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Abstract. Precision agriculture applications need timely information about the plant status to apply 
the right management at the right place and the right time. Additionally, high-resolution field 
phenotyping can support crop breeding by providing reliable information for crop rating. Flexible 
remote sensing systems like unmanned aerial vehicles (UAVs) can gather high-resolution information 
when and where needed. When combined with specialized sensors they become powerful sensing 
systems.  
Hyperspectral data has been shown to provide information about biophysical and biochemical 
properties of vegetation and agricultural crops, for biotic and abiotic stress detection and biomass 
and yield estimation. Recently, lightweight hyperspectral snapshot cameras have been introduced, 
which record spectral information as a two dimensional image with every exposure. Specialized 
workflows based on photogrammetric algorithms allow reconstructing the 3D topography of a surface 
from this data and thus retrieve structural and spectral information at the same time. 
Hyperspectral digital surface models (HS DSMs) derived from snapshot cameras are a novel 
representation of the surface in 3D space linked with spectral information about the reflection and 
emission of the objects covered by the surface. In this contribution the requirements and workflow to 
derive HS DSM of crop canopies are described and their potential for precision agriculture 
applications is demonstrated. The data is derived by the hyperspectral snapshot camera UHD 185 – 
Firefly, which records hyperspectral information from 450 to 950 nm in 138 bands  
Results from a multi-temporal monitoring campaign of an experiment with two nitrogen fertilizer 
treatments and six different spring barley cultivars are presented. The campaign was carried out at 
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the research station Campus Klein-Altendorf, belonging to the University of Bonn, close to the city of 
Bonn, Germany. From the HS DSM the chlorophyll content, plant height and biomass were estimated 
for individual growth stages and across several growth stages. Plant height was estimated with an R² 
of up to 0.98, chlorophyll with R² of 0.13 to 0.64 depending on the growth stage. Additionally, based 
on three years of experience with hyperspectral UAV snapshot cameras important remarks regarding 
the 3D and spectral data quality are given.  
Keywords. Hyperspectral, barley, field-phenotyping, unmanned aerial vehicle, remotely piloted 
aircraft systems, Unmanned Aerial System,  chlorophyll, plant height, structure from motion, 
photogrammetry, digital surface model, canopy height, red-edge inflection point 
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Introduction 
Global agriculture faces enormous challenges. The world’s population is growing and large parts of it 
are changing their diet to an increased consumption of high-protein and energy-dense food such as 
meat (Pingali, 2007). At the same time, there are approximately 870 million people worldwide who 
are undernourished (FAO, 2012). Thus, global crop production will need to be doubled by 2050 
(Tilman et al., 2011). In light of the planet’s limited resources and increasing global population, a turn 
is needed towards more sustainable growth in agricultural production while simultaneously 
diminishing its environmental footprint (Foley et al., 2011).  

One approach towards more sustainable crop production is increasing the cropping efficiency (Foley 
et al., 2011). This can be accomplished by dividing agricultural areas into management zones that 
receive customized management inputs based on crop requirements as they vary in the field, such 
that resources are used in the right place at the right time. Such practices are called site-specific crop 
management (Pinter et al., 2003; Whelan and Taylor, 2013) and are part of precision agriculture 
(Mulla, 2013). However, the operational success of variable applications of fertilizer or other 
management actions requires accurate data to produce maps of crop growth, weeds, insect 
infestations, nutrient and water deficiencies and other crop and soil conditions (Moran et al., 1997). 
The timeliness of that information is important. Phenomena such as plant diseases are highly 
dynamic and require short revisit times (Voss et al., 2010).  

Hyperspectral data has been shown to provide information about biophysical and biochemical 
properties of agricultural crops such as biomass (Aasen et al., 2014; Gnyp et al., 2013; Marshall and 
Thenkabail, 2015), LAI (Broge and Leblanc, 2001; Haboudane et al., 2004), chlorophyll (Aasen et al., 
2015; Daughtry et al., 2000; Haboudane et al., 2002; Yu et al., 2014) or nitrogen (Inoue et al., 2012; 
Li et al., 2010). Additionally, it has been used to detect biotic and abiotic stress (Elsayed et al., 2015; 
Mahlein, 2016; Yu et al., 2013). Also, it has been used in the context of precision agricultural 
applications (Yao et al., 2012). Commonly, ground-based spectral measurements are carried out with 
field-spectrometers to study “the interrelationships between the spectral characteristics of objects 
and their biophysical attributes in the field environment“ to “act as a bridge between laboratory […] 
and field situations” and “provide a tool for the development, refinement and testing of models 
relation biophysical attributes to remotely-sensed data” (Milton, 1987). To cover larger areas imaging 
spectroscopy system are used to generate a representation of the spectral properties of a surface in 
two spatial dimensions. Most imaging systems scan the surface point- (whiskbroom) or line-wise 
(pushbroom). In both cases, a 2D representation of the surface is built up while the sensor is moving 
across the surface (or an object is moved by the sensor, e.g. on a conveyer belt). These systems are 
mostly applied from aircrafts or satellites. Current satellite systems allow capturing spectral 
information in a spatial resolution of up to 1.3 m (e.g. WorldView-3; DigitalGlobe, 2016), while freely 
available spectral information has a resolution of up to 10 m (Sentinel-2; ESA, 2016). However, 
current agricultural machinery allow to apply crop treatments with a spatial resolution of 
approximately 0.25 m (e.g. Leeb GS; HORSCH Maschinen GmbH, 2016). Thus, spectral data with a 
higher spatial resolution would be beneficial to explore the full potential of these machines. 
Additionally, the temporal resolution of geospatial information acquired by satellite based remote 
sensing systems is compromised by cloud cover, orbiting time and scene availability (Aasen, in 
review).  

Besides, structural information, such as the plant height, may provide complementary information 
about the crops status. Plant height alone (Bendig et al., 2014; Ehlert et al., 2008; Pittman et al., 
2015; Tilly et al., 2014) and in combination with spectral information (Bendig et al., 2015; Marshall 
and Thenkabail, 2015; Tilly et al., 2015) has been used to estimate biomass, water stress (Baher et 
al., 2002) and yield (Geipel et al., 2014).  

In the last 10 years or so, ‘Unmanned Aerial Vehicles’ (UAVs), also known as ‘Unmanned Aerial 
Systems’ or ‘Remotely-Piloted Aerial Systems’, have infiltrated the field of remote sensing as a new 
sensing platform. Small consumer-grade UAVs are rather low-cost platforms and operationally 
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flexible (Berni et al., 2009), which makes them suitable for a number of applications including 
precision farming (for a comprehensive overview please refer to Colomina and Molina, 2014; 
Pajares, 2015; Salamí et al., 2014). Additionally, they can fly slowly at low altitudes and are able to 
acquire spatial information in high resolution (Pajares, 2015). Together with specialized sensors, they 
are becoming powerful sensing systems (Aasen and Bolten, in review).  

Recently, hyperspectral snapshot cameras (HSCs) have been introduced to remote sensing (Aasen 
et al., 2015; Aasen and Bolten, in review). HSCs record spectral information in two spatial 
dimensions within a single exposure and therefore without any scanning process (Hagen et al., 
2012). In contrast to whisk- or pushbroom spectrometers, snapshot cameras (also called central 
perspective imagers) capture a 2D image at one instant of time from the viewpoint of the camera lens 
(Jones and Vaughan, 2010). Consequently, in case of spectral snapshot cameras a full image cube 
is recorded within one integration of the sensor. Thus, a movement of the sensing system can be 
used to create multiple overlapping image cubes (Figure 1).  

 
Figure 1 Different principles of data acquisition. Line-scanning devices record individual image-lines along one spatial 

dimension. Movement of the sensing system is needed to create a 2D scene (A). Snapshot cameras record image cubes with two 
spatial dimensions with every exposure. Thus, movement generates overlapping image cubes (B) (Aasen, in review). 

This enables a new approach to capture information about agricultural crops by utilizing advances in 
the field of robotics, sensor technology, computer vision and photogrammetry: Hyperspectral digital 
surface models (HS DSMs) generated with UAV snapshot cameras are a representation of a surface 
in 3D space linked with hyperspectral information emitted and reflected by the objects covered by 
that surface. In the following, these HS DSMs are introduced and their potential for precision 
agriculture applications by means of a multi-temporal field study within a barley phenotyping 
experiment with different barley varieties and different fertilization levels is investigated. Results from 
the estimation of chlorophyll and plant height from the HS DSMs are shown. Additionally, based on 
three years of experience challenges during the acquisition and data processing procedure are 
identified.  

Materials and methods 

Study site 
The study was carried out at the research station Campus Klein-Altendorf (50° 37′51″N, E 6°59′32″) 
of the University of Bonn (https://www.cka.uni-bonn.de/) at a field experiment of the interdisciplinary 
research project CROP.SENSe.net (www.cropsense.uni-bonn.de) in 2014. The soil was a clayey silt 
luvisol. The campus-owned weather station reported a long-term average precipitation of 600 mm 
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and a daily average temperature of 9.3 °C for 2014 (Campus Klein-Altendorf, 2010). 36 plots of 
different spring barley cultivars were sampled. Half of them were treated with a farmer’s common rate 
of 80 kg/ha nitrogen (N) fertilizer and the other half with 40 kg/ha N. Six cultivars (Barke, Beatrix, 
Eunova, Trumpf, Mauritia and Sebastian) in three repetitions were sampled (Aasen, in review). The 
experiment is shown in Figure 2. The size of each experimental plot was 3 x 7 m. Each plot was 
divided into two parts: in one part, destructive measurements of chlorophyll was carried out. In the 
remaining part, non-destructive remote sensing and plant height measurements were taken. To 
exclude border effects a 0.8 m distance to the plot border was kept. The plots were separated by 
paths of bare soil. Four flight campaigns were carried out at 56, 70, 84, 96 days after seeding (DAS). 
The plant height and chlorophyll measurements were carried out simultaneously. Chlorophyll was 
measured by collecting four samples of leafs at the top layer of the canopy. These were instantly 
frozen with liquid nitrogen inside a dryshipper to preserve the samples. Later the chlorophyll content 
was measured with the DMSO-Method (Blanke, 1992) at the Institute of Crop Science and Resource 
Conservation (INRES), University of Bonn.  

 
Figure 2 Map of the CROP.SENSe.net experiment at Campus Klein-Altendorf in 2014 with plot number (large numbers) and 
cultivar (small numbers). The cultivar-wise colored squares indicate the destructive measurement part. The destructively 

sampled plots are framed with a solid rectangle. Positions of the ground control points (GCPs) and terrestrial laser scanning 
positions (TLS) are shown. The two plot rows to the left were treated with a farmer’s common rate of 80 kg/ha nitrogen (N) 

fertilizer and the other half with 40 kg/ha N (adapted from Aasen, in review). 

Sensing system 
Our carrier platform MK-OktoXL (http://www.mikrokopter.de) is a rotary-wing UAV with a maximum 
payload of 2.5 kg (Figure 3.1). Depending on the payload and the batteries, the flight time varies from 
15 to 30 min. The altitude, speed and position is controlled during the flight and logged to an on-
board memory card. The flight path is controlled by the autopilot Flight Ctrl. 2.1 following predefined 
waypoints configured in the MikroKopterTool. The payload is mounted on a gimbal. We use the MK 
HiSight SLR2 gimbal that compensates for pitch and roll movement during the flight by using the 
UAV’s on-board gyroscopes. The compensation allows to maintain a nadir orientation of the sensor. 
The weight of the gimbal is about 280 g.  
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Figure 3 Carrier Platform (CP) MikroCopter Okto XL with Gimbal and image capturing system (ICS) with UHD 185-Firefly and the 

single board computer (SBC) Pokini Z (Aasen et al., 2015).  

Our image capturing system consists of the Cubert UHD 185-Firefly (UHD) HS snapshot camera and 
the small single board computer (SBC) Pokini Z (http://www.pokini.de/). The UHD simultaneously 
captures 138 spectral bands with a sampling interval of 4 nm. From these bands the camera’s 
manufacturer recommends the use of 125 bands between 450 and 950 nm. The FWHM of the bands 
increases from about 4 nm at 450 nm to about 26 nm at 850 nm. For each band a 50 by 50 pixel 
image with 12 bit (4096 DN) dynamic range is created. At the same time as the HS image is 
recorded, a grayscale image with a resolution of 990 by 1000 pixel is captured. We use a lens with a 
focal length of 16 mm resulting in an across track field of view (FOV) of approximately 20°. Since the 
camera’s housing is elongated with the lens looking forward a mirror is fixed at the front to capture 
nadir images (Figure 3.1). The ground resolution at 30 m flying height is about 21 cm for the HS 
pixels and 1 cm for the grayscale image. The total weight of the Camera is about 470 g. and its 
housing is about 28 by 6.5 by 7 cm. The camera is controlled by a SBC. The performance of the SBC 
allows to capture HS image cubes with a frame rate of about 0.6 hertz. The typical integration time 
under cloudless conditions is 1 ms, increasing to about 6 ms under cloud covered conditions. The 
whole image capturing system together with a three cell lithium polymer battery weighs about 1 kg 
(Aasen et al., 2015).  

Data proessing and hyperspectral digital surface model generation 
Before each flight, a reference image was taken by placing the camera and UAV above a white 
calibration panel (Zenith Lite). After dark current correction, this image was used to convert the raw 
digital numbers of each image taken during the flight to reflectance. This spectral information was 
merged with the high-resolution grayscale image into an image cube and information about the pixel 
position within the image was appended as introduced by Aasen et al. (2015). The individual image 
cubes were loaded into Photoscan (Professional Edition, version 1.1.6, www.agisoft.com) and 
processed with the typical workflow: after initial photo alignment, the scene was georeferenced by all 
GCPs visible in the scene and a dense point cloud (ultra-high) was created. At this stage, an HS 
dense point cloud was created. Thus, in contrast with traditional approaches, the HS and 3D 
information is linked inherently throughout the processing and no further post-processing is needed. 
The hyperspectral and 3D spatial was exported with a spatial resolution of 5 cm. The resulting HS 
DSM contained a representation of the 3D surface linked with hyperspectral information emitted and 
reflected by the objects covered by the surface (Aasen et al., 2015). 

Plant height extraction 
The height in the HS DSM represents as the absolute height above the ellipsoid. The difference 
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between the DSM and the digital terrain model (DTM), which is the height of the bare soil surface, 
represents the crop height. To calculate this height a DTM was generated from the non-vegetated 
paths between the experimental plots for each date: DTM extraction points were placed every 3 m 
and the height of a circle with a radius of 0.2 m around the points was averaged to minimize small 
scale differences of the bare soil. Based on these values a DTM was interpolated. From the DSM the 
generated DTM was subtracted. The result represents the average height of the plants within a pixel. 
This height will be referred to as canopy or crop height model (CHM). For each plot the average 
height of the CHM was extracted from the non-destructive measurement part of the plot with a 
margin of 0.8 m to the plot border to exclude influences of tractor tracks and border effects (Figure 
4).  

 

Figure 4 Plant height extraction from the hyperspectral digital surface model (HS DSM). A digital terrain model (DTM) is created 
and subtracted from the digital surface model. The result is a canopy height model (CHM). 

Besides the image overlap, the number and placement of GCPs influences the quality of a surface 
derived from SfM (Harwin and Lucieer, 2012; Mesas-Carrascosa et al., 2015). DSM from SfM are 
prone to the ‘bowl effect’ which occurs when the area mapped exceeds the area surrounded by 
GCPs (Ouédraogo et al., 2014). In our dataset, only the HS DSMs of the first date covered the entire 
extent of the experimental area. For DAS 70 and DAS 84, the GCPs were missing on the east side of 
the covered area. To counteract the ‘bowl effect’, the DTMs were generated individually for each 
date. Also, plots that were not entirely covered by the generated DTM were excluded. For DAS 70, 
the most western row was excluded from the analysis as an additional case (DAS 70b), since this 
area had low image overlap in the HS DSM.  

The plant height derived from the HS DSM was compared to ruler measured plant heights. Within 
each plot, the height of ten individual plants was measured and the median was calculated. From the 
HS DSM the average height per plot was calculated. These estimates where compared for each date 
and across all dates. 

Chlorophyll retrieval  
To evaluate the estimation of chlorophyll the red-edge inflection point (REIP; Guyot and Baret, 1988) 
was used. For each pixel the REIP was generated and all pixels (with a 0.8 m border) from the non-
destructive part of the plot were averaged to represent a plot. A linear regression model was 
established for the data of each individual date.  
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Results 
 

 
Figure 5 Map of the plant height (left) and red-edge inflection point (right) at 96 days after seeding. Four plots have experienced 

lodging. For the most western row the image overlap was not sufficient to generate a digital surface model.  

Figure 5 shows maps of the plant height (left) and REIP (right) derived from the HS DSM at 96 DAS. 
In the plant height map the tracks of bare soil in between the experimental plots are visible. 
Additionally, lodging of four plots is visible. These belong to the cultivar Isaria. Besides, also slight 
differences between the different cultivars are visible. In the REIP map, differences between the 
cultivars are more pronounced. In particular, the varieties Sebastian (plot 9, 11, 35, 37, 45), Mauritia 
(plot 3, 23, 25, 29, 41, 46) and Beatrix (plot 10, 18, 20, 30, 48, 52) stand out with high REIP values. 
Similar to the plant height, the lodged plots are visible in the spectral data. Additionally, also within-
plot heterogeneity is visible both in the spectral and the plant height maps.  

To evaluate the quality of the plant height derived from the HS DSM it was compared to manual ruler 
measured plant heights. Figure 6 shows the scatterplot for the individual dates and all dates together. 
An increase in plant height is visible until DAS 84. The relationships between the ruler measurements 
and the HS DSM derived plant heights are quantified in Table 1.  
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Table 1 Quantitative comparison of the ruler measured and the HS DSM derived plant heights. 
DAS 56 70 70b 84 96 56 - 84 All 
R² 0.83 0.35 0.70 0.81 0.45 0.98 0.96 
RMSE (m) 0.06 0.12 0.08 0.09 0.17 0.12 0.20 
RMSE (%) 16 20 13 11 22 20 32 
slope 0.66 0.48 0.89 0.89 0.97 0.71 0.75 
mean 
difference 0.11 0.15 0.25 0.26 0.19 0.16 0.17 

DAS 56, 84 and the multi-date sets achieve R² > 0.8. DAS 70 and 96 achieve lower relations. When 
plots 41 – 54 are excluded from the DAS 70 dataset (DAS 70b) the R² increases to 0.7 and the 
relative RMSE decreases to 12 %. Overall, the RMSE is between 11 and 22% for the single dates 
and at 32% for all dates together. The slope of the regression line is between 0.66 for DAS 56 and 
0.97 for DAS 96. For all dates, the HS DSM derived plant height is lower than the ruler measured 
plant height. The mean difference varies from 0.11 m for DAS 56 to 0.26 m for DAS 84. The quality 
of the spatial information in the HS DSM also influences the retrieval of the plant height. This can be 
seen in the significantly increased R² and the slope of the regression when the most western row at 
DAS 70 is excluded. As mentioned above, the image coverage and especially the across track image 
overlap in this part of the scene was very limited so that the CHM bended downwards at the bare soil 
path to the west side of the model and upwards in the area of the plot. Thus, these plots showed a 
higher plant height in the CHM relative to the other plots for the date (Figure 6, brown dots).  

 

Figure 6 Scatterplot of the ruler and HS DSM derived plant heights for the individual four measurement dates at 56, 70, 84 and 96 
days after seeding (DAS), and DAS 70 without plot 46 – 54 (green) and all dates together (pink). The one to one line is shown in 

gray.  

With the ruler, the heights of individual plants within the plot are measured. On the contrary, the very 
high-resolution point cloud, from which the HS DSM is derived, does not only represent the highest 
parts of plants but also reflects heterogeneity in conjunction with the canopy structure. Thus it 
approximates an average canopy height lower than the ruler derived plant heights. This is also 
supported by a study by Tilly et al. (2015), where a maximum point filter was used to derive the plant 
height and a similar offset could not be observed. The slope, close to 1 in most cases, demonstrates 
the feasibility to estimate the plant height both for individual dates and across several growth stages. 
However, the best data processing scheme to derive a specific parameter needs further 
investigation. The latter might also depend on the application, since for some applications the 
maximum plant height might be interesting (e.g. stem growth rate), while for others an average 
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canopy height might be beneficial (e.g. biomass estimation).  

 
Figure 7 Scatterplot of the REIP with chlorophyll for 56, 70, 84, 96 days after seeding (DAS).  

Figure 7 shows the scatterplot for the REIP and chlorophyll for four different DAS. The chlorophyll 
values for DAS 56 and 70 are within the same range. Still, the REIP values for DAS 56 are 
significantly lower than for the other DAS. DAS 96 has the widest spread of chlorophyll and REIP 
values. For DAS 56 and 70 only low coefficients of determination are achieved with the REIP. For 
DAS 84 and 96 chlorophyll can be predicted with an R² of above 0.44 (Table 2).  
Table 2 Coefficients of determination between the red-edge inflection point (REIP) and destructively measured chlorophyll for 56, 

70, 84, and 96 days after seeding (DAS). 

DAS 56 70 84 96 
REIP 0.18 0.13 0.44 0.60 

Discussion 
As seen at DAS 70 a high image overlap is critical to achieve a good DSM and consequently, good 
results for the plant height. Insufficient overlap can result in a bended 3D model and thus, in wrong 
plant height estimations. Additionally, ideally the coverage of the images should extent the area of 
interest and GCPs should be placed around and ideally within the area of interest to prevent the 
‘bowl-effect’ (Aasen, in review; Ouédraogo et al., 2014). This can be seen in the DSM of DAS 70 
(Figure 8), where approximately the half of the most western row is very noisy and tilts. Thus, 
excluding the affected plots increases the correlation with the manual measured plant heights (case 
70b, cf. Table 1 and Figure 6). Typically, an overlap of 60% across and 80% along track is 
recommended (Agisoft LLC, 2016). In this contribution, Photoscan was used to reconstruct the 3D 
information. It should be noted that significant differences exist between different software packages 
(Eltner and Schneider, 2015; Gómez-Gutiérrez et al., 2014; Grenzdörffer, 2014; Remondino et al., 
2014). Additionally, the flight pattern and illumination conditions during the flight may influence the 
resulting 3D point cloud (Dandois et al., 2015). But also point clouds derived with different active or 
passive sensing systems, such as Light detection and ranging devices or cameras with different 
resolutions, may differ (Aasen, in review; Dandois and Ellis, 2010). Thus, results derived with 
different processing workflows might not be comparable ‘per se’. Consequently, if measurements 
undertaken with different systems, processing workflows or under changing conditions are to be 
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compared, the measurement circumstances and processing workflows need to be carefully 
described. Additionally, more research on the systematic differences between the different 
approaches is needed. Besides, the high resolution of the 3D information allows to detect differences 
between cultivars, in plot heterogeneity and crop damages such as lodging. Thus, it holds a great 
potential for precision agriculture and field-phenotyping applications. Moreover, plant height can be 
very well estimated for individual dates and across the growing season.  

 
Figure 8 Digital surface model (DSM) colored with the plant height (left) and image overlap (right). On the west side of the most 
western row (separated with a dashed line), the image overlap is not sufficient for a precise generation of the DSM. Thus, the 

model becomes noisy and tilts.  

Similar, also the spectral data can discriminate between different cultivars and crop damages are 
visible. Still, the results for the retrieval of chlorophyll are rather weak to moderate. This can be 
explained by the several influences by which the spectral data is affected. Within an image, every 
pixel has a different angular composition (Aasen, in-press). Currently, this cannot be corrected for in 
snapshot imaging data. Thus, angular effects influence the data (Aasen, in review; Aasen and 
Bolten, in review) and also retrieval methods such as vegetation indices (Burkart et al., 2015; Verrelst 
et al., 2008). Additionally, at DAS 56 the sky was clouded. Since the current calibration protocol 
cannot correct for influences due to changing illumination this might have influenced the data. 
Additionally, under clouded conditions the composition and directionality of incident light is changed 
compared to clear sky conditions. The current calibration procedure is influenced by this change 
(Aasen and Bolten, in review). Thus, also the retrieved REIP values are influenced. Additionally, at 
DAS 56 canopy was not totally closed, which also influenced the relative composition of the red and 
NIR wavelength of which the REIP is composed. The combination of these effects explain the 
reduced REIP values at DAS 56 compared to DAS 70 although similar chlorophyll values were 
measured on leaf level. Thus, while spectral data holds a great potential to estimate a several 
important parameters for precision agriculture or field-phenotyping, the data needs to be handled 
with care. In particular, the measurement conditions and metadata about every pixel needs to be 
provided to fully comprehend the information within each pixel.  

Conclusions 
A great variety of lightweight imaging sensing systems have lately become availably. Sensors such 
as the UHD 185-Firefly (www.cubert-gmbh.de), FPI Rikola (http://www.rikola.fi) or Sequoia 
(http://www.parrot.com) can be carried by UAVs and record spectral and 3D spatial information at the 

http://www.cubert-gmbh.de/
http://www.rikola.fi/
http://www.parrot.com/
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same time. Still, although data product generation might seem easy in the first place, many details 
need to be regarded to derive reliable data. This is particularly true for the spectral data, since it is 
influenced by a multitude of influences. More studies are needed that estimate the influences of 
these effects on important parameters for precision agriculture and field-phenotyping. Nevertheless, 
the combination of UAVs and spectral snapshot camera systems hold a great potential to support the 
need for timely information about agricultural crops.  
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