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ABSTRACT 
 

High throughput sensing is necessary for the rapid acquisition of plant canopy 
physical and physiological parameters on field scales. Simultaneous measures of 
these descriptive parameters will provide a clearer picture of plant response to 
biotic and abiotic stressors. Information obtained can assist in early identification 
of desired genetic traits and the degree to which they are expressed. Identifying 
these traits and their expression can provide higher efficiency in genetic selection 
for breeding programs and define better management practices for genetics 
currently on the market. To meet this sensing need, a new multi-parameter sensor 
system was developed, and accordingly, represents a new integrated approach for 
measuring radiative transfer and physiological characteristics of plant canopies. 
The phenomics system was developed and provided by Holland Scientific 
(Lincoln, NE, USA) and was field tested on winter wheat during the spring 
growing season of 2013. The system is a combination of active and passive 
sensors consisting of a three-band active optical sensor (AOS), a multi-parameter 
data acquisition sensor and geospatial data logger (Holland Scientific GeoSCOUT 
GLS-400). The AOS (Holland Scientific Crop Circle ACS-430P) provides 
measurements for red, red-edge (RE) and near infrared (NIR) reflectance, red and 
red-edge normalized difference vegetation indices (NDVI and NDRE)  and 
estimation models for leaf area index (LAI), plant canopy chlorophyll content 
(CCC) and optical sensor-to-plant distance. The multi-parameter sensor (Holland 
Scientific Crop Circle DAS43X) provides measurements for passive upwelling 
and downwelling photosynthetic active radiation (PAR), passive temperature for 
both canopy and ambient air, humidity and atmospheric pressure. The Crop Circle 
DAS43X also includes two 24-bit differential voltage channels with the option of 
configuring one of the channels as a pulse counter. Canopy data was collected at a 
rate of 5 samples per second and geo-referenced using a Trimble RTK GPS 
receiver. From this dual sensor data we were able to derive CCC, LAI, canopy 
KHLJKW�� FDQRS\� WHPSHUDWXUH� GHSDUWXUH� �ǻ7��� Dnd fractionally absorbed PAR 
(fAPAR). Data was collected at three dates on a yield trial study that includes 



thirteen public varieties adapted for the Great Plains and grown in Eastern 
Nebraska. We were able to characterize the highest yielding variety as a shorter 
plant with high LAI, CCC and fAPAR. Potentially, a variety with a higher light 
use efficiency (LUE) throughout the canopy, most likely a result of an 
erectophyle structure of the leaves. This particular variety had the highest ǻ7 in 
the presence of acute heat stress, indicating increased rates of transpiration as a 
strategy of heat tolerance. The system has demonstrated that significant 
discrimination can be obtained for a variety of plant canopy physical and 
physiological parameters in a high throughput manner using the set of 
measurements provided by the sensor suite.  
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INTRODUCTION 
 
Davis (1949) first proposed the term phenome as the sum total of 

extragenic, non-autoreproductive portions of the cell, whether cytoplasmic or 
nuclear. The term may originate from the discipline of biochemistry but has since 
expanded into a wide variety of biological sciences. It no longer is limited to just 
describing the cellular environment yet has extended to the description of species 
and their entire community. Phenomics is now a discipline within plant biology 
that is focused on the characterization of morphological and physiological traits in 
response to genetic variation while influenced by environmental factors imposed 
on the plant. A plant’s phenome is the material basis of the phenotype, the sum 
total of all phenotypic traits expressed at all levels by cell, tissue, and species. 
Phenotypes are the accumulation of morphological and physiological traits that 
delineate taxonomic grouping and the extent to which those traits are expressed. 

Genomic analysis using single-nucleotide polymorphism (SNP) molecular 
markers as an assisted selection technique can quickly provide information as to 
the presence and form of genes associated with specific traits. However, it does 
not characterize the conditions necessary for expression or the extent of trait 
expression. Phenomic analysis, when combined with genomic information, can 
enhance our understanding of a complex genome. 

High-throughput phenomic data collection and analytical interpretation of 
that data is a rapidly growing field of study. Obtaining detailed measurements, as 
many parameters as is practical, of a plant’s physiological and physical 
characteristics will better define the true plant phenome. The intent of high-



throughput phenotyping is focused on non-destructive techniques to rapidly 
quantify characteristics ranging from the biochemistry of photosynthesis and its 
supporting light harvesting plant pigments to components for structural 
development of plant architecture. Method of measurement approach can vary 
from close order single point remote sensing devices (proximal sensors) to 
imaging systems on board aerial or vehicle mounted platforms that may include 
either nadir or stereoscopic imaging capabilities. Imaging and non-imaging 
devices both offer their own unique advantages as does airborne to vehicle 
mounted platforms. Considerations when evaluating and selecting an approach 
include spatial, spectral, radiometric, and temporal resolution. There exists a trade 
off when increasing the resolution of one component, the others may decrease.  

Stereoscopic imaging can provide a wealth of information describing the 
morphological characteristics of the plant and the plant community through a 
direct measure approach. This approach can be employed from multiple images 
sequentially acquiring overlapping view angles from airborne platforms and from 
multiple cameras fixed at differing view angles mounted on a field vehicle 
platform. Aerial platforms have the advantage of regional coverage with 
instantaneous data acquisition for entire target area of interest. The trade-off is a 
much diminished spectral resolution with broad spectral bands to ensure sufficient 
energy for the time of exposure. This requires time for image acquisition and 
processing of feature recognition algorithms, a limitation of current technology 
resulting in a stop and go approach to data collection.  

Proximal sensing single point approach utilizes well defined radiative 
transfer functions that require very specific segments of the electromagnetic 
spectrum for proxy measures of both physical and physiological features. 
Proximal sensors, by definition, are close to the target of interest and thus, more 
likely to be deployed on field vehicles. Unmanned aerial vehicles (UAV) may 
soon be a viable option if flight characteristics can maintain fixed and precise 
distance from sensor to target at close proximity. With this specificity comes 
speed of acquisition and processing. Acquisition of multiple data points per 
second provides a large sample population to better statistically estimate treatment 
means and variance. 

Wanjura and Hatfield (1985) examined the use of both RVI and NDVI for 
the estimate of cotton (Gossypium hirsutum L.), soybeans (Glycine max (L.) 
Merr.), and sunflower (Helianthus annus L.) dry matter accumulation and leaf 
area. The two approaches used were an integration of the temporal index curve 
and an instantaneous index value for estimation of fractional PAR. Both methods 
performed very well. Wiegand and Richardson (1984, 1990) utilized both the 
simple band ratios as well as the data rotation techniques to infer leaf area, 
evapotranspiration and yield of wheat (Triticum aestivum L.) and sorghum 
(Sorghum bicolor L. Moench). They found that using equations that utilize 
vegetation indices correlate well with the biophysical properties in question and 
can be used as a tool to quantify stress effects on canopy development and yield 
performance. Schlemmer et al. (2013) and Gitelson et al. (2003, 2005) examined 
several spectral indices for the estimation of canopy chl content. Optimization of 
the CIRed Edge, utilizing the red edge spectral segment at or near 740nm, resulted in 
a strong linear response to chl content. Furthermore, the strong relationship 



established between canopy chl content and canopy N content suggests techniques 
utilized to estimate canopy chl can also be used to estimate canopy N content.   

This study will illustrate the capabilities and ease of use of a newly 
engineered high throughput proximal phenomic sensor system. This system will 
estimate proxy’s to several physiological and physical variables based on current 
literature and research. 

 
MATERIALS AND METHODS 

 
The plant canopy measurement system is composed of three primary 

components (all manufactured by Holland Scientific, Inc., Lincoln, NE, USA): 1) 
Crop Circle ACS-430P proximal active optical sensor (AOS), 2) Crop Circle 
DAS43X multi-sensor and 3) a GeoSCOUT 400 data logger for collecting and 
storing sensor data, see Figure 1. The sensor components were mounted to a 
height adjustable frame that was subsequently mounted on a John Deere model 
5085M tractor, see Figure 2. A RTK GPS receiver (Trimble FMX , Trimble 
Navigation, Sunnyvale, CA, USA) was utilized as the data source for geolocating 
data. Functional descriptions for the sensing components are detailed below. 

 
Active Optical Sensor Measurements 

 
Active optical sensing techniques irradiate a plant canopy and measure a 

portion of the radiation scattered (reflected) from the canopy (Ferte and Balp, 
1938; Marihart, 1948; Palmer and Coven, 1971; Beck and Vyse, 1992; Kunimeier 
et al., 2002; Holland et al., 2004). Instruments such as these have the ability to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Components of the Holland Scientific Phenomic System. 

 
 
 

 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Sensor deployment on vehicle. 

 
 

make canopy reflectance measurements independent of ambient illumination 
conditions at close ranges typically 0.3m to 2.5m from a canopy. As stated above, 
the phenomics system utilizes a Crop Circle ACS-430P as the AOS component. 
The measurements performed by the ACS-430P include: red, red-edge and near 
infrared (NIR) reflectance, NDVI and NDRE vegetation indices, leaf area index 
(LAI) and canopy chlorophyll content estimations, and distance from sensor to 
canopy for height estimation. Descriptions for each measurement are described in 
the following. 

 
Spectral reflectance and Vegetation index Measurements 

 
The radiometric operational principles governing AOS instrumentation 

has been reported by Holland et al. (2012). The general equation describing the 
irradiance on the sensor’s photo detector is: 

 
௥ܪ = ఘ்ೄ்ವேೄ஺ୱ୧୬మ ఏ

ௗమ                 (1) 
 

where  U is the target reflectance, TS is the transmittance of the sensor’s source 
optics, TD is the transmittance of the detection optics, NS is the radiance of the 
source, A is the area of the source objective, T is the angle by which radiation 
from a diffuse object arrives at the detector and d2 is the distance between the 
object (plant canopy) and the sensor.  

 
 



Spectral reflectance values for red (670 nm), red-edge (730 nm) and NIR 
(780nm) are derived from irradiance values for each band using equation 1. 
Reflectance magnitudes are scaled to result in values ranging from 0 to 100 % 
reflectance.     

Furthermore, use of equation 1 above allows the determination of ratio 
based vegetation indices that are invariant with respect to distance between the 
sensor and the object. For example consider the simple ratio vegetation index. 
Substitution of equation 1 irradiances into the simple ratio formula results in the 
ratio of actual target reflectance values for two wavelengths, namely ுೝഊభுೝഊమ

= ఘഊభ
ఘഊమ

. 
Note, however, the inverse-square law effect has been removed (additional 
subscripts O1and�O2 indicated the parameters at two different wavelengths). The 
resultant measurement is invariant with respect to the distance between the sensor 
and the object for planar targets. The assumption, with respect to equation 1, is 
the normalization via calibration and optical geometry for each channel is 
identical for each waveband of interest. 

The ratio described in the prior paragraph is the widely-used simple ratio 
vegetation index (SRI) in equation 2 below. 

 
ܫܴܵ = ுೝഊభ

ுೝഊమ
= ఘഊభ

ఘഊమ
   (2)  

 
Similarly, equation 1 can also be applied to the normalized difference vegetation 
index (NDVI) shown in equation 3 below.  

 
ܫܸܦܰ = ுೝഊమିுೝഊభ

ுೝഊమାுೝഊభ
= ఘഊమିఘഊభ

ఘഊమାఘഊభ
  (3)  

 
where, UO1 and UO2 are the target reflectance values at ZDYHOHQJWKV�Ȝ1 and Ȝ2.  

The Crop Circle ACS430P utilizes functions for equation 3 to calculate 
both NDVI and NDRE (normalized difference red-edge) indices.  

 
Leaf Area Estimation 

 
LAI estimations performed by the ACS-430P are based on NDVI 

measurements. The function utilized to estimate LAI  is, 
 
LAI k ln(1 VI )= × -  (4) 
 

where LAI is the leaf area index, k is a canopy specific proportionality coefficient 
(-6< k< -2) and VI is the vegetation index, in this case, NDVI. 

It should be noted, equation 4 above was derived from Beer’s law for light 
extinction through a canopy structure (Jones and Vaughan, 2010). Values for 
coefficient k are highly variety dependent. The coefficient should be carefully 
calibrated via destructive leaf area testing or cross calibrated with handheld LAI 
instrumentation. Equation 4 results in reasonably accurate LAI measurements up 
to LAI’s of 4 to 5. For LAI’s above 5, other modeling techniques must be utilized  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. LAI model performance for wheat canopies. 

 
 

to transform sensor data into reasonable estimates for LAI. Figure 3 demonstrates 
the ACS-430P’s estimation performance with respect to LAI estimation for wheat 
canopies with LAI’s up to 8. The ACS-430P was cross calibrated with a Sunscan 
LAI meter (Delta-T Devices, Cambridge, UK). 

Calibration and evaluation efforts for this measurement are on-going in 
order to 1) demonstrate the robustness of the model and 2) collect additional 
calibration for canopies other than wheat. 

 
Canopy Chlorophyll Content Estimation 

 
Canopy chlorophyll content estimation is based on the three waveband 

background corrected chlorophyll index (BCCI-1) (Holland and Schepers, 2011). 
The functional form of the vegetation index is   

 
NIR RE

RE E

a bBCCI1
c d
U U
U U
× - ×=
× - ×

 (5) 

 
where  UNIR, URE, and UR are 780nm, 730nm and 670nm reflectance, respectively, 
and a, b, c and d are scaling coefficients.  

Calibration and evaluation efforts for this measurement are on-going in 
order to 1) demonstrate the robustness of the model and 2) collect additional 
calibration data for crop canopies other than wheat. 

   
 
 



Height Measurement 
 
The Crop Circle ACS-430P computes canopy height by linearizing 

distance sensitive reflectance data measured by the sensor (Holland et al., 2012). 
Since the irradiance at sensor’s detectors varies inversely with respect to the 
inverse of the distance squared between the sensor and the plant canopy, a proxy 
distance between the sensor and the canopy can be calculated using the formula in 
equation 6 below,   

 

݀ = ݉ ή ቀ ଵ
ுೝഊ

ቁ
ఉ
+ ܾ   (6) 

  
where E is an irradiance exponent and m and b are the slope and intercept 
constants, respectively.  

When the exponent (E) is set to 0.5 in equation 6, the inverse-square law 
response of the irradiance measurement for sensor-target distance is transformed 
into a linear response (Figure 4). Using two known distance values allows 
determination of the slope and intercept constants, yielding a distance 
measurement IRU� D� WDUJHW�ZLWK� DSSUR[LPDWHO\� FRQVWDQW� UHIOHFWDQFH� �ȡ���For crop 
sensing, the average canopy height can be calculated by subtracting distance 
between the sensor and canopy from the sensor height above ground level.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Sensor distance transformation. Here, the linearized response was 
derived using sensor measurements collected using a diffuse soil surface as 
target. 

 
 



Multi-parameter Sensor Measurements 
 
The Crop Circle DAS43X companion sensor is utilized by the phenomic 

system to collect and process ambient meteorological and passive optical 
measurements from an array of sensing devices. Measurements performed by the 
DAS43X include: canopy temperature, ambient air temperature, relative 
humidity, atmospheric pressure, upwelling/downwelling PAR and voltage. 
Descriptions for each measurement are described in the following. 

 
Incident and Reflected PAR Measurement 

 
Photosynthetic active radiation (PAR) sensor principles have been well 

documented in literature (Federer and Tanner, 1966; Biggs et al., 1971). The 
DAS43X’s PAR sensors are comprised of silicon photodiode and a 400 to 700nm 
hot mirror. The silicon photodiodes in the DAS43X have reasonable spectral 
responsivity which is well matched to the PAR response and as such these devices 
require little additional band shaping in order to match this response, albeit, 
improvement to the response can be made via trimming the hot band filter. It 
should be noted, since the upwelling and downwelling sensors will typically be 
compared with respect to each other, over or under spectral estimates of PAR can 
be minimized to some degree via normalization. The upwelling sensor has a field-
of-view of approximately 30 degrees designed to match that of the IRT sensor’s 
field-of-view.  

 
Canopy Temperature Measurement 

 
The thermal infrared sensing component of the DAS43X uses a thermopile 

detector spectrally configured to measure thermal radiation of an object over the 
spectral range spanning 6 Pm to 14 Pm. A secondary thermal sensor is utilized to 
measure the thermopile die temperature in order to compute the object’s actual 
temperature. Sensor signal conditioning circuitry has been configured to allow 
high speed temperature measurements every 100 msec. The measurement 
principle for determining object temperature is defined by equation 7 below 

 
4R TH V= × ×  (7) 

 
where  R is the energy flux leaving a surface (W�m-2), H is the emissivity of the 
surface, V is the Stefan-Boltzmann constant (5.670373�10-8 W�m-2�K-4) and T is 
the temperature (K). 

Because sparse canopy structures can have emissivity’s as low as 0.93-
0.94 whereas dense canopies can have emissivity’s  up to 0.98, canopy 
temperature measurements made by the DAS43X use an emissivity of  
approximately 0.95 which is closely matched to the emissivity of many plant 
canopies (Bramson, 1968).  

 
 
 



Air Temperature Measurement 
 
Ambient air temperature measurements were performed using a low 

thermal mass thermistor. The thermistor was mounted to the DAS43X using long 
coiled leads to minimize stem effect measurement errors. The sensor was 
mounted in a polished low emissivity aluminum housing so as to reduce radiative 
heating by the sensor’s enclosure and reflected energy from the canopy. 
Temperature was calculated by using the Steinhart-Hart equation shown below 

 
31 A B ln( R ) C (ln( R ))

T
= + × + ×  (8) 

 
where T is the temperature (K), A, B, and C are the Steinhart-Hart coefficients 
and 5�LV�WKH�UHVLVWDQFH�RI�WKH�WKHUPLVWRU��ȍ��  

 
Humidity Measurement 

 
The DAS43X utilizes a relative humidity integrated circuit (RHIC) for 

sensing water vapor. The sensor consists of a polysilicon dielectric substrate 
coated with a thin porous layer of platinum, the resulting structure comprising a 
capacitor, over which is deposited a thin coating of thermoset polymer. The 
polymer allows the diffusion of water vapor to the porous platinum electrodes 
while protecting the electrodes from contaminants such as dust and oil as well as 
exposure to condensation. The diffusion of water vapor into the dielectric causes 
an incremental change in the structure’s capacitance. This capacitance change is 
typically 0.2 to 1 pF per 1% RH change. Sensitive and stable signal conditioning 
circuitry within the RHIC quantify the capacitance change due to water vapor and 
convert this value into a voltage that is readily measurable by the DAS43X’s data 
system. The response time of the RHIC is on the order of 6 to 10 sec for an 
airflow of 20 l/min. The sensor is capable of measuring RH from 10% to 90% 
with an accuracy of better than 3% over the temperature range of 0 to 50 qC.    

   
Atmospheric Pressure Measurement 

 
Atmospheric pressure is sensed using a monolithic piezo-resistive 

transducer comprised of micro-machined sensing element and integrated signal 
conditioning. The sensor measures absolute pressure over the range spanning 
from 15 to 115kPa. The sensor die is protected from dust and water moisture 
using fluorosilicone gel. The sensor has a typical accuracy of 1.5kPa over the 
temperature span ranging from 0 to 50 qC.  

 
RESULTS AND DISCUSSION 

 
Initial deployment, of the previously described system, was for the spring 

growing season of winter wheat in 2013 near Lincoln, NE, USA. Three dates of 
data acquisition were performed on a basic yield trial study. The focus was to 



simply characterize several public varieties adapted across the Great Plains winter 
wheat growing region as grown in the Eastern Nebraska environment.  

Sensor output data was accumulated and post processed using the 
Geographical Information System (GIS) ArcMap (ESRI, Redlands, CA, USA). 
Individual plots were defined using aerial imagery (Cornerstone Mapping, 
Lincoln, NE, USA)  acquired when vegetation could be easily delineated from 
soil to help guide on-screen digitizing of plot boundaries. Resulting plots were 
used to generate means from all sample points for each measured variable 
contained within each individual plot boundary. The temporal data set was 
accumulated and analyzed using the RStudio (RStudio, Inc., Boston, MA, USA) 
and InfoStat (InfoStat, Córdoba, Argentina) statistical analysis software. Data 
from the final acquisition date offered climatic conditions that allowed for greater 
evaluation and will be the focus. 

This yield trial is simply an observational study of 13 public winter wheat 
varieties from across the Great Plains. Traits examined are CCC, LAI, derived 
canopy height, fAPAR, and ǻ7. Final acquisition date for this study was 14 May 
2013 with clear skies and an ambient air temperature near 40oC. The crop was in 
its early boot stage of growth. Climatic conditions and plant growth stage on this 
date were nearly ideal for assessing variations in all of the traits being measured.  

Figure 5 illustrates how traits like yield and those measured by this system 
differ across the genetic variation present in this trial grown under the Eastern 
Nebraska environment. This partial phenome collected under the conditions of 
this one environment will enable us to characterize these varieties in a more 
taxonomic way.  

From this data set we can characterize the highest yielding variety, 
TAM303, as a plant that implements a strategy of increasing transpiration during 
heat events maintaining cooler canopy temperatures. This variety produces high 
CCC and is the most efficient canopy with respect to PAR absorption. TAM303 is 
amongst the highest in LAI but does so with the shortest canopy, indicating a 
much more dense leaf canopy structure. In fact, it does produce a dense 
erectophyle leaf canopy architecture. It is this structure with its ability to capture 
the greatest percentage of light energy and its defense against heat that translates 
into higher yields.  

In contrast, the lowest yielding variety, Wesley, can moderately cool itself 
when experiencing a heat event; it produces a moderate quantity of CCC but is 
not all that efficient at absorbing PAR, it is a moderate producer of LAI with a 
mid-range height. Wesley possesses a wider leaf blade that creates a horizontal 
leaf position in the upper portion of the canopy. This planophyle architecture 
limits light penetration and relies heavily on the upper leaves to produce a greater 
amount of photosynthate. Reliance on a smaller portion of the canopy for primary 
productivity will enhance the impact of abiotic stress events like heat, most likely 
accounting for its poor performance. 

Figure 6 illustrates the wide distribution of varietal means while providing 
the principle component eigenvectors for each of the measured traits. These 
vectors indicate the contribution of each trait and the relationship with respect to 
the statistical variation present. For this collection event we see that CCC and LAI 



have very similar contributions to the potential differences of these varieties. In 
this specific situation it may not be necessary to include both traits to gain 
separability.  

With larger population panels targeting specific genes, one could easily 
characterize how genetic structure will express itself under similar conditions for 
the traits measured. Larger panels may provide statistical separation that would 
show greater divergence between CCC and LAI. Most likely, larger panels will 
require a greater number of traits measured, thereby, producing a more complete 
phenome. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 5. Results for thirteen Great Plains winter wheat varieties for final 
yield and five sensor measured traits on 14 May 2013 (Panel A – Yield, B – 
ǻ7��&�– CCC, D – fAPAR, E – LAI, F – Canopy Height).  

  
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 6. Principle Component Analysis for thirteen Great Plains winter 
wheat varieties using the five sensor measured traits on 14 May 2013. 

 
 

CONCLUSION 
 
Results indicate this system is a practical method for acquiring a rapid 

characterization of the plant community’s biophysical properties. From this data 
we were able to derive canopy chlorophyll content (CCC), leaf area index (LAI), 
FDQRS\� KHLJKW�� FDQRS\� WHPSHUDWXUH� GHSDUWXUH� �ǻ7��� Dnd fractionally absorbed 
PAR (fAPAR) creating a partial phenome. When comparing phenomes, we were 
able to characterize the highest yielding variety in one study as a shorter plant 
with high LAI, CCC and fAPAR. This variety was also able to combat heat stress 
through increased transpiration resulting in a larger absolute ǻ7. Potentially, this 
variety suggests the capability of higher light use efficiency (LUE) throughout the 
canopy, most likely a result of the erectophyle structure of the leaves.  

The phenomics system has demonstrated that significant discrimination 
can be obtained for a variety of plant canopy physical and physiological 
parameters in a high throughput manner using the set of measurements provided 
by the sensor suite. These measurements constitute a partial phenome that can 
describe the degree of expression for genes that impact the measured traits. The 
result is a quantitative assessment that can provide breeders accuracy and 
efficiency to their field selection process. 
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