describe the field. It 
makes sure that the field profile is smooth. However, the second order term also 
may give rise to instability. If one has two values, and one is larger than the other, 
the second order term will predict a (sometimes steep) slope. The first order term 
guarantees stability. This is illustrated in Figure 4, in which the model is shown 
with all the field data incorporated. On the left a very small first derivative weight 
is chosen, on the right a 5 times larger weight is used. The left model is clearly 
unstable, the right model predicts the field like it should. 
Of course, another important component is the relative weight of the 
measurements. As mentioned above, the surface still appears a bit too sharp. 
Figure 5 shows the model with a reduced weight of the measurements. This 
clearly yields a smoother surface. 
 
 

 
Figure 4: Two field models, left with a small first derivative term in the objective 
function, right with a larger first derivative term. The first derivative term clearly 
stabilizes the model. 

 
Figure 5: The field model with a reduced weight for the measurements. This leads 
to a smoother model 



 



 

CONCLUSION 
 
This paper presents a new approach to use the online measurements of crop and 
field properties to predict the crop and field condition in front of the machine. 
This model can also be updated recursively as more data becomes available. As 
this type of model makes more information available, it enables the development 
of more advanced controllers. 
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