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ABSTRACT 
 

Visible and near infrared (vis-NIR) spectroscopy holds large potential for the 
measurement of physico-chemical properties of different natural resources 
including soils. This study was conducted to investigate the potential of the vis-
NIR spectroscopy for the measurement of cation exchange capacity (CEC) in 
laboratory and on-line field conditions. The diffuse reflectance spectra of 294 
fresh soil samples collected from two fields (F1 and F2) in Turkey were measured 
using a fibre-type vis-NIR spectrophotometer. Partial least squares (PLS) 
regression analyses with full cross-validation were performed to establish 
prediction models for CEC. Laboratory measured, laboratory vis-NIR predicted 
and on-line vis-NIR predicted maps using the prediction set of samples were 
produced and statistically compared with kappa value. Results showed that the 
laboratory prediction performance of CEC in the prediction set was successful for 
both fields, with average R2 values of 0.92 (F1) and 0.74 (F2), average root mean 
square error of prediction (RMSEP) of 1.89 % (F1) and 1.58 % (F2) and average 
residual prediction deviation (RPD) of 3.69 (F1) and 1.84 (F2). On-line field 
measurement was also successfully predicted with average R2 values of 0.75 (F1) 
and 0.73 (F2), average RMSEP of 4.79 % and 1.58 % (F2) and RPD of 1.45 (F1) 
and 1.36 (F2). The output of the Kappa statistics test comparing between 
laboratory measured CEC and laboratory vis-NIR predicted �ț� ������ CEC maps 
for F1 indicated substantial agreement whereas moderate agreement for F2 was 
observed. This study proves that soil CEC can be successfully measured with vis-
NIR spectroscopy under laboratory and on-line scanning. 
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INTRODUCTION 
 

Proximal soil sensing is one of the promising techniques to help soil 
management with decision support tools. Visible and near infrared (vis-NIR) 
spectroscopy is the most rapid measurement techniques to supply accurate and 
meaningful data to this decision support tools. It has become most attractive 
technique for acquiring proximaly sensed soil data, as some recent studies by 
Mouazen et al., (2007), Viscarra-Rossel and Chen (2011), Tekin et al., (2013), 
and Kodaira & Shibusawa (2013) proved it to provide accurate quantification of 
main physical and chemical soil properties that is useful for digital soil mapping 
and for precision agriculture applications. 

The range of soil nutrients and their availability to plants are basic components 
determining soil fertility. Cation exchange capacity (CEC), one of the important 
physico-chemical properties, colloidal fraction (amount and type of clay and 
organic matter) of soil and is associated with a range of plant nutrients. CEC is a 
measure of the soil ability to hold positively charged ions and is an important 
indicator of soil fertility. It is an important property for site specific management 
of soil nutrients in precision agriculture. Generally, CEC values increase with the 
increase in the content of the colloidal fraction of the soil. The conventional 
analytical methods used for the determination of CEC are expensive, difficult and 
time consuming, because different cations must be extracted and determined. 
Therefore, researchers attempted to find alternative solutions that are fast, cost 
effective and easy. One of the main methods explored was vis-NIR spectroscopy. 
This is due to the fact that vis-NIR spectra of soils contain large sets of spectral 
information, which can be extracted with suitable chemometrics. The complex 
relationship between spectral signatures and the soil property can be better 
modeled by, multivariate regression methods, which have an advantage over 
simple bivariate relationships based on, for example, peak intensity measurements 
(Soriano-Disla et al., 2014). Partial least squares (PLS) regression is the most 
common technique adopted today to model the relationships between infrared 
spectral intensities characteristics of the soil components and the soil properties 
through derived PLS loadings, scores, and regression coefficients (Janik et al., 
2014).So far, vis-NIR spectroscopy has shown different degree of success for the 
measurement of CEC, depending on the measurement type e.g. under laboratory 
or on-line field conditions (Savvides et al., 2010; Bilgili et al., 2010; Leone et al., 
2012; Cañasveras et al., 2012; Marin-Gonzalez et al., 2013). No reports on on-line 
measurement of CEC in arid and semi-arid environment can be found in the 
literature. 

The aim of this study is to explore the potential of a vis-NIR on-line sensor to 
measure CEC and to develop CEC map using individual field and mixed field 
data sets in two fields in Turkey with semiarid environment. 

 
MATERIALS AND METHODS 

 
On-line soil sensor 

 
     The on-line sensor consisted of a subsoiler, to the back of which an optical 
probe is attached (Mouazen, 2006). The subsoiler (acting as a soil cutting tool) 
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and the optical probe are set on a simple metal frame (Mouazen et al., 2005). A 
metal frame of the on-line sensor has been manufactured in Uludag University 
using the same design patented by Mouazen (2006). The on-line soil sensor was 
mounted on the three-point linkage of a tractor to collect soil spectra under mobile 
conditions. To measure soil spectra, AgroSpec mobile, fiber type, vis–NIR 
spectrophotometer (Tec5 Technology for Spectroscopy, Germany) was used. A 
differential global positioning system (DGPS) (EZ-Guide 250, Trimble, USA) 
was used to record the position of the o-line measured spectra with sub-meter 
accuracy. The AgroSpec software, a platform for the mobile spectrometer system 
was used to acquire spectral and GPS data.  
  

Experimental site and on-line measurement 
 

This study was carried out in two fields in Turkey. The first field (F1) was of 
10.06 ha area and located in Karacabey village, in Bursa Province, whereas the 
second field (F2) was 50 ha, round shaped field, located in $\UDQFÕ� YLOODJH�� LQ�
Karaman Province (Fig. 1). Both fields were irrigated. A total of 92 and 238 soil 
samples were collected from F1 and F2, respectively, from the bottom of the 
trench opened by the subsoiler. 

Raw spectra on soil were collected along with parallel transects at a speed of 
approximately 3 km h-1. The sampling positions were recorded with the DGPS. 
Sampling lines and sampling positions are shown in Fig 2.  

The 92 and 238 soil samples (Fig. 2a and d) were equally divided into two 
parts. The first half was used for laboratory reference measurements of CEC and 
particle size distribution (PSD) and the second half was used for optical scanning 
in the laboratory. Cation exchange capacity of soils was determined by the 
Eppendorf Elex 6361 model flame photometer (Eppendorf, Hamburg, Germany) 
according to the sodium saturation method (Chapman, 1965). The PSD was 
measured by sieving and sedimentation method (British Standard, 1998). PSD 
analyses result for both fields were used to determine the texture class using the 
United State Department of Agriculture classification system (Table 1).  

 
 

Figure  1. Location of the two experimental fields in Turkey. 
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Table 1. Particul size distribution results for Karacabey field (F1) and 
Karaman Field (F2) in Turkey 

Field Area,  
Ha Crop Texture 

type 
Sand, 
% 

Silt,  
% 

Clay,  
% 

Karacabey (F1) 10 wheat Clay 26.6 30.4 43.0 
Karaman (F2) 50 barley Clay-loam 34.4 33.8 31.8 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

 
Figure 2. Soil sampling positions for F1 (a) and F2 (d) on-line soil 
measurement transects for F1 (b) and F2 (e) and validation points for F1 (c) 
and F2 (f). 

 
Optical measurement in the laboratory 

 
Soil samples were scanned in the laboratory using the same vis-NIR 

spectrophotometer (AgroSpec, tec5 Technology for Spectroscopy, Germany), 
used during the on-line field measurement. Stubble, root residues and gravels 
were removed and each soil sample, which was then mixed before scanning. Then 
the sample was put into three plastic cups having 1.2 cm depth and 1.2 cm 
diameter. The soil in the cup was carefully levelled to form a smooth scanning 
surface (Mouazen et al., 2005). A white reference was scanned before soil 
scanning, which was repeated every 30 minutes. Each cup was scanned 10 times, 
and obtained readings were averaged in one spectrum. The final spectrum, used 
for further analysis, was an average of the three spectra obtained for the three 
cups. 
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Modeling 
 
Measured, minimum, maximum, mean and SD of CEC values of the 

Karacabey Field (F1) were in bigger range (14.48%, 40.39%, 27.92% and 6.02%) 
than the corresponding values in Karaman Field (F2) (9.42%, 28.55%, 17.58% 
and 2.56%). Detailed statistical information about laboratory measured CEC is 
provided in Table 2. This may indicate potential differences in calibrations 
expected, as the smaller is the field variability of a soil property, the smaller the 
chance is for obtaining good calibration models (Kuang and Mouazen, 2011). 
This may particularly true for F2 with smaller CEC variability, as compared to 
F1, although the area is smaller for F1. The calibration set of F1 consisted of 74 
randomly selected soil samples, whereas the remained 18 samples were used as 
the prediction set.  In order to attempt enhancing the prediction capability of CEC 
in F2 with small variability, two types of calibration models were developed for 
F2. For the first calibration model, 198 randomly selected soil samples collected 
from F2 were used as the calibration set, whereas the remaining 40 samples were 
used as the prediction set. The second calibration model was established by 
adding 56 samples from F1 within the same CEC range to the F2 samples. This 
calibration model was designated as F1+F2 model. 

The performance and accuracy of the CEC calibration model was evaluated in 
cross-validation and prediction. Model performance was evaluated by means of 
coefficient of determination (R2), root mean square error of prediction (RMSEP) 
and ratio of prediction deviation (RPD), which is standard deviation divided by 
RMSEP. 

 
Table 2. Sample statistics of laboratory and on-line measured cation 
exchange capacity (CEC) (cmol/kg) of the calibration and prediction 
sets of both fields. 

 Field Sample 
number 

Min, 
% 

Max, 
% 

Mean, 
% 

SD, 
% 

All samples 
F1 92 14.48 40.39 27.92 6.02 
F2 238 9.42 28.55 17.58 2.56 
F1+F2 294 9.42 34.39 18.77 4.03 

       

Cross-
validation set 

F1 74 13 35.98 27.70 5.38 
F2 198 13.12 23.98 17.57 2.33 
F1+F2 254 13.12 29.26 18.83 3.72 

       

Laboratory 
prediction set 

F1 18 14.48 40.39 28.87 6.98 
F2 40 13.9 22.28 17.53 2.18 
F1+F2 40 14.55 22.47 17.65 2.08 

       

On-line 
prediction set 

F1 18 14.47 35.78 26.65 7.06 
F2 40 10.2 24.55 17.98 3.42 
F1+F2 40 10.55 26.49 18.40 3.88 

SD: Standard deviation 
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Development of CEC maps 
 
Three categories of CEC maps were developed for both field; (1) Laboratory 

reference analyses maps (based on laboratory measured of the prediction 
samples), (2) laboratory and on-line predicted maps based on validation points 
and (3) full-data points maps based on all on-line vis-NIR predicted points. 
Inverse distance weighing (IDW) interpolation method was used to develop the 
laboratory measured, laboratory predicted and on-line predicted maps of category 
1 and 2. The full-point maps (category 3) were developed with kriging. All maps 
were developed using ArcGis 10 (ESRI, USA) software. The advanced 
parameters option allowed control of the semivariogram used for kriging. To 
observe visual relationship between different maps, ArcGIS Geostatistical 
Analyst General Quantile-quantile (Q-Q) tools were used. To compare statistical 
relationship of pairs of maps Kappa statistics (Cohen, 1960) were performed to 
calculate Kappa value (ț�� using SPSS (Statistical Package for the Social 
Sciences, IBM, USA). The Kappa statistics was carried for the following pairs of 
maps: 
1- Laboratory measured versus laboratory vis-NIR predicted CEC of the 
independent samples, 
2- Laboratory measured versus on-line vis-NIR predicted CEC of the independent 
samples, 
3- Full-point vis-NIR predicted versus laboratory measured CEC of the 
independent samples. 
 

RESULTS AND DISCUSSION 
 

Model performance in calibration and prediction 
 
Model performance in cross-validation, laboratory and on-line predictions for 

both field are shown in Table 3. According to the classification of RPD values 
proposed by Viscarra-Rossel et al., (2006), the performance of the CEC in cross-
validation is classified as excellent (RMSEP=1.21 and RPD=4.38 for F1; 
RMSEP=1.41 and RPD=3.29 for F2; RMSEP=1.45 and RPD=2.64 for F1+F2). 
Islam et al. (2003), reported lower prediction results for CEC (R2 = 0.64, RPD = 
1.6), using a separate validation set of the total 161 samples. Chang et al., (2001) 
reported prediction results (R2=0.81, RMSE=3.82 and RPD=2.28) working with 
NIR range using principal components regression for 802 samples. Zornoza et al., 
(2008) reported successfully predicted CEC (R2=0.92, RMSE=0.06 and 
RPD=3.46) using vector normalization preprocess of total 393 soil samples. Awiti 
et al., (2008) presented similar calibration but high error of CEC (R2= 0.90, 
RMESP=3.24) of the total 582 samples. La et al. (2008) obtained CEC calibration 
results (R2=0.83, RMESP=2.23 and RPD=2.45) with mean of 13.2 and SD of 5.5 
meq g-1. Waruru et al., (2014) found good independent validation (R2=0.7, 
RMSEP=9.6 and RPD=1.7) with NIR for 256 soil samples. However previous 
studies have not reported on-line measurement of CEC other than Marin-
Gonzalez et al., (2013) who classified prediction accuracy for the laboratory and 
on-line measurements for CEC as moderately good for (RPD = 1.70 and 1.61 and 
R2 = 0.72 and 0.62, respectively) for 146 samples. 
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Table 3. Summary of cation exchange capacity (CEC) model performance in 
cross-validation, laboratory and on-line predictions. 

 Field R2 RMSEP, % RPD intercept Slope 

Cross-validation  
Set 

F1 0.82 1.21 4.38 0.58 0.98 
F2 0.58 1.41 3.29 0.85 0.95 
F1+F2 0.83 1.45 2.64 2.99 0.83 

       

Laboratory 
prediction 

F1 0.92 1.89 3.69 1.41 0.95 
F2 0.72 1.54 1.89 6.23 0.63 
F1+F2 0.74 1.58 1.84 6.95 0.60 

       

On-line 
prediction 

F1 0.75 4.79 1.45 2.56 0.79 
F2 0.70 1.86 1.56 0.55 0.98 
F1+F2 0.73 2.13 1.36 1.8 1.14 

RMSEP: Root mean square error of prediction 
RPD: Residual prediction deviation 
 
The performance of the vis-NIR models for the prediction of CEC of the 

prediction set under on-line measurement condition was not as good as that under 
laboratory measurement condition (Table 3). According to the classification of 
RPD values proposed by Viscarra-Rossel et al., (2006), on-line (RPD = 1.45 for 
F1; RPD = 1.56 for F2; RPD = 1.36 for F1+F2) predictions are classified as fair 
model/predictions (RPD values are between 1.4 and 1.8). Figure (3) shows the 
scatter plots of measured versus predicted CEC for laboratory and on-line 
predictions. In addition, the combined data set of F1+F2 does not lead to 
improving the prediction performance of CEC in F2, neither under laboratory nor 
on-line field measurement conditions (Table 3).  

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 3. Scatter plot of predicted versus laboratory measured cation 
exchange capacity (CEC) of the prediction set for laboratory scanned (18 
samples) (a) and on-line scanned soil spectra (b) of F1; laboratory scanned 
(40 samples) (c) and on-line scanned soil spectra (d) of  F2; laboratory 
scanned (40 samples) (e) and on-line scanned soil spectra (f) of  F1+F2 
models 

 
 

Mapping 
 

Comparison maps of laboratory and vis-NIR maps of CEC 
 
Comparison between laboratory measured, laboratory vis-NIR predicted and 

on-line vis-NIR predicted maps using the prediction set of 18 samples of F1 
shows reasonable spatial similarity, with high and low concentration zones of 
CEC are distinguishable clearly (Fig.4).  
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(a)                                      (b)                                     (c) 

Figure 4. Comparison between laboratory measured (a), laboratory visible 
and near infrared (vis-NIR) predicted (b) and on-line vis-NIR predicted (c) 
maps of cation exchange capacity (CEC), based on the 18 samples of the 
prediction set for F1. 

 
However, more visual similarity can be observed between the laboratory 

measured and laboratory vis-NIR predicted maps, as compared to vis-NIR 
predicted maps. All maps indicate the central-southern part of the field to be with 
higher CEC concentrations than the northern two triangle shaped parts of the 
field. The similarity of CEC maps between laboratory measured (92 samples) and 
full point (8486 points) map can be visually observed (Figure 5). Again both maps 
show similar spatial distribution of CEC as compared to the three maps of Fig. 
(4), where the central-southern part of the field is of higher CEC range as 
compared to the two northern triangle shaped zones. 

Like in F1, the spatial similarity between laboratory measured and vis-NIR 
predicted (both laboratory and on-line measurement) maps can be observed in F2 
(Fig. 6). The range of CEC variation in F2 is much smaller than that of F1. All F2 
maps show zones with high CEC values at the south east part of the field, which 
is double of that of the northern west part of the field. 

     

  
(a) (b) 

Figure 5. Comparison between laboratory measured (a) and full-point on-
line visible and near infrared (vis-NIR) predicted maps of cation exchange 
capacity (CEC) for F1. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Comparison maps of laboratory measured (a and b), laboratory 
visible and near infrared (vis-NIR) predicted cation exchange capacity 
(CEC) for F2 model (c) and for F1+F2 model (d); on-line vis-NIR predicted 
CEC for F2 model (e) and for F1+F2 model (f). 
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(a) (b) 

Figure 7. Comparison maps of full point cation exchange capacity (CEC) 
(16830 points) for F2 (a) and for F1+F2 (b). 
 

The vis-NIR on-line prediction maps show rather different spatial distribution 
of CEC as compared to maps with the corresponding maps produced with small 
number of points (Fig. 6). The full-point maps show the southern part of the field 
to be with the highest CEC concentrations (Fig.7). However, these maps also 
show the central part of the field to be with the smallest concentration of CEC, as 
compared to zones at the edges of the field. The high sampling resolution 
obtained with the on-line soil sensor provide more detailed information about 
CEC spatial distribution, although both F1 and F1+F2 models led to almost 
similar spatial distribution in CEC. This is an important future, which may enable 
more detailed and perhaps more accurate management of fertilizers site 
specifically.  
 

            
 

(a)                                                                    (b) 
 
Figure 8. Q-Q plots between laboratory measured vs. on-line visible and near 
infrared (vis-NIR) predicted cation exchange capacity (CEC), based on 18 
samples (a) and laboratory measured vs on-line vis-NIR predicted full-point 
CEC (b) 
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General Q-Q plot was used to assess the visual similarity of the distributions of 
datasets of F1 (Fig. 8). Q-Q plots compare the quintiles of data distribution with 
the quintiles of standardized theoretical distribution from a specified family of 
distributions (ArcGis, 2014). Q-Q plots for laboratory measured reference CEC vs 
laboratory vis-NIR predicted CEC (Fig. 8a) based on 18 samples of the prediction 
set shows normal distribution of the datasets, indicating high similarity between 
the two maps. Similarly, Q-Q plot, comparison between laboratory measured (all 
92 samples) CEC with on-line predicted full-point (6486 points) CEC maps show 
reasonable spatial similarity (Fig. 8b), due to the normal distribution exhibited. 

The Q-Q plot of laboratory measured (40 samples) CEC vs. on-line vis-NIR) 
predicted (40 samples) maps for F2 (Fig. 9a) and F1+F2 (Fig 9b) models shows 
straight distribution, which confirms visual similarities. Same distribution was 
observed between laboratory measured (238) and full-point (16830) vis-NIR 
predicted maps for both F2 (Fig 9c) and F1+F2 (Fig 9d) models. However, 
deviation from the straight pattern distribution can be observed for few points in 
the latter case (Fig 9c and Fig 9d), indicating a deteriorated spatial similarity, as 
compared to the former case (Fig 9c and Fig 9d), which might be attributed to a 
larger number of points used in the latter case. 
       

           
 

(a) (b) 

      
 

        (c)                                                                  (d) 
Figure 9. Q-Q plots between laboratory measured (40 samples) vs on-line 
visible and near infrared (vis-NIR) predicted cation exchange capacity 
(CEC) for F2 (a) and F1+F2 (b) models and laboratory measured (238 
samples) vs. full-point vis-NIR predicted CEC for F2 (c) and F1+F2 (d) 
models 
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 Statistical comparison of CEC maps 
 

Landis and Koch (1977) categorized kappa values as  ���� í� QR� DJUHHPHQW��
0.00-0.20 – slight agreement, 0.21-0.40 – fair agreement, 0.41-0.60 – moderate 
agreement, 0.61-0.80 –substantial agreement, 0.81-1.00 – excellent agreement. 
The output of the Kappa statistics test comparing between laboratory measured 
CEC and laboratory vis-NIR predicted CEC maps under laboratory conditions for 
F1 indicates substantial agreement (ț = 68.5) whereas moderate agreements for 
F2 (ț = 43.2) and F1+F2 (ț = 45.8) were observed (Table 4). The ț� values 
between laboratory measured CEC and on-line vis-NIR predicted CEC in the 
prediction set shows moderate agreement for the 3 cases with almost equal ț 
values (Table 4). The worst kappa value was obtained for laboratory measured vs. 
on-line vis-NIR predicted CEC full-point map for F2 with ț = 39.3, a value that 
can be classified as fair agreement.   

 
Table 4. Results of Kappa test comparing symmetric measures of maps 
of soil organic carbon (CEC) and normalised difference vegetation index 
(NDVI). 
Pairs Field Approx. T1 ț 
Laboratory measured – 
Laboratory vis-NIR predicted 
CEC  

F1 376.048 68.5 
F2 182.195 43.2 
F1+F2 197.946 45.8 

    
Laboratory measured – On-line 
vis-NIR predicted CEC in 
prediction set 

F1 283.710 49.7 
F2 209.406 48.8 
F1+F2 218.581 50.7 

    
Laboratory measured – Full-
points vis-NIR predicted CEC of 
full-points 

F1 308.644 54.5 
F2 177.680 39.3 
F1+F2 177.705 42.3 

ț��.DSSD�� 
1: Using the asymptotic standard error assuming the null hypothesis. 

 
CONCLUSIONS 

 
The paper discussed the potential of the visible and near infrared (vis-NIR) 

spectroscopy for the measurement of soil cation exchange capacity (CEC) in two 
fields with heavy soils in semiarid environment in Turkey. Results were evaluated 
under laboratory and on-line field measurement conditions, which to the 
following conclusions: 
1- Vis-NIR spectroscopy can be successfully used for the measurement of CEC in 
heavy soils under semiarid environment.  
2- Much improved measurement accuracy is to be expected for vis-NIR scanning 
under laboratory conditions than under on-line measurement conditions. 
3- It is clear that the variability in CEC concentration affect vis-NIR performance. 
A field with larger variability (e.g. larger SD) may result in higher prediction 
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accuracy that a field with a smaller variability even if the area of the less variable 
field is 5 times larger than that with larger variability. 
4- Vis-NIR predicted maps of CEC were similar to the corresponding measured 
maps. However, more detailed maps that showed different spatial distribution 
were observed for the full-point map, as compared to maps developed with a 
limited number of points. 
A further work is being undertaken to establish links between the crop 
characteristics and yield with CEC measured with the on-line vis-NIR 
spectroscopy sensor.  
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