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ABSTRACT 
 

     Weed control of grass and broadleaf is commonly performed by applying 
selective herbicides homogeneously all over the field. Applying the herbicide 
only where needed has economical and environmental benefits. Combining 
remote sensing tools and techniques with precision agriculture concept has the 
potential to automatically locate and identify weeds. The objective of this work is 
to detect grasses and broadleaf weeds among cereal as well as broadleaf crops by 
spectroscopy. Leaf and canopy spectral relative reflectance values of three targets: 
crop (wheat and chickpea); grass weeds (GW); and broadleaf weeds (BLW) were 
obtained by field spectrometer.  Leaf spectral classifications for botanical genera 
as well as category were almost perfect (99%). Canopy spectral classification for 
targets was accurate (95%) in homogeneous field of view (FOV). Within the 
critical period for weeds control, accurate classification was achieved for target in 
heterogeneous FOV, providing applicative herbicide implementation. 
Hyperspectral camera was selected to continue this study. The properties of the 
camera should improve the ability to separate spectrally between targets by 
applying high spatial resolution.  
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INTRODUCTION 
 

Site specific weeds control 
 
     Weeds are plants that grow in a place they are not wanted, and where they may 
cause a disturbance. In agriculture, weeds can cause severe damage to crops by: 
reducing crop yield and quality due to competition for resources (i.e., water, 
sunlight, and minerals) (Pinter et al., 2003; Slaughter et al., 2008); harming crops 
by allelopathy (Moran et al., 2004); hosting diseases and insects; and disturbing 
tilling and harvesting (Monaco et al., 2002). Weeds developing resistance to 
herbicides is an increasing problem (Jones et al., 2005; Mallorysmith et al., 1990; 
Marshall and Moss, 2008) in Australia alone it is estimated to impose an 
additional annual cost of more than 1 billion dollars (Gibson et al., 2008). Weeds 
are the most acute pest in agriculture with estimated annual global damage of 
around 40 billion dollars per year (Monaco et al., 2002). In Australia and the USA 
alone the cost of managing agricultural weeds exceeds 30 billion dollars per year 
(Lawes and Wallace, 2008).  
     More than 60% of the pesticides developed all over the world are for weeds 
disinfest – herbicides (Monaco et al., 2002) therefore it is not surprising that 
herbicides are the most common pesticide found in ground water (Manh et al., 
2001). Herbicides in general are an environmental hazard that might be directly or 
indirectly damaging flora and fauna as well as humans and therefore, in some 
countries, there are restrictions of the amount of herbicides applied per area unit 
(Biller, 1998; Slaughter et al., 2008; Timmermann et al., 2003). The increasing 
pesticide use regulations, consumers concerns, and a growing interest in 
organically produced foods limit the long-term acceptability of herbicide 
application (Slaughter et al., 2008).  
     In most cases, weeds distribution in the field is non-uniform and highly 
aggregated to patches of varying size or in stripes along the field borders 
(Gerhards and Christensen, 2003; Gerhards et al., 1997; Lamb and Brown, 2001; 
Moran et al., 2004; Slaughter et al., 2008; Vrindts et al., 2002; Weis et al., 2008). 
The common uniform application of herbicides determined for a field are based 
on last year's weed problems or information obtained from scouting field edges 
(Manh et al., 2001; Moran et al., 2004). Therefore, the amounts of herbicides 
applied can be reduced. Reduction in quantity of herbicides implemented can be 
beneficial economically for the farmers and consumers as well as environmentally 
and in some cases without diminishing weed control efficiency (Pinter et al., 
2003; Slaughter et al., 2008; Weis et al., 2008). This reduction in amount of 
applied herbicides should be statistically lowering the probability of weeds to 
build resistance and allowing longer periods of efficiency for herbicides. Site 
specific weed control and management could significantly reduce the quantity of 
herbicide applied and by this effecting positively the environment and economy 
(Eddy et al., 2006; Gerhards and Christensen, 2003; Gerhards et al., 1997; 
Slaughter et al., 2008; Timmermann et al., 2003; Weis et al., 2008).  
     It is possible to reduce herbicides quantities by applying it only where the 
weeds are located (Lindquist et al., 1998). While applying site specific weed 
management in case of non-uniform weeds conditions the use of 11 to 90 percent 
of the herbicides can be avoided without affecting crop yield (Brown and 



 

Steckler, 1995; Brown et al., 1994; Feyaerts and van Gool, 2001; Gerhards and 
Christensen, 2003; Johnson et al., 1995; Lindquist et al., 1998). Topography, 
drainage, soil type, and microclimate are some of the variables that are affecting 
weed distribution and competition with crops, resulting in significant variation in 
weed spatial patterns in a specific field as well as in between fields (Moran et al., 
2004), emphasizing the need to site specific weed management.  
     Site specific weed management can be implemented in one of two ways: real 
time concept – weed on-the-go identification and spraying or hoeing are executed 
successively; mapping concept – weeds are identified and mapped prior to 
herbicide application (Gerhards et al., 1997; Weis et al., 2008). Weeds detection 
and identification in real time can be performed by remote sensing methods that 
up to this stage are mainly based on the shape of plant leaves in early growing 
stages or the discrimination between soil and vegetation in the cases of pre-
emergence of the crop or between the crop rows (Alchanatis et al., 2005; Moran et 
al., 1997; Slaughter et al., 2008). Remote sensing techniques can provide fast and 
cost-effective mapping of weed populations while such manual procedure for 
large areas is not practical (Hamouz et al., 2008; Zwiggelaar, 1998). Remote 
sensing applications can also allow better spatial as well as spectral methods for 
early and late season weed detection and site specific management (Alchanatis et 
al., 2005; Moran et al., 2004; Zwiggelaar, 1998).  
 

Spectral separation of crop and weeds 
 
     The number of studies where classification at ground level of plant species 
have been tested over multiple growing seasons as well as different crops is very 
limited and the management of post-emergence herbicides based on spectral 
separation between crop and weeds is to be studied more (Moran et al., 1997; 
Slaughter et al., 2008; Vrindts et al., 2002; Zwiggelaar, 1998). Zwiggelaar (1998) 
mentions in his review that using selected wavelengths for the discrimination 
between crops and weeds in a row environment has not been shown so far and 
imaging in a limited number of wavelengths might not be sufficient. In order to 
distinguish spectrally between crop and weeds the first step is obtaining 
continuous spectra of only the plant for each species, this can be done by high 
spatial and spectral resolutions (Vrindts et al., 2002), concluding the need to 
employ relative reflectance values in order to classify crops and weeds and to 
minimize the different lighting conditions affect on the spectral data. Biewer et al. 
(2009) are recommending the implementation of linear spectral unmixing as a 
method for non-destructive assessment of plant species proportion in mixed plots 
as well as the combination of field spectroscopy and digital imaging. This 
combination can be expressed by hyperspectral ground level scanned imagery 
including the VNIR spectral regions.   
     The internal structure of a dicotyledonous leaf (e.g., broadleaved) contains 
relatively more spongy mesophyll tissue properties than a monocotyledonous leaf 
(e.g., grasses) (Raven et al., 2005). Therefore, a dicotyledonous leaf has relatively 
more air spaces among the cells resulting a higher reflectance in the NIR region 
than a monocotyledonous leaf of the same thickness and age (Gausman, 1985). 
The red-edge region, which is the slope appearing in spectral reflectance (relative 
reflectance values) of plants connecting the red (R) and NIR regions, is an 



 

important element in plant species separation and therefore it is potentially 
essential for weed – crop separation (Shapira, 2009; Smith and Blackshaw, 2003; 
Vrindts et al., 2002).  
     Eddy et al. (2008) evaluated spectral discrimination between single crop/weed 
combinations, grasses as well as broadleaves, by ground level hyperspectral 
sensor with the range of 400 to 1000 nm, divided to 60 bands, resulting in 10 nm 
spectral resolution. The images were obtained in early growth stages, until 28 
days after seeding (DAS) and the data were analyzed by relative reflectance 
values. The classification is resulting high ability to separate the combinations. 
The last two dates resulted better classification than the earlier. Shapira (2009) is 
presenting high classification ability between crop and weeds, grasses as well as 
broadleaves, in the 25 to 40 days after emergence (DAE) that is the most critical 
period for weeds control in wheat fields.  
     Combining hyperspectral resolution with high spatial resolution, on ground 
level, can lead to high spectral as well as spatial separation abilities between crop 
and weeds. Such images can provide data in high spectral as well as spatial 
resolutions. Reflectance at high spatial resolution of specific targets (e.g., crops 
and weeds species, soil, shaded vegetation as well as soil) can supply pure spectra 
of endmembers contained on canopy scale to allow the ability to separate crops 
from weeds as well as better understanding of the canopy scale reflectance. Both 
scales leaf (also sub-leaf) and canopy, can be obtained by the same outdoor 
hyperspectral ground level image so the possibility of different environmental 
conditions is inconsiderable and the variations between lab and field 
measurements are avoided. The high spectral resolution data can be analyzed as 
entire spectra or be resampled to known operative or future satellites. Vegetation 
and Environmental New micro Spacecraft (VENµS) is a future satellite with 12 
bands in the VNIR region, including 4 red-edge bands, with spatial resolution of 
5.3 m, revisit time of 2 days with the same viewing angle, swath of 27 km and 
tilting capability of up to 30° along and across track. VENµS has a unique 
combination of properties and therefore potentially it can be a very powerful tool 
for site-specific weed management and other precision agricultural applications.   
     This work is mainly focusing on data obtained by the ASD FieldSpec Pro FR 
spectrometer with additional preliminary data obtained by a hyperspectral camera.  
 

METHODOLOGY 
 

Field work and data analysis obtained by spectrometer 
 
     Field measurements were performed on wheat and chickpea crops. The 
measurements and sampling were conducted in the winters of 2006-7 (2007) and 
2007-8 (2008) at the Gilat Research Center (31°21'N, 34°40'E) and in Kibbutz 
Saad (31°28'N, 34°32'E) which are located in the northwest Negev, Israel.  
     The Analytical Spectral Devices (ASD) FieldSpec Pro FR spectrometer in the 
range of 400-2400 nm was used to spectrally measure plants in two levels: single 
leaf and a canopy of several plants, the measurements were carried out with the 
high intensity contact probe and the bare fiber adaptor, respectively. The canopy 
reflectance data were collected at solar noon ±1 h, under clear sky conditions with 
a bare fiber adaptor that was leveled in a nadir angle. The field of view (FOV) 



 

was 25° and the height of the probe was 1.4 m, so the instantaneous FOV was 0.3 
m2. Since canopy-spectral measurements were held in the early stage of crop and 
weed growths it can be assumed that change in the FOV between different 
measurements dates is negligible. Wheat or chickpea (crop), grass weeds (GW), 
broad leaf weeds (BLW), and soil were spectrally measured when the different 
spectral samples contained different proportions of these four components, which 
could have only one component or several components. The crop (wheat or 
chickpea), GW and BLW fractional vegetation cover (FC) was assessed for every 
spectral measurement.   
     The total amount of spectral samples was 1250, with the distribution of: wheat 
550, chickpea 220, GW 170, and BLW 310. The samples were grouped 
differently according to the method of obtaining data (contact probe or bare fiber), 
days after crop emergence (DAE) as well as according to the four components 
proportions and relative coverage of vegetation in the FOV. All the groups were 
divided into two data sets: calibration and validation, 50% each. All data 
presented are for the validation data set.  
     There are two types of analysis: qualitative - classified to category and genera, 
in order to examine the ability to classify by spectral features; and quantitative - 
spectral measurements were coupled with FC assessments in order to examine the 
ability to predict it. The qualitative classification analyses were applied by the 
General Discrimination Analysis (GDA) tool of Statistica v.9 software. These 
classifications can be obtained by the most influencing wavelengths as well as by 
the entire spectra. The quantitative prediction analyses were applied by the Partial 
Least Squares Regression (PLSR) tool of the Unscrambler® v.9.1. software.  
 

Spectral Camera HS 
 
     Data were also obtained in Gilat Research Center in the winters of 2008-09 
(2009) and 2009-10 (2010) by the Spectral Camera HS (Specim) with 1600 pixel 
per line and 849 bands in the range of 400-1000 nm. The camera was placed 135 
cm above a frame delimiting an area of 50 by 50 cm, the frame was at the canopy 
level as presented in Fig. 1. Relative coverage estimation of crop, BLW, GW, and 
soil was performed in the delimitated area located under the camera in each 
image. The images are converted to relative reflectance values by ENVI software. 
The process is based on the flat field method by white referencing to pressed and 
smoothed powder of barium sulfate (BaSO4) positioned on the frame underneath 
the camera (Hatchell, 1999). By this experimental formation the images present 
very high spatial resolution of approximately 0.5 mm.  
     Data obtained by the ASD was already analyzed and the results are presented 
in this study. The data obtained by the Spectral Camera HS are still under 
preprocessing or in early stages of analysis therefore only preliminary results will 
be presented. 
 



 

 
Fig. 1.  Spectral Camera HS in a wheat field, focusing on the sensor point of 
view – in the frame: wheat, GW and BLW. 
 

RESULTS AND DISCUSSION 
 
     Tables 1 and 2 presents high ability to classify pure leaf spectra sorted by 
genera and categories, respectively. These tables show results of classification 
applied for spectral measurements obtained by the contact probe (e.g., pure leaf 
spectral data). The classifications were applied for the entire spectra available by 
the ASD spectrometer. Table 1 presents almost perfect ability to classify different 
plant species, two crops (wheat and chickpea) as well as 13 weeds species (GW 
and BLW). Table 2 presents classification by category (wheat, chickpea, BLW 
and GW) for the same data set as Tab. 1 with additional 20 samples of plants that 
could be only identified as BLW or GW.  
     In comparison to other studies e.g., (Smith and Blackshaw, 2003) that 
discriminate the different specie by leaf spectra, this current study produced 
higher classification accuracy and a more extensive data set. When comparing the 
results of the two tables it can be concluded that the classification by category is 
as good as by genera. Gibson et al. (2004) as well as (Thorp and Tian, 2004) 
support the idea that site specific weed management does not require 
differentiation between weed species, but rather between crops and BLW and GW 
for reducing of herbicide usage. Tables 1 and 2 present the first step towards 
applicative tool for separation between crops and weeds GW as well as BLW.  
     Table 3 presents results for homogeneous samples based on continuous full 
spectral range and Tab. 4 shows results for samples with more than 30% 
vegetation coverage based on only 11 narrow bands selected by the Statistica 
software according to their importance to the GDA procedure. The 11 bands 
sorted by importance are 675, 715, 705, 745, 690, 875, 850, 1090, 750, 760, and 
1070 nm. The first five wavelengths are in the red-edge region, another two red-
edge bands also appear lower along the importance scale in between the only two 
bands of wavelengths longer than 900 nm. Therefore, the VENµS might be a 
good substitute for such implementations. Table 3 compared to Table 4 presents 
advantage for the 11 selected bands and a minimum of 30% vegetation coverage 
over the continuous spectra  and  0  to  100  %  vegetation  coverage  in  
classifying  each  of  the  four categories, by samples and the total classification 

 



 

Table 1. Classification by GDA of pure 
leaf spectra by Genera, full spectral range. 

Genera Percent 
correct 

Validation 
no. samples 

Wheat 100 32 
Chickpea 100 28 
Hordeum 100 10 
Hirschfeldia 100 20 
Malva 100 40 
Sinapis 96 24 
Ipomoea 100 11 
Avena 100 12 
Solanum 100 11 
Setaria 100 17 
Silybum 100 11 
Chrysanthemum 100 29 
Sonchus 100 13 
Lolium 100 9 
Beta  100 14 
Total 99.6 281 

 
 
for each group by percent. It is assumed that the vegetation coverage is 
responsible for most of the difference between the two tables. However, an 
applicable air/spaceborne sensor have to deal with mixed spectra of crop, weeds 
and soil. When considering this factor, it seems that only large patches of weeds 
might be detected unless an unmixing of heterogeneous pixels will provide 
fractional coverage data.  
     When assuming that there are three herbicide application options: none, BLW, 
and GW. When embracing the concept that it does not matter if it is only weed, or 
a crop-weed mixture, the same treatment of selective herbicide should be applied. 
In other words: for area containing only wheat and soil no herbicide should be 
applied; for area with wheat and BLW or just BLW only BLW herbicide is 
applied; and for wheat and GW or just GW only GW herbicide is applied. Tab. 5 
presents classification results for heterogeneous spectra with more than 5% 
vegetation coverage restricted to 25 to 40 DAE in wheat fields. Table 5 is a 
potentially practical application based on the prior assumption. The table presents 
a total classification of 87%, with almost no mistakes (98%) in the no spray 
category, and more than 80% accuracy for GW or BLW herbicide application. 
The threshold for weed control is influenced from biological and economical 
factors, and therefore is not constant. If a threshold for detection of more than 5% 
FC weed is adequate, then maybe this algorithm can be applicable.  
 
 



 

Table 2.  Classification matrix of pure leaf spectra by category, full spectral 
range 

              Predicted 
Observed 

Percent 
correct Wheat Chickpea BLW GW 

Wheat 100 32 0 0 0 
Chickpea 100 0 28 0 0 
BLW 100 0 0 174 0 
GW 99 1 0 0 66 
Total 99.7 33 28 174 66 

 
Table 3.  Canopy classification matrix, full spectral range, homogeneous 

samples (all) 
                Predicted    
Observed 

Percent 
correct Wheat BLW GW Soil  

Wheat 90 46 1 2 2 
BLW 71 4 17 3 0 
GW 69 4 1 20 4 
Soil 100 0 0 0 24 
Total 84 54 19 25 30 

 
Table 4. Canopy classification matrix, 11 narrow bands, homogeneous 

samples (more than 30% vegetation coverage) 
                 Predicted         
Observed 

Percent 
correct Wheat BLW GW Soil  

Wheat 97 36 0 0 1 
BLW 92 0 24 2 0 
GW 96 1 0 22 0 
Soil 95 1 0 0 20 
Total 95 38 24 24 21 

 
Table 5.  Herbicide application classification matrix 

                 Predicted 
Observed 

Percent 
correct 

No 
spray 

BLW 
herbicide 

GW 
herbicide 

No spray 98 52 1 0 
BLW herbicide 82 9 46 1 
GW herbicide 81 5 1 26 
Total 87 66 48 27 

 
     In order to examine the ability to quantify the fractional vegetation cover 
prediction from homogeneous canopy spectra PLSR was applied. The PLSR was 
applied for each category separately and for all the categories together (Table 6). 
When all the categories were together, which simulates situation that they are 
unknown, the PLSR function had to classify and to give quantitative value. When 
the PLSR performed separately for each category the R2 and RMSEP values were 
better than the all categories combination.  
     As expected, in case of all the categories together when predicting total 
vegetation the results are much better. This ability to predict vegetation in general 



 

better than the three categories (crop, GW, and BLW) could be due to an incorrect 
classification of the spectra category by the PLSR function. The results in general 
show that in order to develop practical application there is a need to explore the 
abilities farther, not only by ASD spectrometer that averages certain area to one 
spectrum but also by images with high spatial and spectral resolutions as can be 
obtained by the Spectral Camera HS. 
     The hyperspectral image (Fig. 2) presents the same image as presented in 
Figure 1 with the frame. The image (Fig. 2) is already in relative reflectance 
values and limited to the delimited frame area only. The time 10 zoom window of 
the ENVI software can be used to examine the spatial resolution, pixel size is 
around 0.05 mm. The relative reflectance spectra of soil, wheat, GW, and BLW 
obtained from the image presented in Fig. 2 are shown (Fig. 3). The soil spectra is 
completely different and easy to distinguish. In addition, wheat, GW, and BLW 
spectra show differences that are potential base for spectrally separating the three 
groups in order to allow spatial identification. When observing the BLW spectrum 
the NIR reflectance is relatively high (as expected according to the literature). The 
wheat and GW have almost the same signature in the NIR region but they behave 
differently in the red – green area. Therefore, similarly to the ASD's spectra, 
potentially crop, GW, and BLW can be separated by applying GDA as well as 
classification methods for continuous spectra. They also might be separated by 
some narrow bands as well as wider VENµS bands, or by known vegetation 
indices e.g., the Green Normalized Difference Vegetation Index (GNDVI) 
(Gitelson and Merzlyak, 1998) and the Red-Edge Inflection Point (REIP) (Guyot 
and Baret, 1988).   
 
Table 6.  Fractional vegetation covers prediction for wheat fields (R2 values) 

 N 
validation Crop  GW BLW Total 

vegetation  
Wheat and soil 76 0.86    

GW and soil 53  0.90   

BLW and soil  45   0.90  
Wheat, GW, BLW, and 
soil, unclassified   174 0.52 0.61 0.72 0.86 

 



 

 
Fig. 2.  Spectral Camera HS image 
 

 
Fig. 3.  Relative reflectance spectra 
 

SUMMARY AND CONCLUSIONS 
 
     Weeds management demands high financial expense and has an environmental 
affect. In order to maximize the economical profit and minimize the 
environmental affect this work aims to find methods for crop and weeds 
classification. Methods that will allow site specific weed management in order to 
enable the application of the suitable herbicide only in the place and time needed. 
Results show abilities to separate crop from weeds as well as potential herbicide 
practical application. It was concluded that spectral separation between crop and 
weeds, GW as well as BLW is possible in general and in more details:  

• The spectral characteristics of the pure leaf spectra enable precise 
classification of the different plant categories and genera. 



 

• Classification of crop, GW and BLW by canopy reflectance gives 
highly accurate results when homogeneous spectra are measured. For 
heterogeneous spectra herbicide usage was proved to be potentially 
applicable.  

• Several bands including red-edge bands can classify crop and weeds as 
good as the entire spectra (400 – 2400 nm) and therefore can be 
potentially implemented for crop and weeds classification.  

In order to create applicable system there is a need to explore the mixed pixel 
issue, the Spectral Camera HS will be tested for this purpose. 
 

REFERENCES 
 
Alchanatis, V., L. Ridel, A. Hetzroni, and L. Yaroslavsky. 2005. Weed Detection 

in Multi-Spectral Images of Cotton Fields. Computers and Electronics in 
Agriculture 47: p.243-260. 

 
 
Biewer, S., S. Erasmi, T. Fricke, and M. Wachendorf. 2009. Prediction of Yield 

and the Contribution of Legumes in Legume-Grass Mixtures Using Field 
Spectrometry. Precision Agriculture 10: p.128-144. 

 
 
Biller, R.H. 1998. Reduced Input of Herbicides by Use of Optoelectronic Sensors. 

Journal of Agricultural Engineering Research 71: p.357-362. 
 
 
Brown, R.B., and J. Steckler. 1995. Prescription Maps for Spatially Variable 

Herbicide Application in No-Till Corn. Transactions of the Asae 38: p.1659-
1666. 

 
 
Brown, R.B., J. Steckler, and G.W. Anderson. 1994. Remote-Sensing for 

Identification of Weeds in No-Till Corn. Transactions of the Asae 37: p.297-
302. 

 
 
Eddy, P.R., A.M. Smith, B.D. Hill, D.R. Peddle, C.A. Coburn, and R.E. 

Blackshaw. 2006. Comparison of Neural Network and Maximum Likelihood 
High Resolution Image Classification for Weed Detection in Crops: 
Applications in Precision Agriculture. 2006 Ieee International Geoscience and 
Remote Sensing Symposium, Vols 1-8: p.116-119. 

 
 
Eddy, P.R., A.M. Smith, B.D. Hill, D.R. Peddle, C.A. Coburn, and R.E. 

Blackshaw. 2008. Hybrid Segmentation - Artificial Neural Network 
Classification of High Resolution Hyperspectral Imagery for Site-Specific 
Herbicide Management in Agriculture. Photogrammetric Engineering and 
Remote Sensing 74: p.1249-1257. 



 

 
 
Feyaerts, F., and L. van Gool. 2001. Multi-Spectral Vision System for Weed 

Detection. Pattern Recognition Letters 22: p.667-674. 
 
 
Gausman, H. 1985. Plant Leaf Optical Properties in Visible and near Infrared 

Light Texas Tech Press, Lubbock. 
 
 
Gerhards, R., and S. Christensen. 2003. Real-Time Weed Detection, Decision 

Making and Patch Spraying in Maize, Sugarbeet, Winter Wheat and Winter 
Barley. Weed Research 43: p.385-392. 

 
 
Gerhards, R., M. Sokefeld, K. Schulze-Lohne, D.A. Mortensen, and W. 

Kuhbauch. 1997. Site Specific Weed Control in Winter Wheat. Journal of 
Agronomy and Crop Science 178: p.219-225. 

 
 
Gibson, K.D., R. Dirks, C.R. Medlin, and L. Johnston. 2004. Detection of Weed 

Species in Soybean Using Multispectral Digital Images. Weed Technology 18: 
p.742-749. 

 
 
Gibson, L., R. Kingwell, and G. Doole. 2008. The Role and Value of Eastern Star 

Clover in Managing Herbicide-Resistant Crop Weeds: A Whole-Farm Analysis. 
Agricultural Systems 98: p.199-207. 

 
 
Gitelson, A.A., and M.N. Merzlyak. 1998. Remote Sensing of Chlorophyll 

Concentration in Higher Plant Leaves. Advanced Space Research 22: p.689-
692. 

 
 
Guyot, G., and F. Baret. 1988. 4th International Colloquium "Spectral signatures 

of objects in remote sensing", Aussois. 18 - 22 January 1988. Paris: ESA 
pablication. 

 
 
Hamouz, P., K. Novakova, J. Soukup, and J. Holec. 2008. Detection of Cirsium 

Arvense L. In Winter Wheat Using a Multispectral Imaging System. Journal of 
Plant Diseases and Protection: p.167-170. 

 
 
Hatchell, D. 1999. Reflectance [Online] http://www.asdi.com/tg_rev4_web.pdf 

(verified 9, July, 2008). 
 

http://www.asdi.com/tg_rev4_web.pdf�


 

 
Johnson, G.A., D.A. Mortensen, L.J. Young, and A.R. Martin. 1995. The Stability 

of Weed Seedling Population-Models and Parameters in Eastern Nebraska Corn 
(Zea-Mays) and Soybean (Glycine-Max) Fields. Weed Science 43: p.604-611. 

 
 
Jones, R.E., D.T. Vere, Y. Alemseged, and R.W. Medd. 2005. Estimating the 

Economic Cost of Weeds in Australian Annual Winter Crops. Agricultural 
Economics 32: p.253-265. 

 
 
Lamb, D.W., and R.B. Brown. 2001. Remote-Sensing and Mapping of Weeds in 

Crops. Journal of Agricultural Engineering Research 78: p.117-125. 
 
 
Lawes, R., A., and J. Wallace, F. 2008. Monitoring an Invasive Perennial at the 

Landscape Scale with Remote Sensing. Ecological Management & Restoration 
9: p.53-59. 

 
 
Lindquist, J.L., J.A. Dieleman, D.A. Mortensen, G.A. Johnson, and D.Y. Wyse-

Pester. 1998. Economic Importance of Managing Spatially Heterogeneous 
Weed Populations. Weed Technology 12: p.7-13. 

 
 
Mallorysmith, C.A., D.C. Thill, and M.J. Dial. 1990. Identification of 

Sulfonylurea Herbicide-Resistant Prickly Lettuce (Lactuca-Serriola). Weed 
Technology 4: p.163-168. 

 
 
Manh, A.G., G. Rabatel, L. Assemat, and M.J. Aldon. 2001. Weed Leaf Image 

Segmentation by Deformable Templates. Journal of Agricultural Engineering 
Research 80: p.139-146. 

 
 
Marshall, R., and S.R. Moss. 2008. Characterisation and Molecular Basis of Als 

Inhibitor Resistance in the Grass Weed Alopecurus Myosuroides. Weed 
Research 48: p.439-447. 

 
 
Monaco, T., J, S. Weller, C, and F. Ashton, M. 2002. Weed Science Principles 

and Practices John Wiley & sons, INC. 
 
 
Moran, M., S., Y. Inoue, and E. Barnes, M. 1997. Opportunities and Limitations 

for Image-Based Remote Sensing in Precision Crop Management. remote 
sensing of environment 61: p.319-346. 

 



 

 
Moran, M.S., S.J. Maas, V.C. Vanderbilt, M. Barnes, S.N. Miller, and T.R. 

Clarke. 2004. Application of Image-Based Remote Sensing to Irrigated 
Agriculture, p. 648-650, In S. L. Ustin, ed. Remote Sensing for Natural 
Resource Management and Environmental Monitoring Vol. 4. John Wiley & 
sons, Hoboken. 

 
 
Pinter, P., J., J. Hatfield, L., J. Schepers, S., E. Barnes, M., M. Moran, S., C. 

Daughtry, S, T., and D. Upchurch, R. 2003. Remote Sensing for Crop 
Management. Photogrametric Enginiring & Remote Sensing 69: p.647-664. 

 
 
Raven, P., H, R. Everet, F, and S. Eichhorn, E. 2005. Biology of Plants. 7 ed. W. 

H. Freeman and Company, New-York. 
 
 
Shapira, U. 2009. Field Spectroscopy for Weed Detection, Msc. Thesis, Ben-

Gurion University of the Negev, Sede-Boker. 
 
 
Slaughter, D.C., D.K. Giles, and D. Downey. 2008. Autonomous Robotic Weed 

Control Systems: A Review. Computers and Electronics in Agriculture 61: 
p.63-78. 

 
 
Smith, A.M., and R.E. Blackshaw. 2003. Weed-Crop Discrimination Using 

Remote Sensing: A Detached Leaf Experiment. Weed Technology 17: p.811-
820. 

 
 
Thorp, K.R., and L.F. Tian. 2004. A Review on Remote Sensing of Weeds in 

Agriculture. Precision Agriculture 5: p.477-508. 
 
 
Timmermann, C., R. Gerhards, and W. Kuehbauch. 2003. The Economic Impact 

of Site-Specific Weed Control. Precision Agriculture 4: p.249-260. 
 
 
Vrindts, E., J. De Baerdemaeker, and H. Ramon. 2002. Weed Detection Using 

Canopy Reflection. Precision Agriculture 3: p.63-80. 
 
 
Weis, M., C. Gutjahr, V. Rueda Ayala, R. Gerhards, C. Ritter, and F. Scholderle. 

2008. Precision Farming for Weed Management: Techniques. Gesunde 
Pflanzen 60: p.171-181. 

 
 



 

Zwiggelaar, R. 1998. A Review of Spectral Properties of Plants and Their 
Potential Use for Crop/Weed Discrimination in Row-Crops. Crop Protection 
17: p.189-206. 

 
 
 
 


	INTRODUCTION
	Site specific weeds control
	Spectral separation of crop and weeds
	METHODOLOGY
	Field work and data analysis obtained by spectrometer
	Spectral Camera HS
	RESULTS AND DISCUSSION
	SUMMARY AND CONCLUSIONS
	REFERENCES

