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ABSTRACT 
 
The need to avoid yield loss from drought stress along with increased commodity 
prices have caused a significant conversion of rainfed to irrigated production in 
humid regions. Management of cotton supplemental irrigation in humid regions is 
challenging due to significant spatial variation of the soil physical characteristics 
as well as temporal changes in rainfall patterns. This study aimed to introduce a 
practical framework to optimize cotton supplemental variable rate irrigation in 
humid regions.  
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INTRODUCTION 
 

Cotton supplemental irrigation management in humid regions 
 

     The growing demand for food and fiber production along with the intrinsic 
uncertainty in rainfall patterns, due to climate variability, has focused great 
attention on irrigation. World agricultural production has grown between two and 
four percent per year on average over the last fifty years while irrigation has 
doubled in the same time period (FAO, 2013). Irrigation accounts for only 17% of 
the land area utilized for agriculture (Fereres and Connor, 2004), yet more than 
40% of the total food production comes from irrigated areas (FAO, 2013). 
     At the same time, precision agriculture (PA) is moving forward in line with the 
significant achievements in instrumentation, measurements and data-processing. 
This revolution is changing the concept of an agricultural unit from farm to sub-
field by providing precision management opportunities for farmers. The National 
Research Council definition of PA comprises three components: gathering data, 
analyzing data and subsequently managing the farm, based on the result at an 
appropriate scale and time (Oliver 2010). 
 
 
        With precision agriculture technology, farmers have the means to collect the 
information needed to optimize site-specific variable-rate irrigation. In fact, they 



have the facilities to conduct customized research that has been traditionally 
reserved for research farms with small plots. The parameters that are needed for 
site specific irrigation are related to components in the soil-water-crop-
atmosphere continuum. Most farmers in one way or another in west TN have 
access to precision farming equipment. Precision farming provides a unique 
opportunity to continuously produce valuable sources of information. An 
enormous amount of data is now obtained having extremely valuable information 
about temporal and spatial changes in each field. Yield maps are the most readily 
available information, while other data such as soil apparent electrical 
conductivity (ECa) maps and elevation maps are also to a great extent available. If 
not, they could be collected without spending a considerable amount of time and 
money.  
     Cotton is one of the major crops in west TN which is also vital for the US 
economy since it is an essential export-oriented product (Adams et al., 2006). 
Cotton supplemental irrigation is growing fast in west TN. The temporal pattern 
of rainfall changes from year to year with unexpected drought periods likely to 
occur each growing season. Consequently, producers are more willing to invest in 
irrigation systems to prevent any yield loss. That is why studying cotton lint yield-
irrigation relationship is extremely important. Gwathmey et al. (2011) 
investigated the cotton responses to supplemental irrigation in Jackson TN in a 4-
year study. They observed irrigation treatment significantly improved lint yield 
(i.e. 38 % in average at the 2.54 cm wk-1 irrigation rate) in comparison with the 
rainfed treatment in 3 of 4 years.  
     Optimizing cotton supplemental variable rate irrigation (VRI) management is 
challenging. Conventional irrigation management tries to answer when and how 
much to irrigate but VRI management ought to address where to irrigate as well. 
Within field soil variation is common in west TN with respect to soil hydraulic 
and physical properties. Given soil spatial variation under single irrigation 
systems in this region, Duncan (2012) concluded VRI is the desired irrigation 
scenario to optimize cotton lint yield. He illustrated that a single irrigation 
decision cannot optimize the cotton lint yield for soils with significantly different 
water holding capacity in west TN. Precision irrigation center pivots have been 
commercially available for a while. In addition, most of the available center 
pivots in west TN are able to vary the irrigation across fields to some extent by 
changing their travel speed in pie shaped zones. This study aimed to categorize 
the challenges in optimizing cotton supplemental VRI and to establish a practical 
framework to address those challenges.  

 
PROPOSED FRAMEWORK 

 
     Figure 1 illustrates the proposed framework to schedule the cotton variable rate 
irrigation in humid regions. The framework consists of four phases to address four 
different challenges. The prime modeling method in this framework is neural 
networks due to its promising performance predicting soil hydraulic information 
and crop yield (Haghverdi et al., 2012; Haghverdi et al., 2014a; Haghverdi et al., 
2014b). However, the framework was designed such that it works for other crops 
using other modeling techniques as well.  
 



 
Fig.  1. A sketch of the proposed method to optimize cotton variable rate 
irrigation in humid regions. PTF: Pedotransfer function; WPF: water production 
function; AWM: available water map; ECa: apparent electrical conductivity. 

 
 

Challenge 1: field-scale spatial variation of soil 
 

     Soil hydraulic information is required for irrigation scheduling but is 
categorized as hard-to-obtain data. Collecting soil hydraulic information is 
challenging due to the time and labor consuming nature of the laboratory and in 
situ methods. When it comes to variable rate irrigation, there is the extra difficulty 
of providing a high resolution soil hydraulic map from a limited number of 
discrete measured locations. 
     The most widely accepted method to fulfill the need for soil water retention 
information is called a pedotransfer function (PTF). The well-known PTFs (e.g. 



Rosetta by Schaap et al. (2001) and kNearest by Nemes et al. (2008)) are useful 
tools to convert basic soil information to soil hydraulic data with a reasonable 
degree of accuracy, yet there are two major concerns hampering their application 
for providing enough data for variable rate irrigation: (i) They are not spatial tools 
and therefore cannot generate a map and (ii) the input predictors of them are hard 
to obtain in practice for high resolution mapping. Grid sampling and subsequently 
using geostatistical methods is the most accepted way to map soil properties. 
However, a relatively large number of samples are needed to establish accurate 
high-resolution soil maps (Zhao et al., 2009) which is costly and time consuming 
(Saey et al., 2009).  
     The evidence in the literature (e.g. Abdu et al. (2008); Duncan (2012); Saey et 
al. (2009)) seems to point toward dense data sets, such as apparent electrical 
conductivity (ECa) with calibration and verification from limited soil core data, as 
a promising solution to overcome abovementioned problems. EC is an indicator 
showing salinity in arid regions. In humid regions, where salinity is not a major 
factor, EC may provide some useful information about clay percentage, cation 
exchange capacity (CEC) and water content (Sudduth et al. 2005). Duncan (2012) 
showed depth to sand layer and available water holding capacity of soil was 
strongly related to ECa data in an irrigated cotton field at west TN research 
station. Sudduth et al. (2005) tried to relate ECa to soil properties across the 
north-central USA. They showed a relatively high correlation between ECa with 
clay and CEC across all study fields but this correlation was only available in a 
limited number of fields between soil moisture and ECa. McCutcheon et al. 
(2006) reported a weak temporal uniformity in ECa data when mapped in a 
dryland field over time. They found volumetric soil water content was the 
dominant factor which affects the ECa variability in both spatial and temporal 
manners.  
     In the first phase of the proposed framework, a high resolution crop available 
water map is generated using soil core information, ECa data and a PTF. The PTF 
converts measured soil basic data to crop available water. Afterwards ECa data is 
used to generate a high resolution map using an appropriate interpolation 
technique.  
 

Challenge 2: dynamic yield-soil-water relationships 
 

     To identify an optimum irrigation scenario, the mathematical relationship 
between applied irrigation and cotton lint yield should be known. Duncan (2012) 
showed that this relationship is substantially different among soils with different 
water holding capacities. In conventional agriculture, one predicts average yield 
across the field and ignores yield variation within the field. In precision 
agriculture, however, the goal is to consider and to manage within-field yield 
variation. As a result, understanding and modeling the effect of applied irrigation 
water on crop yield in a spatio-temporal scheme becomes a crucial challenge in 
optimizing VRI. 
     Crop growth models and empirical equations are useful tools to quantify the 
irrigation effect on crop yield. The crop models were shown to be precise, yet 
they need lots of input data. Classical water production functions (WPFs) need 
less data, but there are some shortcomings associated with them. WPFs, like other 



regression-based equations, are relatively easy to build but are mostly linear and 
not powerful enough to model complex ecological systems (Dai et al., 2011). 
They are derived based on limited observations thus are only valid for a single 
crop at a specific location. That is why their performances should be tested 
carefully in advance to use them for irrigation planning and establishment of 
water management plans (Igbadun et al., 2007). In practice, poorly calibrated crop 
growth models are not a better option than empirical tools. In summary, the 
balance between simplicity and accuracy of the models should be considered as a 
critical issue when applying them in broad practices (Farahani et al., 2009). 
     Spatial yield prediction at a high spatial resolution is required in precision 
agriculture studies. Crop growth models are robust enough to deal with temporal 
changes but they are point-based and not able to cover spatial variation in their 
calculation. Dividing the field into homogenous sub-units, using interpolation 
techniques and model parameterization at a high spatial resolution are possible 
methods to solve this issue (Florin, 2008). However, all of these methods are 
time-consuming and costly and not practical in majority of situations. Promising 
results have been reported recently for the application of data mining methods to 
predict crop yield in conventional and precision agriculture practices (e.g. 
Haghverdi et al., 2014a; Ruß and Brenning, 2010).  
     In the second phase, an in situ irrigation study is implemented applying 
different irrigation amounts across field. The irrigation experiment should be 
designed to provide maximum information on soil-water-yield relationships. Site 
specific spatial WPFs using data mining algorithms, then, are derived each year to 
investigate the effect of different irrigation scenarios on cotton yield variation.  
 

Challenge 3: delineation of irrigation management zones  
 

     One of the steps in precision agriculture is to delineate management areas 
within fields where it is expected that applying identical treatment will cause 
significant yield differences. A corollary expectation is that varying the treatment 
of these areas will facilitate optimizing yield. In practice, number of zones is 
dependent on the target input and available equipment.  
     Map-based and sensor-based approaches are two major methods to practice 
variable-rate application. In the map-based method, application maps are prepared 
using site-specific information such as yield data and soil data prior to 
implementation. In the sensor-based method, a real time decision on application 
rate is made using data collected via sensors and pre-developed application 
algorithms (Thöle et al., 2013). Variable rate irrigation can be a combination of 
both methods i.e. a map showing irrigation management zones where sensors 
identify real time application rates for each zone. 
    There are only a few studies on deriving management zones for variable rate 
irrigation. Jiang et al. (2011) used the physical properties of soil as the data source 
to delineate irrigation zones. They utilized management zone analysis software 
which uses a fuzziness performance index and normalized classification entropy 
for identifying the least number of subzones. Bereuter (2011) studied zoning 
techniques on irrigated corn in Nebraska. Nine soil and landscape attributes were 
chosen as potential factors for zoning. Results showed that different combinations 
of selected attributes were suitable for zoning at different sites. 



     There are several methods to delineate management zones. Applying 
unsupervised clustering techniques and user-defined zoning are the main 
procedures. Clustering techniques group similar data points (cells) into distinct 
classes. Methods such as k-means and fuzzy k-means has been widely used to 
identify management zones (Córdoba et al., 2013). However, there are some 
limitations associated with zoning for variable rate irrigation that are not 
considered in other variable rate applications and have been mostly ignored in 
current studies. First, the number and size of irrigation zones is limited by 
properties of the irrigation system. Second, a dynamic temporal zoning system 
may be required considering soil-crop-water relationships. Even available 
precision irrigation systems are not able to apply water with the same resolution 
as one can apply other variable rate applications such as fertilizer. Most irrigation 
systems in humid regions are only able to vary the irrigation across fields within 
limited pie-shaped zones. In this case, the optimum location of pies as well as 
optimum application rates for each pie should be identified.      
     In the third phase, irrigation zones will be delineated.  The crop available water 
map is utilized to delineate the initial zones. Afterwards the best zoning scheme is 
selected as the one that is predicted to produce the highest yield using the WPFs. 
The second and third phases need to be repeated for each cropping season in order 
to find the optimum temporal stable zones.  

 
Challenge 4: real time irrigation scheduling under temporal variability  

 
     The last challenge is the season-to-season variability in rainfall patterns. 
Surprisingly, irrigation management for optimizing cotton yield in a humid region 
is more complicated than that in an arid region because unpredictable rainfall 
patterns prevent a static irrigation schedule that works all the time. Excess water 
content in root zone could occur due to overlapping irrigation events with rainfall. 
This may cause yield reduction either because of lack of aeration or by causing a 
crop to unnecessarily increase biomass but not yield. Bajwa, and Vories (2007) 
demonstrated that excessive irrigation in wet weather conditions decreased cotton 
lint yield in Arkansas. On the other hand, severe in-season drought conditions for 
a short period of time are likely to occur in a humid region when lack of irrigation 
would significantly reduce yield. 
     Soil moisture is the most widely used indicator for irrigation scheduling (Leib 
et al., 2012; Leib et al., 2003). Recent advances in wireless communication makes 
it more feasible to monitor soil water status in multiple locations within a field 
which is required for scheduling variable rate irrigation systems. Pan et al. (2013) 
established a framework to manage irrigation in a field with soil spatial variation 
by means of information available in precision agriculture (i.e. field elevation and 
apparent electrical conductivity), wireless sensing technology and site specific 
derived equations. In another study, Hedley and Yule (2009a) produced soil 
hydraulic maps using regression equations from high resolution EC maps. They 
added a daily time step to the generated map to be able to spatially estimate soil 
water status across the field by means of a network of wireless soil moisture 
sensors. Hedley and Yule (2009b) found that daily soil water content mapping 
could be utilized to manage a variable rate irrigation system. 



     In the last phase, a wireless network of sensors is implemented to monitor soil 
water status within each zone while site-specific weather data will be collected to 
calculate ET. Water balance and/or ET data is used for real time irrigation 
scheduling.  
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