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Abstract. World climate change and extreme weather conditions can generate uncertainties in crop 
production by increasing plant diseases and having significant impacts on crop yield loss. To enable 
precision agriculture technology in Florida’s citrus industry, a machine vision system was developed 
to identify common citrus production problems such as Huanglongbing (HLB), rust mite and wind 
scar. Objectives of this article were 1) to develop a simultaneous image acquisition system using 
multiple cameras on a customized conveyor that rotates citrus fruit in order to allow the imaging 
hardware to acquire the entire fruit surfaces, 2) to develop a machine vision algorithm with a deep 
learning technique utilizing a convolutional neural network to accurately inspect the visual 
characteristics of fruit surface and distinguish HLB-infected citrus from fruit with other common 
defects, and 3) to simulate real-time video processing utilizing a GPU for faster image processing. A 
real-time video processing with the state-of-the-art deep learning algorithm was developed and 
tested using uncompressed RGB video streams recorded from the developed hardware. Accuracy of 
various defect detection by deep convolutional neural network was 100, 89.7, 94.7, and 88.9 percent 
for healthy, HLB, rust mite and wind scar classes, respectively. The system can be used in citrus 
packing houses or developed on a portable conveyor that identifies severity of the diseases in 
particular locations and enables site-specific crop management in the field. 
Keywords. Convolutional neural network, deep learning, machine vision, non-destructive inspection, 
post-harvest evaluation, precision agriculture, rust mite, video processing, wind scar. 
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Introduction 
Due to the rapid growth of world population to an estimated 9.2 billion by 2050, and 11 billion by 
2100 (United Nations, Department of Economic and Social Affairs [DESA], 2015), it is expected that 
the current pace of crop yield increases will not fulfill the growing food demand (United Nations, Food 
and Agriculture Organization [FAO], 2009). Furthermore, world climate change and extreme weather 
conditions can generate uncertainties in crop production by increasing plant diseases that can 
substantially reduce crop yields (Pautasso et al., 2012).  

Precision agriculture technologies have been considered key solutions to current agricultural 
challenges by adopting advanced sensing technologies, analyzing in-field spatial variability of various 
cropping factors, and allowing site-specific field management. For example, in Florida, a combination 
of unfavorable weather and introduction of a disease called Huanglongbing (HLB or citrus greening) 
has resulted in a 34.4% citrus production decrease (USDA, 2014; Choi et al., 2015). The HLB 
infected fruit are harvested along with healthy or less symptomatic fruit and these can impair the 
overall quality of harvested fruit. In order to manage citrus groves efficiently and maintain or increase 
citrus yields, growers need to first identify the HLB-infected trees in the grove and determine severity 
of infection. For instance, citrus growers in Florida adopt a tree eradication program to remove 
infected trees, or a foliage nutrient application program, applying more fertilizer to the infected trees 
to maintain tree health (Salifu et al., 2013). 

For site-specific management of HLB in the field, the development of an advanced and automated 
HLB-detection system is essential. Machine vision systems to detect to citrus diseases have been 
developed. For HLB, a detection system was developed by Pourreza et al. (2014) by measuring 
accumulation of starch in citrus leaves using a narrow band imaging system with polarizing filters. 
Textural features, including local binary pattern, and gray-level co-occurrence features were 
extracted and used to classify the leaves as healthy or HLB-infected samples. They reported 100% 
accuracy for HLB detection in Valencia oranges without Zinc-deficiency, 73.3% accuracy for HLB-
infected sample with Zinc-deficiency, which revealed similar symptoms as HLB when imaging with 
polarizing filters.  

López-García et al. (2010) developed an application for fruit surface defect detection in oranges 
using multivariate image analysis (MIA) strategy on RGB images. In their method, the MIA strategy 
was combined with principal component analysis (PCA) to extract an eigenspace model from defect-
free surface. Scores from test images using the eigenspace model were used to compute defective 
maps. In their algorithm, samples were classified into two categories: sound skin, and damaged skin, 
but types of defects were not specified. Therefore, various symptoms were included in damaged 
skin, such as stem-end injury, green mold, rind-oil spots, wind scar, and sooty mold. The method 
showed a 94.2% accuracy but also showed dependency on orientation of textures. In their study, 
they reported that the processing time for a single view of one fruit was between 600 to 900 ms 
which was not fast enough to be used in real-time processing. 

In this article, a machine vision system combining a graphical processing unit (GPU) and a deep 
learning technique was developed. A GPU supports parallel computing and accelerates processing 
speed in image processing applications. Deep learning is often referred as algorithms with deep 
architectures especially using multiple layers of convolutional neural network (CNN or ConvNet) for 
signal and information processing, compared to the shallow one or two layers of traditional neural 
network. The deep learning techniques are called an end-to-end learning system due to its automatic 
feature extraction capability and has become more popular in recent years due to remarkable results 
in challenging image recognition applications (Deng and Yu, 2014; Chatfield et al., 2014). In this 
study, real-time GPU-accelerated video processing was simulated with uncompressed RGB video 
streams recorded using the developed hardware to identify fruit infection with HLB or injury from wind 
scar, or rust mites, which are common in Florida. The specific objectives of this study were: 1) to 
develop a simultaneous image acquisition system using multiple cameras on a customized conveyor 
that rotates citrus fruit in order to allow the imaging hardware to acquire the entire fruit surfaces, 2) to 
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develop a machine vision algorithm with a deep learning technique utilizing a convolutional neural 
network to accurately inspect the visual characteristics of fruit surface and distinguish HLB-infected 
citrus from fruit with other common defects, and 3) to simulate real-time video processing utilizing a 
GPU for faster image processing. Using the developed system, combined with high performance and 
customized hardware and a state-of-the-art deep learning algorithm, it is anticipated that citrus 
growers and packers can better identify HLB-infected fruit for better management of the disease in 
the field and prevention of inferior quality fruit from being marketed. 

Materials and Methods 

Machine Vision Hardware 
The image acquisition hardware (Figure 1) was developed on a 6-feet long conveyor system (three 
lane labeler, Durand-Wayland Inc., LaGrange, GA). The traveling speed of the conveyor was fixed at 
60.3 cm/sec. The conveyor had rotating wheels, which fully rotated individual fruit every 21.4 cm 
traveling distance. In order to acquire the entire fruit surface without missing areas, four USB 3.0 
cameras (DFK 23UV024, 640 by 480 pixels, The Imaging Source, LLC, Charlotte, NC) were installed 
5.35 cm apart (21.4 cm/4 cameras) which corresponded to ¼ revolution of the fruit. A total of 10 
halogen light bulbs (five on each side, Satco S3166, 100 Watt, 1650 Lumens, Satco lighting, 
Brentwood, NY) were installed to secure enough illumination for fast image acquisition of the moving 
objects. In order to avoid saturated areas on the fruit surface, white colored diffusing fabric (Nylon 
Silk Diffusion Fabric White, ALZO Digital, Bethel, CT) was attached in front of the light bulbs. Also, 
circular polarizing filters were installed under the camera lens to obtain evenly distributed illumination 
throughout each image (25 mm Circular Polarizing Filter, Tiffen, Hauppauge, NY).  

 
Fig 1. Composition of image acquisition system: six feet conveyor belt with rotating wheels, 10 halogen light bulbs, diffusing 

fabric, and four USB 3.0 cameras with circular polarizing filters. 

 

Video Acquistion of Fruit  
Customized video acquisition software was written in C++ using a software development kit (SDK) 
provided by the camera manufacturer (IC imaging control SDK, The Imaging Source, LLC, Charlotte, 
NC) and Visual Studio 2010 (Microsoft, Redmond, WA). Continuous image streams from the four 
cameras were recorded simultaneously in an uncompressed RGB video format and used for 
simulating real-time video processing. The resolution and frame rate of the videos were 640 by 480 
pixels, and 30 frames/sec, respectively. Oranges were divided into training and validation sets, and 
fed manually by poured on the conveyor belt. The training and validation videos recorded separately, 
but in the same video acquisition conditions. Oranges were categorized in four classes: healthy, 
HLB, rust mite, and wind scar. In the training set, a total of 100 oranges for each class was recorded 
by four cameras. For the validation set, 18, 29, 19, and 18 oranges for healthy, HLB, rust mite, and 
wind scar were recorded, respectively. 
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Real-time Video Processing Algorithm 
GPU-enabled techniques were used for faster video processing. The algorithm was developed and 
tested using Matlab parallel computing toolbox with GeForce GT 720M (1GB memory, 96 cores, 
NVIDIA, Santa Clara, CA). In the video processing, every frame was checked if a scene contained 
any part of an orange. In order to detect fruit, a threshold in red channel from RGB color space was 
determined from the training videos and applied to remove background pixels since the background 
of the videos was relatively dark compared to the oranges. After thresholding, the centroid of the 
orange object was calculated and its locations tracked in subsequent images (fig 2). When an orange 
firstly appeared in the scene, the centroid tracking system turned on. When the centroid passed the 
center line (yellow line in fig 2), the average diameter of the orange was calculated and square 
shaped image around the detected orange was immediately extracted with a size of 90-pixel bigger 
width and height than the estimated orange diameter (red box in fig 2). After the orange image 
extraction, the tracking system was turned off, and a new tracking process was started if a new fruit 
appeared in the lower part of the image. 

     
Fig 2. Illustration of orange tracking system in video processing. A tracking system was turned on when firstly orange appeared 

in the lower part of the image. When the centroid of the orange passed the center line of the image (yellow dotted line), the 
square shaped image around the orange object was extracted for further processing. 

Classification of Orange Disease Using Deep Convolutional Neural Network 
In deep learning techniques, feature extraction and ranking are not required, since the CNN consists 
of multiple layers that extract non-linear features automatically. For instance, the CNN starts 
extracting edge features using simple Gaussian-like filters in small regions in an image in the first 
layer, and combines those features to create bigger features to recognize objects in upper layers. In 
this study, the Fast Convolutional Neural Network (CNN-F, Chatfield et al., 2014) architecture was 
adopted for classification of diseases and trained using Matlab and MatConvNet deep learning 
library. The CNN-F model was developed to classify color images, the first layer filters included color 
blob detectors as well as edge detectors (fig. 3). The CNN-F model consisted of 8 layers, including 5 
convolutional layers, and 3 fully connected layers with max-pooling and rectification linear unit 
(RELU) layers. 

 
Fig 3. Feature extractor in the first layers of CNN-F model. This filters can detect edges and colors in small areas of an image.  

Before training the CNN-F, a structure of the model was slightly modified: dimensions of the last fully 
connected layer and soft-max layer were modified from1000 to four, since the number of orange 
classes were four (healthy, HLB, rust mite, and wind scar) in this study. Also, the size of input image 
was defined to be 224 by 224 pixels, so the extracted images were rescaled (fig 4). 
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Fig 4. Examples of rescaled images in each class. (a) healthy orange, (b) HLB infected orange, (c) rust mite, and (d) wind scar. 

Results and Discussion 
Training process was terminated after 37 epoch (numbers of forward and backward passes through 
all training examples) since accuracy in the validation set was not improved with more than 37 
epoch. Example images of the final classification results are shown in fig 5. After the classification, 
each image was labeled with the class that had the highest score from the CNN-F classifier. 

    
Fig 5. Examples of classification of each class with score from the classifier. (a) healthy orange, (b) HLB infected orange, (c) rust 

mite, and (d) wind scar. 

Final class of each fruit was determined based on majority voting system of all 4 images, since four 
cameras recorded simultaneous videos of different surface of an orange. In the event of a tie, a 
defect type with a higher score was chosen to be the final class. The result from the majority voting is 
shown in table 1. In the table, healthy fruit showed 100 percent accuracy, since it showed very simple 
texture compared to other diseases. The rust mite showed higher accuracy than the HLB and the 
wind scar because the size, colors and textures of the defected areas were consistent throughout the 
samples. Even though the accuracy of the HLB detection was slightly lower than the healthy and rust 
mite, the detection rate of the HLB was still good due to the unique visual characteristic found in the 
HLB infected fruit such as a lopsided appearance, smaller sizes than healthy fruit, and greener colors 
due to the poor coloring. However, the wind scar showed the lower accuracy since the size of the 
defected areas tended to be smaller, with more random shape which created more complexity than 
the other disease classes. 

Table 1. Confusion map of the final result using majority voting among four images. Each column is shown actual class of 
orange sample, and each row shows the estimated class by the majority voting. In this table, the numbers of oranges in each 

category are shown along with the percentage of accuracy in parenthesis. 
 Healthy HLB Rust mite Wind scar 

Healthy 18 (100) 1 (3.4) 0 (0) 0 (0) 
HLB 0 (0) 26 (89.7) 0 (0) 1 (5.6) 

Rust mite 0 (0) 0 (0) 18 (94.7) 1 (5.6) 
Wind scar 0 (0) 2 (6.9) 1 (5.3) 16 (88.9) 

The total image processing time was 44.7 ms/image with GPU enabled image processing in Matlab 
which corresponded to 178.8 ms/orange (4 images per orange). Image acquisition time per one RGB 
image frame was about 1.5 ms. With this speed, approximately 5.4 oranges/second can be executed 

a b c d 
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which was significantly faster compared to the study by López-García et al. (2010, 600 to 900 
ms/image). A GPU with higher specifications such as bigger memory sizes and more number of 
cores, or simultaneous use of multiple GPUs can be implemented in order to increase the efficiency 
of the developed system. Also, the proposed algorithm can be developed using C/C++ to improve the 
processing speed of the system. 

Conclusion 
Fruit with diseases or blemishes are harvested along with healthy or less symptomatic fruit which can 
compromise the quality of harvested citrus. In this study, a machine vision system combined with a 
graphical processing unit (GPU) and a deep learning technique was developed and a real-time video 
processing was simulated to identify HLB-infected citrus fruit from those with wind scar or mites 
injury, which are common citrus defects in Florida. Accuracy of disease detection by deep 
convolutional neural network was 100, 89.7, 94.7, and 88.9 percent for healthy, HLB, rust mite and 
wind scar, respectively. The proposed system can be mounted on a portable conveyer system and 
used in citrus groves, or integrated into optical grading systems currently found in packinghouses. 
The portable conveyor system can identify diseased fruit in specific field locations to aid in site-
specific crop management. In addition, the system can remove diseased fruit to maintain quality of 
the harvested fruit.  
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