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Abstract.  
In precision agriculture, yield maps are important for farmers to make plans. Farmers will have a 
better management of the farm if early yield map can be created. In Florida, citrus is a very important 
agricultural product. To predict citrus production, fruit detection method has to be developed. Ideally, 
the earlier the prediction can be done the better management plan can be made. Thus, fruit detection 
before their mature stage is expected. This study aims to develop a thermal-visible camera system 
which will register thermal images with visible images, so that information fusion can be done later for 
detecting immature fruit. The registration method used in this study was based on photogrammetry 
that could be applied to register multiple cameras as well. The camera system used in the study 
consisted of two identical visible cameras and a thermal camera which were mounted on a single 
frame and their positions were fixed. Bundle adjustment was utilized to calibrate cameras’ relative 
orientations with respect to each other and intrinsic parameters for each camera. Image registrations 
were conducted in real-time after each set of images were taken by the three cameras. Common 
points of interest in the two visible images were selected by running the random sample consensus 
(RANSAC). Coordinates of corresponding points in the thermal image were calculated by utilizing 
image intersection method. A transformation matrix was then solved based on selected 
corresponding points in the thermal image and one of the two visible images. Finally, image 
registration between the thermal image and the visible image was completed by applying the 
transformation to the thermal image. The stated method is expected to be fast and can be expanded 
for multiple camera systems.  
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Introduction 
Immature citrus fruit detection has been a difficult task due to the color similarity between fruit and 
leaves. Recent years, researchers investigated multiple imaging techniques including multispectral 
imaging, hyperspectral imaging (Okamoto & Lee, 2009), (Annamalai & Lee, 2004) and thermal 
imaging (Bulanon, Burks, & Alchanatis, 2009), in addition to traditional imaging methods with visible 
cameras. Their work showed the effectiveness of these modern technologies, however, accuracies of 
those detections were mostly not satisfactory by using a single type of camera alone. Thermal 
cameras and visible cameras detect two well separated spectrum regions, so that features detected 
by those two types of cameras will be less correlated. Therefore, fusing images of thermal cameras 
and visible cameras together can provide richer information than that from either of them alone. One 
critical step for image fusion is to implement image registration. 

Image registration can be classified into two types, software based automatic registration and 
hardware based image registration. Most works in literature focused on software based registration, 
especially in the area of medical imaging and facial recognition. To register computed tomography 
(CT) and magnetic resonance images (MRI) of brains, Maes, Vandermeulen and Suetens (1999) 
computed the mutual information of voxel intensities in both images and matched them by 
maximizing the value. This method required that both images had similar intensity features and the 
computation speed was usually a limitation. Instead of comparing features of images in multi-models, 
Chung, Wells and Norbash (2002) utilized a learning method by building the a priori knowledge of the 
expected joint intensity distribution estimated from aligned training medical images. The study aimed 
to find an optimal transformation that minimize the discrepancy between the observed and expected 
joint intensity distributions. The method was only tested on two clinical datasets, which had limited 
features. In addition to the applications in medical imaging, image registrations were often applied to 
facial recognition, more specifically, registering thermal images with visible images of human faces. 
(Kong et al., 2007) utilized the Gaussian Fields technique which measured both the spatial proximity 
and local feature similarity of two points in terms of a Gaussian function. This method was 
computationally expensive and was only tested on human facial images. All of those methods were 
shown to be effective in registering images in a certain field, while none of them has been applied to 
another field of application. One method was found in literature to register thermal and visible images 
of citrus trees. Bulanon et al. (2009) used a square frame, whose four corners were wrapped by 
aluminum foil, as a reference to register thermal and visible images. This method used affine 
transformation which was fast. However, the requirement of placing a reference for every image was 
not practical for most automation applications. 

Hardware based image registration on the other hand had been rarely studied. This method could 
achieve high accuracy and fast speed. However, substantial preparations have to be done carefully 
before taking images. Chen and Warren (2013) did a project which registered two webcam with a 
thermal camera for fire-fighting robots. Camera calibrations were firstly done to calibrate cameras' 
intrinsic parameters and their relative orientations with respect to each other. World coordinates of 
each image points were then computed using the visible webcams, to generate a dense points cloud. 
At last, those points were back projected to the thermal image to find their coordinates. 

This study utilized the hardware registration method. At the stage of camera calibration, it is similar to 
the work of Chen and Warren (2013). Improvements were expected when matching the 
corresponding points in visible and thermal images. Instead of generating a dense points cloud, 
world coordinates of only a few points were computed. A  Random sample consensus (RANSAC) 
method will be applied for searching of an optimal affine transformation. The affine transformation will 
transform the thermal image onto the visible base image.  

The authors are solely responsible for the content of this paper, which is not a refereed publication.. Citation of this work should state that it 
is from the Proceedings of the 13th International Conference on Precision Agriculture. EXAMPLE: Lastname, A. B. & Coauthor, C. D. 
(2016). Title of paper. In Proceedings of the 13th International Conference on Precision Agriculture (unpaginated, online). Monticello, IL: 
International Society of Precision Agriculture.  
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Materials and Methods 
Hardware registration of thermal-visible cameras requires all cameras to be fixed on a single stable 
frame, because parameters calibrated from initial steps will be utilized for subsequent computations. 
Based on that requirement, a camera frame was designed and printed by a 3D printer for mounting 
two identical visible cameras and a thermal camera. The frame and the cameras are shown in Figure 
1. All cameras were set to output image sizes of 480 × 640 pixels for the ease of computation. 

 
Figure 1 Camera Frame for Visible and Thermal Cameras 

Camera Calibration 

The first step of computation was to calibrate the intrinsic parameters of each camera and their 
relative orientations, also known as extrinsic parameters. The calibration was done by a bundle 
adjustment, which required matching common points in each image. In photography, it is usually a 
manual process. In order to automate this process, a custom made checkerboard was used. As 
shown in Figure 2, the black squares in the checkerboard were covered by electrical tapes. Two 
halogen lamps were turned on to heat up the checkerboard when taking images. Due to a higher 
heat absorption rate, electrical tapes presented clearly higher temperatures in thermal images. The 
entire setup is shown in Figure 3. 

In preparation of bundle adjustment, 18 sets of images were taken. Each set contained three images 
of the checkerboard taken at the same time by these cameras. Corners of the checkerboard were 
automatically detected as pass points using MATLAB R2015a. MATLAB was also used to implement 
bundle adjustment, which calculated camera intrinsic and extrinsic parameters in one step under the 
collinearity condition. The output parameters were saved for further usage. 

 
                                    Figure 2 Checkerboard                                                  Figure 3 Imaging Setup 



Proceedings of the 13th International Conference on Precision Agriculture 
July 31 – August 3, 2016, St. Louis, Missouri, USA Page 4 

World Coordinates Estimation 
Calculated parameters were firstly utilized to compute objects' world coordinates using visible images 
in each set. Intrinsic parameters were used to rectify visible images, so that distortions were 
removed. The two rectified images were then combined by applying image intersection. For each pair 
of image points, the method of image intersection drew two lines connecting caremas' principle 
points and the image points, and calculated the world coordinates at the intersection of the two lines. 
In this step, multiple world coordinates were generated. 

Registering Thermal Image with Visible Images 
Parameters of thermal camera were input to a back-projection formula shown in Eq. (1) to calculate 
corresponding thermal image coordinates of the generated world coordinates. A random sample 
consensus (RANSAC) method was applied to iteratively select a best affine transformation between 
the thermal image and one of the visible images. The selected affine transformation was eventually 
used for registering the thermal image with the visible images. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑡ℎ𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑤𝑤𝑤𝑤𝑤 × [𝑅 𝑇]′ × 𝐾         𝐸𝐸. (1) 

Where, 

R = Rotational matrix of the thermal camera relative to the base camera; 

T = Translational matrix of the thermal camera relative to the base camera; 

K = Intrinsic matrix of the thermal camera. 

Results and Discussion 
Residuals of Camera Calibration 
Camera calibration was done by a bundle adjustment, with 42 pass points in each of the 54 images. 
At convergence of the bundle adjustment, residuals for each set of images were presented. Image 
sets with large residuals were removed from the input and a second bundle adjustment were applied. 
Figure 4 shows the residuals for the first and second bundle adjustments. Parameters calculated 
from the second bundle adjustment include both intrinsic and extrinsic parameters. Figure 5 is the 
visualizations of their extrinsic parameters, as well as the positions of the checkerboard in each 
image. 

 

Figure 4 Mean reprojection error per image before (left) and after (right) removing big residuals 
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Figure 5 Visualization of relative orientation of two visible cameras (left); visible and thermal cameras (right) 

Results of the Registration 
World coordinates for each pass point relative to the base camera were computed by image 
intersection of two visible images. Those points were then back projected to the thermal image as 
shown in Figure 6. 

An evaluation of the back projection was performed by comparing the projected positions and the 
true positions. Figure 7 shows the histogram of the residuals of all 546 points. Residuals for all 
selected thermal images are listed below in Table 1.  The average residual was 3.13 pixels in a 480 
× 640 pixels image. 

 
Figure 6 Projection of points from visible image to thermal image 
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Figure 7 Histogram of residuals of all 546 projected points 

 

 
Table 1 Residual in pixels for each image 

Image # Residual -Pixel Image # Residual -Pixel 
1 3.09 8 2.82 
2 2.89 9 2.59 
3 3.00 10 3.51 
4 3.47 11 3.29 
5 3.15 12 2.27 
6 3.07 13 3.73 
7 3.85     

Conclusion  
This study effectively registered visible images with thermal images utilizing a photogrammetry 
method. It is a fast and accurate approach that feature detection was not required for matching these 
two types of images, and that an accuracy of 3.13 pixels was achieved. This method can be 
expanded for registering images of different types and multiple imaging devices at the same time.  
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