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Abstract.  
Hand-held sensors (SPAD meter, N-Tester, …) used for detecting the leaves nitrogen  concentration 
(Nc) present several drawbacks. The nitrogen concentration is gained by an indirect way through the 
chlorophyll concentration and the leaves have to be fixed in a defined position for the measurements. 
These drawbacks could be overcome by an imaging device that measures the canopy reflectance. 
Hence, the objective of the paper is to analyse the potential of multispectral imaging for detecting 
nitrogen concentration. 
The tests were carried out on parcels submitted to nitrogen inputs varying from 0 to 180 kg N.ha-1. 
Reference Nc measurements were obtained by the Kjeldahl method and a Hydro N-Tester (Yara). The 
developed imaging system comprised a CMOS camera and a set of 22 interference filters ranging 
from 450 to 950 nm mounted on a wheel steered by a stepper motor. The image acquisition and the 
motor rotation were controlled by a program written in C++. The crop was imaged vertically at one 
meter height. The raw images presented 1280×1024 pixels covering an area of approximately 0.25 m² 
and were recorded with a 12-bit luminance resolution. To deal with the natural irradiance variability 
of the scene, a white reference was used and the integration time was automatically adjusted for each 
image. The image treatment included the segmentation of Photosynthetically Active Leaves (PAL) by 
using Bayes theorem and the computation of the mean PAL reflectance after correction of 
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background and illumination fluctuations. Nc was estimated on the basis of the 22 filters by the 
Partial Least Square (PLS) method and by four filters selected by the Best Subset Selection (BSS) 
method. 
In comparison with the Kjeldahl method, the estimation of Nc by means of the Hydro N-Tester, the 
PLS method and the BSS method (filters 600-80, 950-100, 650-40 and 450-80 nm) gave determination 
coefficients equal to 0.53, 0.63, and 0.62, respectively. This indicated that the full multi-spectral 
approach gave significantly better Nc estimation than a portable device and suggested that a camera 
equipped with four filters would give similar results.   
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Introduction 
Application of the right amount of nitrogen (N) is one of the main challenges in agricultural production 
and related environmental impacts (Dumont et al., 2015). Plant growth is hampered when N lacks, 
while excess in N fertilizer leads to losses via air, surface water or groundwater pathways.  

The determination of optimal fertilizer amount requires the knowledge of the actual N content and of 
plant biomass. This estimation remains a real challenge. Indeed, analytic laboratory methods for 
estimating the actual N content are accurate but destructive, time consuming and expensive.  

Remote sensing methods are widely described in the literature for detecting nitrogen status in 
agricultural fields. In particular, hyperspectral imaging appears as a powerful tool for continuous 
sampling and for selection of narrow wavebands which are sensitive to crop variables, such as 
nitrogen status (Lebourgeois, 2012). Unfortunately, the transition of research achievements to 
practical applications remains still limited, namely because of cloud interference (Mulla, 2013).  

At a smaller scale, hand-held chlorophyll meters are used. They can be sorted into two groups 
according to their measurement principle. One group measures the leaf transmittance and the 
second one evaluates the leaf reflectance (Hlavinka et al., 2013). Devices such as SPAD-502 meter 
(Konica Minolta Sensing, Osaka, Japan) belong to the first group. The SPAD-502 is an active sensor 
which measures the difference of absorption of the light emitted by two diodes at 650 and 940 nm 
through the leave. The first wavelength (red, 650 nm) corresponds to the absorption by chlorophyll 
(𝑎650). The second wavelength (near infrared, 940 nm) is chosen as a reference band where 
absorption due to other molecules than chlorophyll (𝑎𝑟𝑟𝑟) occurs while chlorophyll absorbance is 
insignificant. The output value of the meters 𝑀 is called the SPAD value and is therefore given by 
following equation on basis of Lambert-Beer’s law (Udling, 2007):   

𝑀 = 𝑘�𝑎650 − 𝑎𝑟𝑟𝑟� =  𝑘 log �𝐼0(650)

𝐼(650)
� � 𝐼(𝑟𝑟𝑟)

𝐼0(𝑟𝑟𝑟)
�                                             (2) 

where 𝐼𝑂 is the intensity of incident monochromatic light either at 650 nm or at the reference 
wavelength, 𝐼 is the intensity of transmitted light either at 650 nm or at the reference wavelength, and 
𝑘 is a  proportionality coefficient. M is therefore directly related to the amount of chlorophyll present in 
the sample leaf. Considering that leaf chloroplasts contain 70% of leaf N concentration, 𝑀 values are 
often considered as an indicator of leaf N content and are used to detect N stress (Tremblay et al. 
2012).  

In the second group, measurement is based on detection of light in the red and near infrared spectral 
bands reflected by the measured leaf. An example of chlorophyll meter measuring the leaf 
reflectance is the GreenSeeker sensor (Trimble Navigation Limited, Sunnyvale, California, USA) 
which delivers the normalized difference vegetation index (NDVI). 

These hand-held devices present several drawbacks. Indeed, they require that the leaves be fixed in 
a defined position for the measurements. The measurement only concerns a small part of a leaf and 
therefore a large number of random observations are needed to obtain a representative average 
value (Jia et al., 2004). Furthermore, the optical readings can be affected by both nitrogen content 
and water supply of the crop (Gebbers et al., 2013). At high growth stage, NDVI can become 
saturated in presence of high leaf area index or medium to high biomass conditions (Cao Q., 2013).  

Besides these sensors using two spectral bands, the Crop Circle ACS-470 sensor (Holland Scientific 
Inc., Lincoln, Nebraska, USA) has been developed. It is user configurable with a choice of up to 6 
spectral bands, which offers the possibility of computing many spectral vegetation indices. Cao et al. 
(2013) evaluated the potential of several indices derived from the Crop Circle sensor to estimate rice 
N status across key growth stages. They found promising indices for evaluating rice above biomass 
but obtained less satisfactory results in estimating rice plant N concentration (𝑅2 = 0.33).  
 

http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2012.01639.x/full#b38
http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2012.01639.x/full#b38
http://www.sciencedirect.com/science/article/pii/S037842901300275X
http://www.sciencedirect.com/science/article/pii/S037842901300275X
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Besides these specific devices, the use of RGB cameras measuring the intensity of light reflected by 
the canopy has been reported with the aim to acquire timely and inexpensive information for crop 
management. Conventional cameras offer the possibility to measure the canopy cover and compute 
indices and to correlate them with parameters of growth and N nutrition like LAI, shoot dry weight, 
and shoot N accumulation (Li et al., 2010; Lee and Lee, 2013; Wang et al., 2014). A custom-
developed 3-CCD camera with three video channels of green (550 nm), red (650 nm) and near-
infrared (800 nm) with a bandwidth of approximately 800 nm for each channel has been developed 
by Kim and Reid (2006) and was used for in-field plant sensing (Kim et al., 2013).  
 
Overall, optical systems have a great potential in the development of in-field plant sensing systems 
for real-time nitrogen detection because they are non-destructive and rapid. Nevertheless, several 
challenges have to be overcome. Besides the nutrition deficiency, the spectral response may be 
affected by several factors, including the water lack or excess, the growth stage, the senescence, the 
substrate nature. Last but not least, significant variety x treatment interaction may exist. In this 
context, multispectral devices have to be preferred to devices operating in two wavelengths since 
they have the potential to provide multiple signals that can be decorrelated by using appropriate 
statistical treatments. Furthermore, imaging systems offer the possibility of visualize large scenes of  
the canopy and evaluate LAI, Photosynthetically Active Leaves, ears, indices, etc. 
 
The aim of this paper is therefore to set up features selection for evaluating N content on the canopy. 
Multispectral imaging is used for selecting a combination of several significant spectral bands.  

Material and methods 

Experimental field 
Field experiment were conducted at the University of Liège, Gembloux Agro-Bio Tech (Bordia field, 
50.56°N and 4.69°W) (Belgium) during the 2013-2014 growing season. The local climate is 
temperate with yearly average temperature of 10.5 °C and mean rainfall of 852 mm. 

The experiment aimed to study the growth of a wheat cultivar (Triticum aestivum L., cv. Edgar) and 
was arranged in a split-splot design. Two plots were considered on Stagnic Albeluvisol and a Luvisol, 
respectively. Four subplots were randomly assigned to different N fertilisation strategies, with 
different rates and timing. These strategies were designed around the Belgian farmers' current 
practice, which consists of applying 60 kg N ha-1 respectively at tillering, redress and last-leaf stages 
(Table 1). Ten replications were considered, half were used for final yield determination and the other 
half for plant dry weight calculation. 

Winter wheat was sown on the 24th of October 2013 at a grain density of 350 grains/m² with a row 
spacing of 14 cm and a planting depth of 2.5 cm. Fababean (Vicia faba L.) cover crops were grown 
before wheat planting. Soil samples showed that there was around 60 kg NO3-N.ha-1 at 0.90m depth 
at the end of winter (14/03/2014). Following cultural operations were conducted: weeding (Capri duo 
265 g.ha-1 + oil 1 L.ha-1) occurred on the 17th of March; plant growth regulator (Chlormequat chloride 
(CCC), Cyclocel 75 at the rate of 1L.ha-1) was applied on the 10th of April; fungicide was brought on 
the 5th of May (Osiris 2l.ha-1) and on the 6th of June (Aviator Xpro 1.25 L.ha-1).  

The soil moisture was measured continuously during the growing season. There was no hydric stress 
since pF was comprised between 3.7 and 4.2 in the topsoil (0 – 0.12m) and between 3.1 and 3.4 in 
the subsoil (0.25-0.30 m). 
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Table 1. Field trials 

 

Growth stage Date Fertilisation level (kg N ha-1) 

Modality 1 Modality 2 Modality 3 Modality 4 

Tiller 12/03/2014 0 60 50 30 

Stem extension 07/04/2014 0 60 40 30 

Flag leaf 27/05/2014 0 60 65 90 

Total fertilization level (kg N ha-1) 0 180 155 150 

 

N leaves concentration 
Wheat plants were destructively sampled on six dates in the growing season: 30 May, 06 June, 13 
June, 24 June, 07 July in 2014. Plants within two 0.5 m lengths of row per plot were cut and placed in 
coolers. From each sample, all green leaves were separated from the stems and oven-dried at 70°C 
to obtain the dry weight. The dried leaf samples were ground to pass 1-mm screen and stored in 
plastic bags for chemical analysis. Total N concentration in leaf tissues 𝑁𝑐  was determined by the 
Kjeldjahl method in the Laboratory of CRA-W (Gembloux, Belgium) and expressed on the basis of 
unit dry weight (mg N g−1DW). 

𝑴 SPAD measurements 
During the 2013-2014 growing season, SPAD transmittance readings were performed with a 
chlorophyll meter (Hydro N-Tester, Yara International ASA, Norway) comprising two light emitting 
diodes at 650 nm (chlorophyll absorption) and 960 nm (reference wavelength). As leaf age is an 
important factor that needs to be considered when collecting SPAD measurements, the 15 last fully 
developed leaves at the last third of the leaves were collected (Wang G., 2014). A total of 15 plants 
were measured in each plot and the mean values of the 15 plants were used for analysis. 𝑀 readings 
on different leaves were taken on 23 May, 30 May, 06 June, 13 June, 24 June, and 07 July 2014. 

Multispectral measurements  
 
Acquisition system 
A multispectral vision system was designed to acquire top-down images of the scene (covered area 
of approximately 0.25 m²) in the visible and the near infrared spectra (Fig. 1). The acquisition system 
included a monochrome 12 bits (4096 gray levels) 1.3 megapixels camera (BCI-5, C-Cam 
Technologies, Belgium) with a filter wheel equipped with 22 band pass interference filters (Table 1). 
The filters were selected to cover the sensitivity range of the camera sensor and had a central 
wavelength (LW) ranging from 450 nm (blue) to 950 nm (NIR). They were relatively wide (40-100 nm 
FWHM). The rotation of the filter wheel was controlled by a stepper motor. 
 
In-field spectral measurements made under natural ambient illumination were significantly influenced 
by solar radiation changes from cloudy to sunny situations, which affects spectral responses at all 
stages of plant growth. To solve that problem, a white reference plate was used and the integration 
time was automatically adjusted in order to acquire images through each filter with the white 
reference radiance at about 3800 grey levels and a precision of ± 5%. 
 
The image acquisition and the motor rotation were controlled by a program written in C++. As some 
plant physiological system and physical processes such as nitrogen uptake efficiency are varying on 
a circadian rhythm (Xu et al., 2012), measurement campaigns were always made at the same time of 
the day (from 1:30 to 3:30 pm).  
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Table 2. Interference filters 

 
 ID Central 

lengthwave (nm) 
𝑳𝑳 

FWHM (nm) 

Blue S 450 50 
Blue U 450 80 

Green V 500 40 
Green O 500 80 
Green T 550 50 
Green K 550 80 
Red R 600 50 
Red C 600 80 
Red  F 650 40 
Red J 650 80 

Red edge Q 700 50 
Red edge L 700 80 
Red edge E 750 40 
Red edge L 750 80 

NIR W 800 50 
NIR N 800 100 
NIR H 850 40 
NIR G 850 100 
NIR I 900 40 
NIR M 900 100 
NIR D 950 40 
NIR P 950 100 

 
 

 
 

Fig 1. Multispectral vision system (left), table structure with computer, camera and wheel filter (right). 
 

Image treatment 
Image processing was divided into three main algorithms (Fig. 2) which were assemblied to calculate 
the leaves mean reflectance in an image.  
 
1. The first algorithm (Fig. 2, right) aims to compute the mean white reference. This includes (i) the 

application of a mask on the image to select the white reference; (ii) the search of the maximum 
pixel radiance 𝑅𝑚𝑚𝑚; (iii) the application of a threshold value (0.87 of 𝑅𝑚𝑚𝑚was chosen for 
obtaining acceptable results in both visible and NIR images); (iv) the calculation of the mean 
white radiance value.   

2. The second algorithm (Fig. 2, left) aims to discriminate the Photosynthetically Active Leaves1 
(PAL) from the rest of the image by using the Bayes’ theorem. This theorem aims to calculate for 
each pixel the probability to be assigned in different classes. The number of classes was set at 

                                                 
 
1 In this experiment PAL included sunlit two last fully developed leaves 
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two (PAL and not PAL) before the 6 June campaign. After, the class number was increasing to 
six (ground, white reference, grey and black reference, ears, PAL, non PAL) because of the 
necessity to discriminate ears from PAL.   

3. The third algorithm (Fig. 2, center) comprised several steps (i) image background correction; (ii) 
image normalization by mean white reference radiance; (iii) mask application to only select PAL; 
(iv) calculation of mean reflectance of Photosynthetically Active Leaves at each filter wavelength 
𝑅λ 

These algorithms were writen in Matlab® R2008b (The Mathworks, USA). 

Data analysis 
In a first stage, leaf concentration 𝑁𝑐  was assessed with an analysis of variance (ANOVA) 
considering two fixed factors (soil and fertilizer level). In a second stage, the relationship between 
𝑁𝑐  and 𝑀 SPAD values was analysed. In a third stage, data analysis aimed at analyzing 𝑁𝑐 on basis 
of multispectral vision. Partial least squares regression (PLS regression) was applied to analyze the 
relationship between leaves mean reflectance 𝑅λ from the 22 filters and 𝑁𝑐. This method permits to 
reduce the large number of measured spectral variables to a few non-correlated principal 
components (PCs) which represent the relevant information to predict the dependent variable N. In 
the second step, the smallest subset to minimize the Mallows’ Cp was selected by the best subset 
selection (BSS) method. PLS and BSS algorithms of Minitab 17 (Minitab, Inc., US) were used. 
Validation of the models was performed by comparing differences in the determination coefficient 𝑅2 
and root mean square error (RMSE). This latter was computed as: 
 

𝑅𝑀𝑅𝑅 =  
∑ (𝑦�𝑖 − 𝑦𝑖)2𝑛
𝑖=1

𝑛
 

 
where 𝑦�𝑖 and 𝑦𝑖 were the predicted and measured crop variables, and 𝑛 the number of samples. 
 

 
Fig 2. Flow chart of the embedded image processing: (right) localization and calculation of white mean radiance;  (left) discrimination of leaves;  

(centre) algorithm of leaves mean reflectance calculation. 

 
An example of the leaves discrimination is given in Fig. 3, the original image is displayed in RGB 
(Fig. 3, left). 
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Fig. 3. Above: Discrimination with two classes (image from 23th of May campaign). Below: Discrimination with 5 classes (image from the 13th of 
June campaign) 

Results 

Nitrogen leaves concentration 
Fig. 4 presents the changes in wheat leaf N concentration through the growing season. The mean 
𝑁𝑐  was 32.80 mg N g−1DW, the standard deviation was 4.24 mg N g−1DW, and the minimum and 
maximum were equal to 20.10 and 39.17 mg N g−1DW, respectively. The range was thus 19.07 
N g−1DW. 
As the differences between the plots on Stagnic Albeluvisol and Luvisol were considered not 
significant, the mean values were plotted. The overall patterns were similar for modalities 2 (60-60-60 
kg N ha-1), 3 (50-40-65 kg N ha-1), and 4 (30-30-90 kg N ha-1). Leaf 𝑁𝑐 reached a maximum (39 % of 
dry matter) which reflected the rapid exploration of the soil by the roots and high N uptake rates 
relative to shoot growth. Following the maximum, there was decrease in leaf 𝑁𝑐 through the rest of 
the growing season. With no fertilizer (modality 1), 𝑁𝑐 was significantly lower. 
 

Relationship between nitrogen leaves concentration and 𝑴 SPAD value 
The linear relationship between 𝑁𝑐  and 𝑀 SPAD values is shown in Fig. 5. There were significant 
differences in the 𝑁𝑁 – 𝑀 relationship during the growing season according to the growth stage (R2 = 
0.53). Similar determination coefficients were obtained by others authors (Rorie et al., 2011; Wang et 
al., 2014). By using the linear model, the RMSE was equal to 2.9 mg N g−1DW. As suggested by 
Wang et al. (2014), the measurement technique of 𝑀 could be improved by computing indices such 
as the normalized difference SPAD.  
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Fig 4. Leaf concentration during 2013-2014 growing season for four modalities (Table 1). 

   

 
Fig. 5. M value vs N Concentration. 

 

Partial least squares regression 

The partial least square (PLS) regression aimed to reduce the 22 filter responses 𝑅λ to a smaller set 
of uncorrelated components. The scatterplot of the determination coefficient 𝑅2 and predicted 𝑅2 as a 
function of the number of components shows that the optimal model comprised five components (Fig. 6 
left). The projected scatterplot of the standardized regression coefficients indicated the importance of 
each filter in the model (Fig. 6 right). C filter (600 nm, FWHM 80 mm) took the greater importance. 
With five components, 𝑅2 = 0.68, predicted 𝑅2 = 0.63, and RMSE = 2.1 mg N g−1DW.  

Three over the five components could be distinguished by a significant increase of 𝑅2. The following 
interpretation was then focused on these three first components (Fig. 7). The first component allowed 
the separation of NIR (inside the red circle) and visible filters, except for the L filter (Fig. 7 left). Both 
NIR and visible wavelengths were thus important in the prediction of leaf 𝑁𝑐 . Positive and negative 
correlations were obtained between 𝑅λ and 𝑁𝑐 respectively with the NIR filters and the visible filters. 
Considering the third component (Fig. 7 right), it can be seen that a negative correlation was 
obtained with only two filters (F and C).  
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Fig. 6. Left. Scatterplot of the 𝒓𝟐 and RMSE as a function of the number of components. The vertical line indicates the number of components in 

the optimal model. Right: Projected scatterplot of the standardized regression coefficients. 

 

 

Fig. 7. PLS loading plot. 

Best subset regression 
Using best subset regression with acceptable Mallow’s Cp, four filters were selected: C(600, 80 mm), 
D(950, 100 nm), F(650, 40 nm), U(450, 80 nm), two of them presenting an overlap (C and F). These 
four filters presented high standardized regression coefficients in the PLS (Fig. 6 right). The model 
based on this reduced set of variables presented determination coefficient 𝑅2 and predicted 𝑅2 
respectively equal to 0.64 and 0.62, and the RMSE was 2.5 mg N g−1DW.  
 
Discussion and conclusion 
 
In this study two fundamentally different methods are used for evaluating 𝑁𝑐. The method based on 
the 𝑀 SPAD measures individual leaves transmittance of light emitted at 650 and 960 nm, while the 
multispectral approach evaluates the canopy reflectance under whole solar radiation. The results are 
summarized in Table 3. The best results are obtained with the full-multispectral approach (𝑅2 = 0.63) 
but a multispectral approach using four selected filters could be efficient for evaluating 𝑁𝑐 (𝑅2 = 0.62). 
These results are encouraging in comparison with those obtained with a Crop Circle ACS-470, for 
rice plant N concentration (𝑅2 = 0.33) (Cao et al. 2013).  
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Table 3. Results synthesis  

Device Method Number of 
selected filters 

𝑹𝟐 RMSE 
mg N g−1DW 

 
Hydro N-Tester 𝑀 SPAD - 0.53 2.9 

Filter wheel PLS 22 0.63 2.1 
Filter wheel Best subset 4 0.62 2.5 

 
Two of the four selected filters had central wavelength 𝐿𝐿 in the red spectral region (C, F). The 
wavelength band 600 – 650 nm corresponding to the radiation absorption by plant chlorophyll, the 
link between this pigment and the N concentration is confirmed. Another filter (D) had 𝐿𝐿 in the NIR 
where absorbance of leaves is small or absent. The last filter had 𝐿𝐿 in the blue (U) which probably 
corresponds to radiation absorption of both chlorophyll and carotenoids. No filter in the red-edge was 
selected, contrary to other studies (Shiratsuchi et al., 2011), probably due to the absence of water 
stress.  
 
A substantial literature exists on the characteristics of SPAD meters and the sources of uncertainties 
associated to 𝑀 value. The measurements are affected by the plant characteristics (leaf thickness, 
dry leaf mass per area, the leaf water content, …) and by environmental conditions (diurnal 
changes).  The sources of uncertainties in the multispectral vision system are also numerous and are 
mainly related to the image treatment of the canopy which reveals complex. In further studies, the 
multispectral approach could be extended by considering wider ranges of N leaves concentration, 
different water content, several cultivars, … 
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