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Abstract. Combining data collected in-field from multiple soil sensors has the potential to improve 
the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) 
has been used to estimate many important soil properties, such as soil carbon, water content, and 
texture. Other common soil sensors include penetrometers that measure soil strength and apparent 
electrical conductivity (ECa) sensors. Previous field research has related those sensor measurements 
to soil properties such as bulk density, water content, and texture. A commercial instrument that can 
simultaneously collect reflectance spectra, ECa and soil strength data is now available. The objective 
of this research was to relate laboratory-measured soil properties, including bulk density, carbon, 
water content, and texture fractions to sensor data from this instrument. At four field sites in mid-
Missouri, profile sensor measurements were obtained to 0.9 m followed by collection of soil cores at 
each site for laboratory measurements. Using only reflectance data, soil bulk density, total organic 
carbon, and water content were not well-estimated (R2 = 0.32, R2 = 0.67, and R2 = 0.40, 
respectively). Adding ECa and soil strength data provided only a slight improvement in water content 
estimation (R2 = 0.47) and little to no improvement in BD and TOC estimation. When data were 
analyzed separately by Major Land Resource Area (MLRA), fusion of data from all sensors did 
improve soil texture fraction estimates. The largest improvement compared to VIS-NIR reflectance 
alone was for MLRA 115B, where estimation errors were reduced by approximately 14 to 26%. This 
study showed promise for in-field sensor measurement of some soil properties. Additional field data 
collection and model development are needed for those soil properties where combination of data 
from multiple sensors is required. 
Keywords. Precision agriculture, NIR spectroscopy, soil properties, reflectance spectra, soil sensing. 
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Introduction 
Precision agriculture is a management system where field operations and application of chemicals 
such as fertilizers, pesticides, and herbicides are matched to actual point‐by‐point needs within fields, 
providing economic benefits to farmers and protection of the soil environment from excessive 
chemical application. For precision agriculture to achieve its goals, site‐specific quantification of soil 
physical and chemical properties that affect soil quality and crop production is necessary. Some 
properties for which site-specific quantification is needed include soil texture, bulk density, water 
content, and organic matter (or organic carbon). All of these have been shown to vary considerably 
either across landscapes, with depth, or both. Additionally, all of these properties are important in 
one or more processes critical for crop production and ecosystem services. 

Diffuse reflectance spectroscopy (DRS) is one promising, nondestructive soil sensing technique. 
Many investigators have successfully estimated soil physical and chemical properties in the 
laboratory using DRS in the visible (VIS; 400‐700 nm), near‐infrared (NIR; 700‐2500 nm), and mid‐
infrared (MIR; 2500‐25000 nm) wavelength ranges. In addition, several DRS soil sensors have been 
successfully used in field settings (Kusomo et al., 2008; Kweon et al., 2008; Mouazen et al., 2007). 

To date, most DRS soil sensing research has been carried out in the VIS, NIR, or combined VIS‐NIR 
wavelength ranges. Viscarra Rossel et al. (2006) provided a comprehensive review of soil DRS 
applications, including accuracy statistics. Many researchers have used DRS to estimate soil carbon 
(or soil organic matter) and soil water content (WC), generally with good success. For example, 
Sudduth and Hummel (1993) estimated organic matter (R2 = 0.89) and water content (R2 = 0.94) for 
30 Illinois surface soils prepared to a range of moisture tension levels. Mouazen et al. (2007) 
estimated total C (R2 = 0.73) and water content (R2 = 0.89) using samples representative of Belgian 
soils. Lee et al. (2009) analyzed surface and whole-profile datasets obtained from ten fields in five 
states of the U.S. Corn Belt. Soil organic carbon was well estimated for both surface (R2 = 0.87) and 
profile (R2 = 0.80) data. Total C estimates were not as good (R2 ≤ 0.65), likely due to interference 
from inorganic carbonate C at some sites. Chang et al. (2001) estimated total C (R2 = 0.87, RMSE = 
7.86 g kg-1), water content (R2 = 0.84, RMSE = 0.5 g kg-1), clay content (R2 = 0.67, RMSE = 4.06%), 
sand content (R2 = 0.82, RMSE = 11.93%), and silt content (R2 = 0.84, RMSE = 9.51%) for surface 
and subsurface soils obtained from across the US in the VIS-NIR spectral range using principal 
components regression (PCR). When using partial least squares regression (PLSR), Chang and 
Laird (2002) similarly estimated total C (R2 = 0.91, RMSE = 0.65 g kg-1) in the VIS-NIR spectral 
range. Shepherd and Walsh (2002) successfully estimated clay content (R2 = 0.78, RMSE = 7.5 g kg-

1), sand content (R2 = 0.76, RMSE = 10.8 g kg-1), and silt content (R2 = 0.67, RMSE = 4.9 g kg-1) for 
archived topsoils from eastern and southern Africa. In contrast, there are few reports of using 
reflectance data to estimate soil bulk density (BD). In a recent study Askari et al. (2015) reported 
good results for both total core BD (R2 = 0.81) and BD of the soil particles smaller than 2 mm (R2 = 
0.73).  

Additionally, some researchers have simulated in-situ spectroscopy by using laboratory 
spectrometers to collect data from soil cores. This approach was used to estimate soil C and N by 
Kusumo et al. (2008) and to estimate total C by Morgan et al. (2009). Morgan et al. (2009) compared 
data from field-moist soil to data from dried and sieved samples and found only a slight decrease in 
accuracy with data from the field-moist soil. A commercial instrument, the Veris P4000 (Veris 
Technologies, Salina, KS) has recently become available that allows in-situ collection of VIS-NIR 
data to a depth of 1 m (Christy et al., 2011). Kweon et al. (2008) used this probe to collect data on six 
Kansas fields and reported R2 values ranging from 0.69 to 0.89 for soil C estimation. Hodge and 
Sudduth (2012) compared the accuracy of the Veris P4000 VIS-NIR spectrometer operating in 
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bench-top mode with its accuracy in field probe spectrometer mode. Total C estimation was more 
accurate in the laboratory (R2 = 0.93 to 0.96) than in the field (R2 = 0.78 to 0.90) in the 1302-2202 nm 
range. 

Another promising soil sensing technique is measurement of apparent electrical conductivity (ECa), 
which responds to a number of important soil physical and chemical properties, including salinity, 
clay content, cation exchange capacity (CEC), clay mineralogy, soil pore size and distribution, and 
soil moisture content (McNeill, 1992). A theoretical basis for the relationship between ECa and soil 
properties was developed by Rhoades et al. (1989). In this model, ECa was defined as a function of 
soil water content, the electrical conductivity of the soil water, soil bulk density, and the electrical 
conductivity of the soil particles.  

Most soil ECa data collection is done with mobile sensors that can map the apparent conductivity 
over a soil depth interval that is usually 30 cm or greater. An example of such a mobile sensor is the 
Veris 3100/3150 that uses six rolling coulters for electrodes and provides two simultaneous ECa 
measurements (Lund et al., 1999). In addition to the widely used proximal ECa sensors, there are 
commercial penetrometer-based sensors that allow direct measurement of ECa as a function of depth 
(Kweon et al., 2008; Sudduth et al., 2004), providing data on a narrow depth interval. Application of a 
penetrometer-type ECa sensor to better understand soil profile variability was described by Myers et 
al. (2010). Sudduth et al. (2013) combined data from proximal and penetrometer ECa sensors to 
improve modeling of conductivity–depth relationships in terms of model selection, model 
parameterization, and model calibration. 

Soil compaction can be naturally occurring or caused by forces exerted on the soil during field 
operations, and the degree of compaction can be influenced by soil properties such as texture and 
water content. Thus, the degree of compaction can vary among within-field locations, and/or among 
different soil horizons due to their specific soil conditions (Koolen and Kuipers, 1983). Therefore, site-
specific, three-dimensional quantification of variations in compaction is an important part of an overall 
precision management plan. Although compaction may be more directly quantified by laboratory 
determination of related soil properties (e.g., dry bulk density), the common approach for field use is 
to measure soil strength. The main tool used to quantify soil strength by depth and thereby provide 
information related to soil compaction and morphological characteristics is the cone penetrometer 
(Mulqueen et al., 1977). The index of soil strength measured by a cone penetrometer, cone index 
(CI, in kPa), is defined as the force per unit base area required to push the penetrometer through a 
specified small increment of soil (ASAE, 2005). Major factors affecting CI or soil strength include 
water content, bulk density, and clay content of the soil (Elbanna and Witney, 1987, Chung et al., 
2008).  

Many soil sensors, including those measuring reflectance, soil strength (CI) and ECa, respond to a 
number of different soil properties, as described above. Because of this, it is often difficult to quantify 
soil properties with data from a single sensor. For improved results, a data fusion or sensor fusion 
approach (Adamchuk et al., 2011) could be used. For example, BD estimates based on ECa were 
improved when CI data were added and were further improved when WC estimates were included as 
candidate variables in the model (Cho et al., 2014). One commercial instrument providing sensor 
fusion capability is the Veris P4000 VIS-NIR-force probe. Recent reports describe use of the Veris 
P4000 in various research situations. Piikki et al. (2014) used data from the P4000 along with mobile 
proximal sensor data to implement three-dimensional digital soil mapping. Matney et al. (2014) 
related P4000 data to archaeological features at Native American settlement sites. Wetterlind et al. 
(2015) estimated soil texture and soil organic matter (SOM) content with estimation errors of around 
6% for clay and silt, 10–11% for sand and 0.3–0.5% for SOM. The best single data source was VIS-
NIR reflectance, and the small improvements obtained by combining sensors did not provide strong 
support for combining VIS-NIR measurements with measurements of ECa and or CI. As only a few 
previous studies have been reported, there is a need to evaluate the performance of the P4000 
under different field conditions and for additional soil properties.  
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Objectives 
The objective of this research was to relate the soil properties of bulk density (BD), total soil organic 
carbon (TOC), soil water content (WC), and soil texture fractions to soil ECa, soil strength as CI, and 
soil spectral reflectance as measured by the Veris P4000 VIS-NIR-EC-force probe. Specific 
objectives were to: 

1. Assess the accuracy of VIS-NIR spectral reflectance alone for estimating soil properties for the 
entire profile across multiple soils, using partial least squares (PLS) regression methods. 

2. Compare using multiple independent variables (VIS-NIR, ECa, and CI) to estimate soil properties 
with using VIS-NIR reflectance alone. 

Materials and methods 

Field sites 
Data were obtained from fields in central Missouri, USA. Table 1 gives the locations and general 
characteristics of the four fields. The soils at field 1 were primarily of the Putnam and Mexico series. 
Surface texture was silt loam and the subsoil horizons were silty clay loam and silty clay. The soils at 
field 2 were of the Leonard series. Surface texture was silt loam and the subsoil claypan horizon was 
silty clay loam. The soils at field 3 were primarily of the Armstrong and Mexico series. Surface 
textures ranged from silt loam to loam, and the subsoil claypan horizon was silty clay loam and clay 
loam. The soils at field 4 were of the Wrengart series and textures were silt loam over silty clay loam. 
The 4 fields are included in 2 different “major land resource areas” (MLRA), as defined by the U.S. 
Department of Agriculture (1981). Major land resource areas are geographic areas that are 
characterized by a particular pattern of soils, climate, water resources and land uses. Thus, it would 
be reasonable to expect that the soil characteristics of fields 1, 2, and 3 (MLRA 113) would be more 
similar to each other than the soil characteristics of field 4 (MLRA 115B). 

Table 1. Study fields characteristics. 

Field No. measured 
location 

Size 
(ha) Major Land Resource Area Predominant Soils Location 

1 5 37.5 113 Central Claypan Areas Putnam and Mexico 39.35 N, 92.43 W 

2 6 3.8 113 Central Claypan Areas Leonard 39.19 N, 92.20 W 

3 3 9.4 113 Central Claypan Areas Armstrong and Mexico 39.00 N, 92.11 W 

4 8 9.4 115B Central Mississippi Valley Wooded 
Slopes, Western Part Wrengart 38.58 N, 92.40 W 

Data collection and processing 
Spectral data were collected in April, 2012 with the Veris P4000 VIS-NIR-EC-force probe (figure 1) at 
three to eight locations in each of the four study fields (table 1). The probe measured VIS-NIR 
reflectance through a sapphire window, ECa (mS m-1) from dipole contacts, and CI (kPa) from a load 
cell force sensor. The P4000 used a Si CCD array spectrometer and an InGaAs photodiode-array 
spectrometer to collect VIS and NIR measurements in the range of 343-2202 nm. Dark current and 
reflectance standard calibration were performed according to manufacturer’s recommendations 
(Kweon et al., 2008). P4000 measurements (VIS-NIR, CI, and ECa) were obtained at a nominal 20 
Hz rate as the probe was hydraulically lowered into the soil to at least 90 cm depth. Output data from 
the system were an average of 25 raw measurements and were obtained on approximately 6 to 7 cm 
depth increments. 

Calibration soil samples were obtained from each location using a hydraulic soil coring machine. 
Cores for TOC, BD, WC, and texture were divided into four segments with narrower intervals nearer 
the surface (i.e., 0-15 cm, 15-30 cm, 30-60 cm, and 60-90 cm) to provide better discrimination in 
surface soil layers. Samples were analyzed for TOC with a LECO C Analyzer (LECO Corp., St. 
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Joseph, MI) using standard dry combustion analysis procedures (Nelson & Sommers, 1996). Soil 
bulk density was determined by the cylinder method knowing the diameter and length of the core. 
Water content was determined gravimetrically by oven drying and soil texture fractions (clay, silt, and 
sand) were determined by the sieve‐pipette method (Gee and Bauder, 1986). 

 
Figure 1. Veris P4000 VIS-NIR-EC-force instrument (left) and closeup view of P4000 probe tip (right). 

Analytical procedures 
As soil and sensor data were collected on different depth increments, it was necessary to combine 
them to a common level of spatial support. This was done using weighted averaging of the sensor 
data to match the soil sample cores at the 0-15, 15-30, 30-60 and 60-90 cm depths. The weighting 
procedure was based upon the fact that the sensor depth recorded is the final depth of the 
instrument at the end of the 25 scan observation period. This depth then defines the starting depth 
for the next observation in the probing sequence. These depth segments varied somewhat in 
thickness, with an average thickness of 6.7 cm and a standard deviation of approximately 1 cm. 
Because the initial starting depth for the first observation in any probe was unknown, we chose for 
the first scan to start at depth of zero, or at a depth such that the first observation represented no 
more than 6.7 cm of depth. For NIR spectral, ECa and CI data, observations which fell entirely into a 
single target layer were weighted by the depth increment of an observation into that layer. Where 
observations spanned two soil layers, the observation was weighted into both layers, based upon the 
amount of depth represented in each layer. At the end of this procedure, the weighted average 
sensor data (spectral, ECa, and CI) were merged with the corresponding soils data (BD, TOC, WC, 
and texture). 

Spectral data were preprocessed to improve stability of the regression. The first 10 readings at the 
lower visible wavelengths were deleted due to their low signal‐to‐noise ratio; thus, the revised 
spectra began at 402 nm (figure 2). Each spectral scan was (1) transformed from reflectance to 
absorbance (log10 [1/reflectance]), (2) subjected to a standard normal variate transform (i.e., every 
data point of the spectra (402-2220 nm) is subtracted from the mean and divided by the standard 
deviation), and (3) smoothed with a 10‐point (nominally 49 nm) moving average. These 
preprocessing steps were chosen because they gave good results in a preliminary analysis 
investigating various preprocessing treatments (data not shown). The standard normal variate 
approach was used to remove the multiplicative interferences of scatter and particle size (Barnes et 
al., 1989). 
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Partial least squares (PLS) regression implemented in Unscrambler version 10.1 (CAMO, Inc., Oslo, 
Norway) was used to develop calibrations between soil properties and spectra. PLS has been widely 
used in chemometrics, remote sensing, and spectral data processing to deal with large datasets 
containing highly correlated variables. A 20-fold cross validation procedure was used to select the 
number of PLS factors to use in the regression, increasing predictive capability and decreasing the 
potential for overfitting. Model evaluation was based on coefficient of determination (R2), root mean 
square error of prediction (RMSEP), and the ratio of standard deviation to RMSEP (RPD). RPD is 
useful when comparing results from datasets containing different degrees of variability. Chang et al. 
(2001), Saeys et al. (2005), and Lee et al. (2009) suggested that, as a general guideline, RPD > 2.0 
or R2 > 0.8 indicates good estimation of soil properties, 0.65 < R2 < 0.80 or 1.5 < RPD < 2.0 indicates 
fair estimation, and RPD < 1.4 or R2 < 0.5 indicates poor estimation. 

Using PLS regression, four different models were developed for each soil property, based on 
different combinations of independent data: (1) VIS-NIR reflectance alone, (2) VIS-NIR+ECa, (3) VIS-
NIR+CI, and (4) VIS-NIR+ECa+CI. In addition, SMLR was used to relate ECa and CI, alone and in 
combination, to each soil property.  

 
Figure 2. Soil reflectance spectra for the four soil depths at one sampling site. 

Results and discussion 

Descriptive statistics of soil properties 
Means and standard deviations of soil properties (TOC, WC, and soil texture), ECa, and CI were 
considerably different in each MLRA and across all fields (table 2). The mean of BD was similar (1.46 
Mg m-3) within each MLRA and across all fields. The ECa levels were higher for fields 1, 2, and 3 
(MLRA 113, Central Claypan Areas), as is typical of claypan soils (Sudduth et al., 2003). The ECa 
and CI levels were lower for field 4 (MLRA 115B, 22 mS m-1, 1965 kPa) than for MLRA 113 (36 mS 
m-1, 2430 kPa). The mean TOC was lower (0.86%) for MLRA 115B than for MLRA 113 (1.07%) or 
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across all fields (1.00%). The mean values of WC and clay content were also lower (25.45% and 
31.56%, respectively) for MLRA 115B than for MLRA 113 or averaged across all fields.  

 

 

  
Table 2. Means and standard deviations (SD) of field-collected sensor data and laboratory-determined soil properties. 

Soil property Field 1  Field 2  Field 3  Field 4  
(MLRA 115B) [a] 

 MLRA 113  All fields 

Mean SD  Mean SD  Mean SD  Mean SD  Mean SD  Mean SD 
BD (Mg m-3) 1.42 0.11  1.48 0.15  1.50 0.12  1.46 0.09  1.46 0.13  1.46 0.12 

TOC (%) 1.11 0.54  1.31 0.80  0.90 0.42  0.86 0.54  1.07 0.59  1.00 0.58 
WC (%) 29.05 3.41  26.06 4.36  27.65 5.26  25.45 2.76  27.92 4.51  27.04 4.15 
Clay (%) 33.21 11.38  35.95 8.43  34.79 11.53  31.56 9.63  34.35 10.96  33.36 10.59 
Silt (%) 60.10 11.92  58.29 7.34  58.60 9.90  61.19 11.66  59.17 10.41  59.89 10.92 

Sand (%) 6.69 4.40  5.76 2.93  6.62 5.89  7.25 5.43  6.47 4.79  6.75 5.04 
CI (kPa) 2292 860  2580 628  2512 425  1956 997  2430 695  2273 846 

ECa (mS m-1) 28.18 16.70  48.60 19.44  38.56 15.73  22.38 8.91  36.04 18.66  31.16 17.11 
Nobs [b] 24  11  20  30  55  85 

[a] Field 4 was the only one in MLRA 115B; Fields 1, 2, and 3 were in MLRA 113. 
[b] Nobs is number of observations. 
 

Soil texture fractions (clay, silt, and sand fractions) for the two MLRAs were generally fine-textured, 
with low sand content and high silt and clay content (figure 3). An exception was that two points in 
MLRA 115B had higher sand and clay contents and lower silt.  

 

 
Figure 3. Texture triangles showing clay, silt, and sand content in the soil samples from (a) MLRA 113  and (b) MLRA 115B. 

 

Soil property estimation using PLS analysis of VIS-NIR data 
Table 3 shows the cross‐validated PLS results for the profile soil analysis at using the full wavelength 
range (402-2220 nm). In a previous study comparing full and partial wavelength ranges, Cho and 
Sudduth (2015) determined the full wavelength range of the P4000 provided the best estimation of 
soil properties. In this study, few soil properties were estimated with good accuracy. In fact, the only 
entry in that category was silt content in MLRA 115B (RPD = 2.2 and R2 = 0.81, meeting both the R2 
and RPD criteria. Estimations of BD, WC, and sand fraction were poor (R2 < 0.50 or RPD < 1.4) for 
all fields. Estimations of TOC, clay, and silt content met the “fair” RPD and R2 criteria (R2: 0.61–0.67; 
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RPD: 1.58–1.73) for the all-fields dataset. Soil property estimates for MLRA 113 followed trends 
similar to the all-fields dataset. However, for MLRA 115B, soil texture fraction estimates were more 
accurate that for the all-fields dataset, with RPD increases ranging from 0.27 to 0.62. These texture 
fraction estimates for MLRA 115B were near the “good” level defined in previous research. 
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Table 3. PLS cross-validation statistics for analyses of data from the total soil profile. 

Soil property 
All fields  MLRA 113  MLRA 115B 

NPF [a] R2
V [b] RMSEP [c] RPD  NPF R2

V RMSEP RPD  NPF R2
V RMSEP RPD 

BD 9 0.32 0.10 1.20  2 0.20 0.11 1.12  1 0.36 0.08 1.22 
TOC 5 0.67 0.34 1.73  2 0.64 0.36 1.62  1 0.53 0.38 1.42 
WC 8 0.40 3.23 1.29  8 0.34 3.66 1.23  3 0.17 2.46 1.12 
Clay 11 0.65 6.36 1.66  10 0.59 7.11 1.54  4 0.76 5.00 1.93 
Silt 11 0.61 6.93 1.58  9 0.60 6.70 1.56  8 0.81 5.30 2.20 

Sand 7 0.38 4.00 1.26  16 0.48 3.41 1.41  14 0.61 3.37 1.61 
[a] NPF is number of PLS factors 
[b] R2

V is R2 of validation. 
[c] Units for RMSEP are given in table 2 for each soil property. 
 

Figure 4 shows scatter plots of reflectance-estimated BD, TOC, WC, and clay content for the all- 
fields (left), MLRA 113 (center), and MLRA 115B (right) datasets. The best estimates of TOC were 
for the all-fields dataset (RPD = 1.73) and the best estimates of clay content were in the MLRA 115B 
dataset (RPD = 1.93).  Estimates of BD (RPD = 1.12–1.22) and WC (RPD = 1.12–1.29) were similar 
within each MLRA and across all fields. 

Soil property estimation using PLS with all sensor data 
Table 4 shows results of the PLS regression for soil properties (BD, TOC, and WC) from the all- 
fields, MLRA 113, and MLRA 115B datasets when using different combinations of ECa, CI and VIS-
NIR spectral reflectance as the independent variables. For BD across all fields, the best results were 
obtained using only VIS-NIR data. In MLRA 113, BD results were improved by adding ECa to the 
VIS-NIR data; however, adding CI did not provide additional improvement (table 4).  In contrast, the 
best BD results for MLRA 115B were obtained when using all sensor variables -- VIS-NIR, ECa, and 
CI. Estimates of TOC and WC across all fields were better than those for each MLRA regardless of 
the set of independent variables used. Overall, the best TOC results were obtained with the 
combination of VIS-NIR and ECa, while the best WC results were with the combination of VIS-NIR, 
ECa, and CI. For most soil properties (BD, TOC, and WC), however, there were generally similar 
results with reflectance alone and when adding CI or ECa as independent variables. 

Estimates of each soil texture fraction obtained within each MLRA were most accurate when using all 
sensor variables (table 5). Best results were obtained in MLRA 115B, where estimation of soil texture 
fractions using all soil sensors reduced RMSEP by approximately 26% for clay, 14% for silt, and 18% 
for sand content compared to VIS-NIR reflectance alone. The combination of VIS-NIR and CI 
resulted in largest values of R2 (0.70) and smallest values of RMSEP (5.92%) for soil clay content 
across all fields. This combination also provided the best sand content estimates in the all-fields 
dataset, while the best silt content estimates were obtained with VIS-NIR alone. These texture 
estimation results were similar to those reported by Wetterlind et al. (2015) who estimated soil 
texture with errors of approximately 6% for clay and silt, and 10–11% for sand content at the two 
farms studied. They reported that adding ECa to VIS-NIR data improved texture estimates, but the 
level of improvement was small enough that the additional complexity involved with incorporating the 
additional sensors might not be justified.  

Of the sensors on the P4000, VIS-NIR reflectance was the most effective for estimating soil data 
(BD, TOC, WC, and texture fractions) in this study. This is consistent with Wetterlind et al. (2015), 
who reported that VIS-NIR was the best individual sensor for soil organic matter and texture 
variables in their study. Addition of ECa and CI provided a variable level of improvement ranging from 
essentially zero up to approximately 26%. This lack of consistency is also consistent with the results 
of Wetterlind et al. (2015). Additional studies should explore more effective use of the ECa and CI 
data, through examination of additional data fusion methodologies, estimation of additional soil 
properties, and incorporation of data collected over more widely varying soils. 
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Figure 4. Scatter plots of VIS-NIR PLS-estimated vs. measured values of BD, TOC, WC and clay content for the all-fields (left), 

MLRA 113 (center), and MLRA 115B (right) datasets. 
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Table 4. PLS cross-validation statistics for analyses of bulk density (BD), total organic carbon (TOC), and water content (WC) 
data from all fields, MLRA 113, and MLRA 115B. 

Soil property 
Sensor Variable 

All fields  MLRA 113  MLRA 115B 
R2

V [a] RMSEP [b] RPD  R2
V RMSEP RPD  R2

V RMSEP RPD 
BD            

ECa 0.11 0.11 -  0.21 0.11 -  - - - 
CI 0.08 0.11 -  0.09 0.12 -  - - - 

ECa + CI 0.16 0.11 -  0.28 0.11 -  0.16 0.09 - 
VIS-NIR 0.32  0.10  1.20   0.20  0.11  1.12   0.36  0.08  1.22  

VIS-NIR + ECa 0.29  0.10  1.16   0.31  0.11  1.20   0.47  0.07  1.32  
VIS-NIR + CI 0.27  0.10  1.16   0.23  0.11  1.14   0.34  0.08  1.21  

VIS-NIR + ECa + CI 0.27  0.10  1.15   0.31  0.11  1.19   0.53  0.07  1.25  
            

TOC            
ECa 0.19 0.52 -  0.35 0.47 -  0.16 0.49 - 
CI 0.12 0.54 -  0.28 0.50 -  - - - 

ECa + CI 0.23 0.52   0.39 0.47 -  0.24 0.49 - 
VIS-NIR 0.67  0.34  1.73   0.64  0.36  1.62   0.53  0.38  1.42  

VIS-NIR + ECa 0.66  0.34  1.70   0.58  0.39  1.52   0.52  0.39  1.38  
VIS-NIR + CI 0.69  0.33  1.78   0.59  0.37  1.58   0.60  0.38  1.42  

VIS-NIR + ECa + CI 0.68  0.33  1.77   0.56  0.38  1.54   0.53  0.40  1.33  
            

WC            
ECa - [c] - -  - - -  - - - 
CI - - -  - - -  - - - 

ECa + CI 0.05 4.09 -  - - -  - - - 
VIS-NIR 0.40  3.23  1.29   0.34  3.66  1.23   0.17 2.46 1.12 

VIS-NIR + ECa 0.45  3.06  1.36   0.41  3.50  1.29   0.25 2.60 1.06 
VIS-NIR + CI 0.46  3.13  1.33   0.44  3.51  1.29   0.19 2.51 1.10 

VIS-NIR + ECa + CI 0.47  3.04  1.37   0.43  3.53  1.28   - - - 
[a] R2

V is R2 of validation. 
[b] Units for RMSEP are given in table 2 for each soil property. 
[c] No valid model was possible with this subset of independent variables. 
 

Table 5. PLS cross-validation statistics for analyses of soil texture fractions from all fields, MLRA 113, and MLRA 115B. 
Soil texture 

Sensor Variable 
All fields  MLRA 113  MLRA 115B 

R2
V [a] RMSEP [b] RPD  R2

V RMSEP RPD  R2
V RMSEP RPD 

Clay            
ECa 0.19 9.53 -  0.20 9.82 -  0.10 9.13 - 
CI 0.31 8.77 -  0.31 9.08 -  0.32 7.93 - 

ECa + CI 0.39 8.44 -  0.37 8.86 -  0.59 6.52 - 
VIS-NIR 0.65  6.36  1.66   0.59  7.11  1.54   0.76  5.00  1.93  

VIS-NIR + ECa 0.63  6.48  1.63   0.58  6.92  1.58   0.73  4.94  1.95  
VIS-NIR + CI 0.70  5.92  1.79   0.56  7.29  1.50   0.83  4.01  2.40  

VIS-NIR + ECa + CI 0.66  6.19  1.71   0.64  6.78  1.62   0.85  3.72  2.59  
            

Silt            
ECa 0.09 10.40 -  0.13 9.70 -  - [c] - - 
CI 0.14 10.13 -  0.13 9.70 -  0.08 11.19 - 

ECa + CI 0.19 9.96 -  0.20 9.47 -  0.25 10.44 - 
VIS-NIR 0.61  6.93  1.58   0.60  6.70  1.56   0.81  5.30  2.20  

VIS-NIR + ECa 0.53  7.56  1.44   0.52  7.40  1.41   0.84  4.92  2.37  
VIS-NIR + CI 0.56  7.39  1.48   0.58  6.99  1.49   0.84  4.92  2.37  

VIS-NIR + ECa + CI 0.56  7.41  1.47   0.61  6.67  1.56   0.88  4.57  2.55  
            

Sand            
ECa 0.01 5.02 -  - - -  - - - 
CI 0.06 4.88 -  0.12 4.49 -  - - - 

ECa + CI 0.10 4.84 -  0.17 4.45 -  - - - 
VIS-NIR 0.38  4.00  1.26   0.48  3.41  1.41   0.61  3.37  1.61  

VIS-NIR + ECa 0.37  4.12  1.22   0.69  2.73  1.76   0.62  3.44  1.58  
VIS-NIR + CI 0.39  3.99  1.26   0.54  3.26  1.47   0.72  2.71  2.01  

VIS-NIR + ECa + CI 0.38  4.00  1.26   0.70  2.63  1.82   0.77  2.77  1.96  
[a] R2

V is R2 of validation. 
[b] Units for RMSEP are given in table 2 for each soil property. 
[c] No valid model was possible with this subset of independent variables. 
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Conclusion 
Across all four fields in this study, the Veris P4000 VIS-NIR-EC-force probe estimated soil bulk 
density (BD), total organic carbon (TOC), water content (WC), and soil texture fractions with 
validation R2 (and RPD) of 0.32 (1.20) for BD, 0.67 (1.73) for TOC, 0.40 (1.29) for WC, 0.65 (1.66) for 
clay content, 0.61 (1.58) for silt content, and 0.38 (1.26) for sand content, using VIS-NIR reflectance 
data alone. Adding ECa and CI data to spectral reflectance improved WC estimates (R2 = 0.47, RPD 
= 1.37). However, there was little to no improvement in estimates of BD, TOC, and texture fractions 
when adding ECa and CI data for the all-fields dataset.  

For analyses conducted within each MLRA, fusion of data from all three sensors improved some soil 
texture fraction estimates compared to VIS-NIR data alone. Within MLRA 113, sand content 
estimates were improved from the poor range (R2 = 0.48, RPD = 1.41) to the fair range (R2 = 0.70, 
RPD = 1.82) by adding CI and ECa as candidate variables.  Within MLRA 115B clay and sand 
fraction estimates were improved from the fair to the good category. Within MLRA 115B adding CI 
and ECa as candidate variables reduced RMSEP by approximatively 26% for clay, 14% for silt, and 
18% for sand content compared to VIS-NIR reflectance alone. Additional studies with larger datasets 
are needed to validate the results from this study and to further investigate calibration improvements 
possible by fusing multiple sensor datasets.  
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