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ABSTRACT 
 
The first published deployment of an active optical reflectance sensor (AOS) in a 
low-flying aircraft in 2009 catalyzed numerous developments in both sensor 
development and sensor platform integration. Integral to these sensors is a 
modulated light source composed of high power LED technology that emits high 
radiance polychromatic light. The sensor easily mounts to agricultural aircraft and 
can sense agricultural landscapes at altitudes from a few meters to altitudes 
exceeding 40 meters while traveling at velocities of more than 270 km/h. The 
rather large sensor-to-canopy measurement range allows the sensor to accurately 
measure ratio-based spectral reflectance indices such as the NDVI over fields 
with rolling terrain. Two versions of the sensor have since been developed and 
tested. A key advantage of airborne AOS is that they provide ratio-based index 
values unaffected by path radiance. This alone offers a viable, large scale sensing 
technique for researchers interested in plant and soil moisture investigations using 
the ‘reflectance index-temperature’ space concept or for the large scale, yet 
location specific conversion of ‘top-of-atmosphere’ vegetation indices, as derived 
from satellite imagery to the ‘top- of-canopy’ values.  
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INTRODUCTION 
 Airborne and satellite remote sensing is a viable and cost-effective means 
of measuring and mapping photosynthetically-active biomass in crops and 
pastures (Moran et al. 1997; Pohl and van Genderen 1998; Lamb 2000; Pinter et 
al. 2003; Liaghat and Balasundram 2010). However, commercial remote sensing 



systems available to agricultural land managers for general management activities 
are generally passive, meaning that they rely on incident sunlight for target 
illumination. Unless individual wavebands are calibrated to at-canopy reflectance 
values, the datasets are restricted to mapping relative plant ‘vigor’ (Lamb 2000) 
or for discriminating between plant types e.g. crops versus weeds (Lamb and 
Brown 2001). Moreover, the use of these systems for multi-temporal assessment 
such as crop growth or land cover change requires images be calibrated to one 
another either by span normalization or through the use of spectrally invariant 
targets in the field of view (Pohl and van Genderen 1998). Last, these sensors 
cannot be deployed during times of non-optimal target irradiance, that is, when 
the illumination of the target is non-uniform (for example patchy clouds), it 
changes over the data acquisition window or data is collected at night. 

Active, optical plant canopy sensors (AOS) are devices that, by virtue of 
integrated light sources, irradiate a target and record the reflected portion 
returning to similarly integrated detectors. Generally the sources are modulated 
LED’s or laser diodes (LD’s), with synchronous detection electronics that renders 
the recorded information impervious to changes in ambient light conditions. Such 
sensors can even be operated even at night. These sensors, with source 
ZDYHOHQJWKV�UDQJLQJ�IURP�EOXH�WKURXJK�WR�QHDU�LQIUDUHG�ZDYHOHQJWKV��§����– 850 
nm) are finding increasing use in agriculture, with applications ranging from 
quantifying the nutritional requirements of crops (Inman et al. 2005; Solari et al. 
2008; Holland and Schepers 2010; 2013; Barker and Sawyer 2012), as a basis for 
applying agrochemicals in real-time (Holland et al., 2013; Falzon et al., 2012) and 
as an objective biomass assessment tool in pastures (Künnemeyer et al., 2001; 
Trotter et al., 2010).  

The radiometric principles behind the use of AOS have been discussed by 
Holland et al. (2012). The irradiance at the photo-detector of the AOS, as 
generated by the target radiance resulting from illumination by the sensor’s 
internal light source is governed by the inverse square law which will cause a 
significant change in detected signal magnitude when the relative distance 
between sensor and target varies. However, Holland et al. (2012) also demonstrate 
that using more than one wavelength in the source (as produced by a 
polychromatic light source described in Holland et al., 2004) and then combining 
the two radiance values in a ratio-based index allows for a measurement that is 
insensitive to sensor-target distance, the maximum of which is limited only by the 
signal to noise ratio of the detection electronics. 

The use of airborne, active, optical sensors over crops provides a number of 
potential benefits compared to passive airborne (or satellite) remote sensing. First, 
land managers can acquire data under conditions where passive satellite or 
airborne imaging is impossible, such as under low cloud, or cloud cover that 
produces spatially-variable illumination conditions, or at night. Moreover, the use 
of ratio-based reflectance indices such as the normalized difference vegetation 
index (NDVI) renders the sensor invariant to changing sensor-target distances (for 
example when flying over undulating ground) and measured irradiance at the 
sensor, emanating from the target radiance, is not affected by path radiance 
components (Holland et al., 2012). Secondly, as on-ground, Red/NIR-based and 
Red-edge/NIR active optical sensors are being extensively investigated (and 
calibrated) for quantifying the nutritional requirements of crops (Inman et al. 



2005; Solari et al. 2008) and as an objective biomass assessment tools in pastures 
(Künnemeyer et al. 2001; Trotter et al. 2010), it would therefore be possible to 
extend the application of derived algorithms over very large fields where on-
ground surveys may otherwise be time-consuming, or in situations that preclude 
on-ground vehicle access such as when the field is impassable due to wet 
conditions or the crops are sufficiently well advanced in growth that on-ground 
vehicle surveys would cause considerable damage. Finally, these sensors are 
relatively inexpensive, can be easily retrofitted to existing aircraft (Lamb et al. 
2009) and can be deployed on low-level aircraft already committed undertaking 
other operations such as top-dressing.  
 

THE STATUS OF AIRBORNE AOS 
 

The bat can be credited as one of creation’s oldest known variations of 
active airborne sensing (SONAR- SOund Navigation And Ranging; Simons and 
Stein, 1980). Active airborne sensing involving humans evolved over the last 
century, tracking closely behind the developments and navigation or combat 
requirements of aircraft. Airborne RAdio Detection and Ranging (RADAR) 
kicked off during the Second World War (Brown 1999) with aircraft-aircraft 
interception while airborne SONAR was, and still is largely confined to remote 
interaction with SONAR devices on the surface of water using SONAR for 
detecting underwater objects. A notable ‘fully-air’ example of SONAR however 
is human echolocation (Schenkman and Nilsson, 2010) although no known 
application of this in the context of airborne deployment is known. The concept of 
active optical sensing, that is using optical wavelengths to detect objects is not 
new, dating back to the early Greek philosophers (5th – 2nd century BC). This was, 
of course, one of the early theories of human vision, alas since disproved by 
science. However this so-called ‘extramission theory’ is, incredibly, still a 
misconception held by some even in this present century (Winer et al., 2002). 
Practical (and real) airborne active optical sensing dates back to the 1950’s with 
the introduction of LIDAR (LIght Detection and Ranging), initially used for 
atmospheric research (primarily ‘D for detection’) but then, following the 
introduction of the GPS, enabled airborne surveying of ground targets (primarily 
‘R for ranging’) (Carson et al., 2004).  

 Lamb et al. (2009) reported the first trial of an aircraft-mounted, active, 
optical reflectance sensor, involving red (R) and near infrared (NIR) wavelengths, 
over the canopy of a 270 ha field of sorghum. This LED-based, ‘profiling’ sensor 
was simply a Crop Circle ACS-210 (Holland Scientific, Lincoln NE USA) 
initially designed for on-ground use, and it proved capable of recording and 
mapping spectral reflectance indices (in this case the simple ratio; SR= NIR/R and 
NDVI = (NIR-R)/(NIR-R)) at an altitude of 3-5 m above the ground (AGL) 
(Figure 1(a)). Maps generated from the sensor transects showed excellent 
agreement with a digital multispectral image (involving the same wavebands) 
taken by an overflying aircraft at an altitude of 1800 m AGL. A second trial, this 
time using more powerful LEDs and sensitive detection electronics, demonstrated 
the ability to collect band-ratio index data (NDVI) from altitudes up to 45 m 
above crop canopies (Lamb et al., 2011(b)). Using this RaptorTM ACS-225LR  
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(b) 

Figure 1. Low-level airborne data acquisition trials using (a) Crop CircleTM 
ACS-210 at 4 m AGL over a field of sorghum and (b) RaptorTM ACS-225LR 
at 50 m AGL over a field of wheat. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. A RapidSCAN CS-45U deployed on an Octocopter. Sensing range 
is 0.5 m to 4+ meters above canopy. 

 

(Holland Scientific, Lincoln NE USA), comparisons with a detailed on-ground 
NDVI survey indicated the aerial sensor values were highly correlated to the on- 
ground sensor (0.79<R2<0.85), with close to unity slope and zero offset. 
Moreover, the maximum average deviation between aerial and on-ground NDVI 
values was only 0.04. 
 



 

 

 

 

 

 

 

 

 

 
 
 
Figure 4. A 3D printed prototype ACS-225LR-U UAV-ready AOS sensor.  
 

Holland and colleagues (personal Communications, 2013) recently 
demonstrated the opportunities for deploying this class of sensor on unmanned 
aerial vehicles (UAV) (Figure 3).   

Since this early trial, one of the authors (KH) has ported the sensing 
electronics from the Raptor ACS-225LR into a UAV ready sensing platform.  The 
Raptor enclosure was redesigned and fabricated using 3-D printing.  The new 
sensor casing (Figure 4), has resulted in a reduction in mass of almost 60% 
(1100gm to 450gm). Similarly, the electronics have been modified to reduce the 
overall power consumption from ~10W to ~2.4W in order to facilitate longer 
flights and use of lighter weight batteries. It should be noted that these technical 
merits were achieved without diminishing the sensor’s sensing range or signal-to-
noise performance. Additionally, the number of spectral channels have been 
increased from 2 bands to 5 bands plus the addition of IRT and ambient air 
temperature sensors. An integral data logger and GPS will make the sensor 
completely self-contained and independent from the UAV’s electrical system. 
Plans for flight test are scheduled to begin in the last quarter of 2014. 

 
OPPORTUNITIES FOR INTEGRATING AOS WITH OTHER SENSORS 

 
The physical integration of AOS sensor with other passive sensors on the 

same aerial platform was most recently demonstrated by Lamb et al. (2014) using 
a purpose-built Raptor ACS-225LR-IRT (Holland Scientific, Lincoln NE USA). 
This integrated active optical (Red/NIR) and passive thermal sensor was tested on 
a low-level aircraft for recording and mapping both the optical reflectance and 
surface temperature characteristics of a cotton crop from an altitude of 50 m 
above the canopy (Figure 5). The passive thermal sensor integrated into the 
Raptor ACS-225-IRT sensor appeared to provide a realistic map of canopy  



 

  
 

Figure 5. (a) Low-level airborne data acquisition trials using the RaptorTM 
ACS-225LR-IRT at 50 m AGL over a field of cotton. (b) Close-up view of the 
RaptorTM ACS-225LR-IRT. 
 

 

 
 

Figure 6. Scatter plot of target surface area (both soil and cotton crop) as a 
function of NDVI, generated using the coincident measures from the 
RaptorTM ACS-225LR-IRT. 
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temperature. Given the measurements of target temperature were coincident with 
the active optical reflectance measurements, the integrated sensor is capable of 
generating reflectance index-surface temperature (eg NDVI-Ts) curves for these 
targets, along the lines of those generated by others using more complex and 
expensive imaging systems (for example, Moran et al. 1994; Sandholt et al., 2002; 
Patel et al. 2009) (Figure 6).  

Following the earlier discussion regarding the effects of path radiance on 
passive sensor-derived imagery, AOS’s offer the means of collecting large 
geographic scale path radiance correction data, as discussed in Lamb et al. (2014). 
A convenient ‘in-scene’ technique for quantifying path radiance in satellite 
imagery, is the ‘raster correlation’ method (for example as presented in Cheng et 
al. (2012)). In many cases, the path radiance components in the NIR bands are 
largely ignored; assumed to be zero and a raster correlation plot between shorter-
wavelength bands including the Red band and an NIR band is a convenient means 
of estimating the path radiance component of the shorter-wavelength band from 
the Red band axis intercept. To illustrate this point, Figure 7(a-c) depicts 
scatterplots of Red versus NIR radiance values (here the respective axes are  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Scatterplots of channel brightness;  Red versus NIR for (a) 
RapidEye, (b) SPOT 6 and (c) Pleiades satellite images, and (d) aircraft-
mounted RaptorTM ACS-225LR-IRT  for the same transect of land 
(approximately 20 km long) over bare soil cotton fields. 
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quantified in raw ‘digital numbers’) extracted along a ~20 km transect from 
satellite imagery of a cotton region in eastern Australia. The transects data for 
each of the three satellite systems;  RapidEye (Figure 7a), SPOT 6 (Figure 7b) 
and Pleiades (Figure 7c) are all coincident, as is the data collected by the aircraft-
mounted RaptorTM ACS-225LR-IRT (Figure 7d). The satellite systems all exhibit 
~ 5- 10% of path radiance component (percentage of maximum y-axis value). 
Only the Raptor data exhibits a significantly smaller path radiance contribution, as 
evidenced by the near zero y-intercept value (~ 1% of the maximum y-axis value) 
given in the regression equation. The Raptor data serves as a means of removing 
the path radiance component of the Red channel in each satellite sensor, 
effectively from its top-of-atmosphere brightness value to the equivalent top-of-
canopy brightness value and is useful for correcting ratio-based indices such as 
NDVI. 
 

INTEGRATING AOS WITH ON-AIRCRAFT ACTUATION AND 
CONTROL 

 
The ability to actively measure a vegetation index such as NDVI ‘on-the-

go’ offers the opportunity to use the ‘live’ data to feed directly into some form of 
actuation mechanism, onboard the aircraft, to dispense fertilizer or herbicide. 
However the raw data stream is likely to be very noisy, and also the actuation 
mechanism may not be able to physically keep up with the control inputs. Falzon 
et al. (2012) have discussed the practical problems encountered in this scenario 
and have developed a statistical method specifically designed for real-time 
airborne prescription fertilizer applications. The ‘Dynamic Aerial Algorithm’ 
(DAS) is designed to batch process a dynamically updated dataset, for example 
after the aircraft completes each successive pass over the field, to forecast ahead 
of the aircraft basic high, medium or low zone in the upcoming pass. A key aspect 
of the DAS algorithm is that it allows a variety of different regression and 
segmentation modules to be added or deleted to suit user requirements.  

 
FUTURE OF AIRBORNE AOS 

 
Moreover, on-board sensors that detect the degree of an aircraft's pitch, 

roll and yaw will improve sensor measurement by pinpointing the location of the 
projected beam on the landscape relative to the sensor's recorded position.  The 
addition of beam 'time-of flight' (eg LIDAR) sensing could be useful in 
determining crop height or stand quality while helping augment the accuracy of 
crop biomass measurements.  Clearly the rapid developments in UAV platforms, 
albeit followed by a more ponderous legislative process for facilitating 
commercial deployment, will see this new class of sensor conducting field 
surveys 'on demand'. 

The potential applications for airborne AOS technology in agriculture are 
many, and in many cases mimic those advances in 'on ground' sensing . We 
haven't even started on areas such as tactical environmental sensing and 
monitoring, for example mapping the extent of an algal bloom on a water  body, 
or using such data to control the aerial application of some mitigating chemical, or 



rangeland sensing, given the increasing demands on farmers to report on land 
condition to state management agencies. It is fair to say that the authors consider 
the future of airborne AOS as only just beginning. 
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