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Abstract.For in-season site-specific nitrogen (N) management of rice to be successful, it is crucially 
important to diagnose rice N status efficiently across large area in a timely fashion. Satellite remote 
sensing provides a promising technology for crop growth monitoring and precision management over 
large areas. The FORMOSAT-2 satellite remote sensing imageries with 4 wavebands have been 
used to estimate rice N status. The objective of this study was to evaluate the potential of using high 
spatial resolution satellites with red-edge band (RapidEye and WorldView-2) to improve monitoring 
rice N status in Northeast China. N rate experiments were conducted from 2008 thru 2009 and 2011 
at Jiansanjiang, Heilongjiang Province of Northeast China. Field samples and hyperspectral data 
were collected at thepanicle initiation (PI), stem elongation (SE), and heading (HE)stages.Handheld 
hyperspectral data measured at canopy scale were used to simulate the wavebands of three satellite 
sensors-FORMOSAT-2, RapidEye, and WorldView-2. A linear regression analysis using the 
simulated satellite single band as the variable was applied to assess the potentials of the three 
satellite sensors for N nutritional status diagnosis. In addition, vegetation indices (VIs) were 
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computed based on the simulated satellite wavebands. The results indicated the NIR1 band was 
most important for estimating all the N status indicators. According to the R2 values, the regression 
models based on the simulated WorldView-2 wavebands had the highest performance for biomass, 
plant N uptake (PNU), and nitrogen nutrition index (NNI) estimations, followed by the ones based on 
the RapidEyewavebands, at each of the three stages. The red-edge band improved biomass, PNU, 
and NNI estimations at all three stages, especially at the early PI and SE stages. Biomass and PNU 
were best estimated using data across the stages while NNI and plant nitrogen concentration (PNC) 
were best estimated at the HE stage. For VI analysis, 30-40% biomass variability was explained 
using the Chlorophyll Index (CI) at thePI and SE stages. Likewise, 39-52% PNU variability was 
explained using the CI based on the FORMOSAT-2wavebands. The best VIs based on RapidEye 
and WorldView-2 wavebands explained 53-64% biomass variability, and 62-65% PNU variability.For 
the NNI estimation, the N planar domain index (NPDI) based on WorldView-2 wavebands and 
MERIS terrestrial chlorophyll index (MTCI) based on RapidEyewavebands explained 14-26% more 
variability. 
 
Keywords.Satellite remote sensing, red-edge band, nitrogen status diagnosis, nitrogen nutrition 
index, vegetation index，rice. 
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1. Introduction 
Nearly two third of the Chinese population depends on rice (Oryza sativa L.) as main food, which 
makes rice as one of the most important staple food crops(Dawe et al., 2000). Nitrogen (N) is very 
important in rice production, because it is a key element for chlorophyll constitution. Chlorophyll 
content affects photosynthesis rate, which thereby affects biomass production and yield largely. Thus, 
in-season monitoring of the crop N status can provide a guidance for in-season site-specific N 
management (Dobermann et al., 2003). 

The rice crop area in Northeast China has increased rapidly during the past decade, and this region 
has become more and more important for China’s food security and sustainable development(Zhao 
et al., 2013).Although real time N status monitoring technologies using handheld chlorophyll meter 
and active crop canopy sensors have been used to improve rice N management in this region (Yao 
et al., 2012; Cao et al., 2013), these technologies are still very time consuming and not suitable for 
large scale rice farming applications. Satellite remote sensing is more promising and efficient for 
large scale crop growth monitoring. Huang et al. (2015) used the FORMOSAT-2 satellite images to 
diagnose rice N status in Northeast China and proposed a nitrogen nutrition index (NNI)-based 
strategy for guiding topdressing N application.  

Most of the satellite remote sensing images have four traditional wavebands-blue, green, red and 
near infrared (NIR). The commonly used satellite-based vegetation indices (VIs) were mostly red- 
and green-band based, such as normalized difference vegetation index (NDVI) and ratio vegetation 
index (RVI). These VIs may saturate under moderate-to-high biomass conditions at later growth 
stages (Thenkabail et al., 2000; Mutanga and Skidmore, 2004).To solve this problem, many new VIs 
were developed. The red-edge based VIs were proven to be sensitive to crop canopy chlorophyll and 
N variation and could improve the agronomic parameters estimation, because red-edge-based 
spectral indices can overcome the saturation problems as reported with NDVI (Van Niel and McVicar, 
2004; Nguy-Robertson et al., 2012).In 2008, RapidEye was launched and was the first commercial 
satellite including the red-edge band with 6.5 m spatial resolution. After this, WorldView-2 was 
launched in October of 2009 and supplies very high spatial resolution imagery (2 m for multispectral 
wavebands image and 0.5 m for panchromatic image). It has eight wavebands, also including a red-
edge band.  

So far, little has been reported on the potential of improving rice N status monitoring using these two 
new satellite images as compared with the commonly used four band satellite images like 
FORMOSAT-2. Therefore, the objective of this study was 1) to compares the application potential of 
the satellite FORMOSAT-2, RapidEye, and WorldView-2 by 2) evaluate the N indicators estimation 
by using the vegetation indices based on their band settings, respectively, and 3) to improve the 
predictive power for aboveground biomass, PNC, PNU, and NNI estimation. Considering the 
challenge of collecting these three satellite images together at several key rice growth stages, this 
study used proximal hyperspectral reflectance data to simulate the wavebands of these three satellite 
images. 

2. Materials and methods 

2.1 Study area and study sites 
The study area is located at the Qixing Farm in the Sanjiang Plain, Heilongjiang Province, Northeast 
China. The Sanjiang Plain used to be a wild natural wetland formed by the alluvium of three river 
systems - Heilong River, Songhua River, and Wusuli River. This area has a typical cool-temperate 
sub-humid continental monsoon climate. During the growing season (April-October), the average 
rainfall is about 400 mm, which accounts for approximately 70% of yearly precipitation. The mean 
annual temperature is about 2 oC (Wang and Yang, 2001).  

Two sites were selected to conduct 10 N rate experiments in Qixing Farm. Rice has been planted in 
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Site 1 (47o15'52"N, 132o39'05"E) since 1992 while Site 2 (47o13'59"N, 132o38'50"E) started rice 
planting in 2002. 

2.2 Experimental design 
The N rate experiments were conducted in 2008, 2009, and 2011 at the study sites involving a 
Japonica 11 leaf cultivar rice named Kongyu 131 (Table 1). All of the experiments adopted 
randomized complete block design with three or four replications. The nitrogen fertilizer was applied 
in three splits for Experiments 1-6: 40-45% as basal application before transplanting, 20-30% at the 
tillering stage, and 30-35% at the stem elongation stage. For Experiments 7-10, N fertilizers were 
applied in two splits: 60% as basal application and 40% at tillering stage. In each experiment, 
sufficient phosphate (45-60 kg P2O5 ha-1) and potash (90-105 kg K2O ha-1) fertilizers were applied to 
ensure sufficient P and K nutrients. All the P fertilizers were applied as basal fertilizers before 
transplanting. The K fertilizers were applied in two splits, with 50% as basal fertilizer and 50% as 
panicle fertilizer at the stem elongation stage.  

2.3 Plant sampling and analysis 
Plant samples were collected at several critical growth stages, including the panicle initiation (PI), 
stem elongation (SE), heading (HE) stages. Sampling time and date were different from each 
experiments and detailed information was listed in Table 1. In all sampling process, the samples 
were harvested using the same protocol. All the plant samples were rinsed with water and the roots 
were removed. Then the samples were separated into leaves, stems and panicles (for samples 
collected at and after heading stage). The separated samples were put into the oven at 105°C for 
half an hour for deactivation of enzymes, and then dried at 70-80 °C until constant weight. After being 
weighed, the samples were ground into powder and sub-samples were sieved using 1 mm sieves for 
plant N concentration (PNC) analysis using the standard Kjeldahl-N method. The plant N uptake 
(PNU) was determined by multiplying PNC with dry biomass. 

 
Table 1. Details of the nitrogen rate experiments conducted from 2008 to 2012 in Jiansanjiang, Northeast China. 

Experiment Site Year Cultivar N Application 
Rates (kg ha-1) 

Transplanting/Harvesting 
Date 

Sampling  
Stage 

1 1 2008 Kongyu 131 0, 35, 70, 105, 140 29-May / 21-September PI, SE, HE 
2 2 2008 Kongyu 131 0, 35, 70, 105, 140 13-May / 22-September PI, SE, HE 
3 1 2009 Kongyu 131 0, 35, 70, 105, 140 24-May / 27-September SE, HE 
4 2 2009 Kongyu 131 0, 35, 70, 105, 140 20-May /27-September PI,SE, HE 
5 1 2011 Kongyu 131 0, 70, 100, 130,160 17-May / 21-September PI 
6 1 2011 Longjing 21 0, 70, 100, 130, 160 19-May / 21-September PI 
7 1 2008 Kongyu 131 0, 23, 45, 68, 91 29-May / 21-September HE 
8 2 2008 Kongyu 131 0, 23, 45, 68, 91 13-May / 22-September HE 
9 1 2009 Kongyu 131 0, 23, 45, 68, 91 24-May / 27-September SE, HE 
10 2 2009 Kongyu 131 0, 23, 45, 68, 91 20-May / 27-September SE, HE 

PI stands for panicle initiation stage; SE stands for stem elongation stage; HE stands for heading stage. 

For the Nitrogen Nutrition Index (NNI) calculation, the critical nitrogen concentration (Nc) was 
calculated by following equation developed for rice in this region based on data from N rate 
experiments conducted in this region from 2008 to 2013: 

  𝑁𝑐 =  2.77𝑊−0.34  (1) 

where Nc is the critical N concentration (%) in the aboveground biomass and W is the shoot dry 
weight expressed in t ha-1. For aboveground biomass larger than 1 t ha-1, the Nc was calculated by 
the above equation, otherwise the Nc was set to 2.77%. 

The NNI was defined as the ratio of the actual PNC (Na) and the Nc. NNI is a convenient and reliable 
indicator for diagnosing crop N status (Lemaire et al., 2008). If Na is greater than Nc (NNI>1), it 
indicates an over-supply of N while the opposite is true if Na is smaller than Nc (NNI<1). A NNI value 
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of 1 indicates an optimal N supply (Lemaire et al., 2008). 

2.4Field spectral measurements and resampling 
The rice canopy reflectance was collected using portable hyperspectral instruments FieldSpec3 
(Analytical Spectral Devices Inc., Boulder, Co, USA) for Experiment 1-4, 7-10, and ASD QualitySpec 
Pro (Analytical Spectral Devices Inc., Boulder, Co, USA) for Experiment 5, 6. The spectrometer of 
QualitySpec Pro collects reflectance wavelength between 350 to 1800 nm with 1.2 nm interval for the 
spectral region of 350-1000 nm and 2 nm interval for the spectral region 1000-1800 nm. And the 
FieldSpec 3 collects reflectance wavelength between 350 to 2500 nm with 1.2 nm interval for the 
350-1000 nm spectral region and 2 nm interval for the  1000-2500 nm spectral region. The canopy 
reflectance was obtained at sunny cloudless condition at midday (9:00 a.m.-1:00 p.m.). In addition, 
the measurements were taken 0.3 m above the canopy with 25o field of view. The reflectance was 
calibrated by measuring a barium sulfate (BaSO4) reference panel at least every 10-15 min. Five-six 
times scanning were taken randomly in each plot, and then were averaged as the plot reflectance.  

The FORMOSAT-2 (F2), RapidEye (RY), and WorldView-2 (WV2) satellite systems are carried on 
satellites that all run on sun-synchronous orbit but with different orbit altitudes. The FORMOSAT-2 is 
a daily revisit satellite launched on May of 2004 and collects images at the same local hour with a 
constant observation angle for the same site (Chern et al., 2006). The spectral range of WV2 covers 
from 400 nm to 1040 nm including costal (400-450 nm), blue (450-510 nm), green (510-581 nm), 
yellow (582-625 nm), red (630-690 nm), red-edge (705-745 nm), near-infrared 1(770-895 nm), near-
infrared 2 (860-1040 nm) wavebands. RapidEye also includes a red-edge band in addition to the 
traditional four bands. The band settings information and other properties for those three satellite 
sensors were listed in Table 2. 

Table 2. Comparison the launched time, orbit altitude, spectral, multispectral and panchromatic spatial resolution, revisit time, 
and swath width of the FORMOSAT-2, RapidEye, and WorldView-2 satellite sensors. 

Properties FORMOSAT-2 RapidEye WorldView-2 
Type sun-synchronous sun-synchronous sun-synchronous 

Launched time May-04 Aug-08 Oct-09 
Orbit altitude (km) 891 km 620 770 km 

Spatial Resolution for 
multispectral image (m) 8 6.5 2 

Spatial Resolution for 
panchromatic image (m) 2 -# 0.5 

Revisit time (Day) 1 1 1.1 
Swath width (km) 24 80 16.4 

Band settings 

450-520 nm (Blue: F_b) 
520-600 nm (Green: 
F_g) 
630-690 nm (Red: F_r) 
760-900 nm (Near-
infrared: F_nir1) 
 

440-510 nm (Blue: R_b) 
520-590 nm (Green: R_g) 
630-685 nm (Red: R_r) 
690-730 nm (Red-edge: 
R_re) 
760-900 nm (Near-infrared: 
R_nir1) 

400-450 nm (Coastal: W_c) 
450-510 nm (Blue: W_b) 
510-581 nm (Green: W_g) 
585-625 nm (Yellow: W_y) 
630-690 nm (Red: W_r) 
705-745 nm (Red-edge: W_re) 
770-895 nm (Near-infrared1: 
W_nir1) 
860-1040 nm (Near-infrared2: 
W_nir2) 

#The RapidEye satellite doesn’t collect the panchromatic imagery. 

The hyperspectral data were resampled to simulate the band settings of the three satellite sensors 
following the band equivalent reflectance theory. The hyperspectral data were resampled to 
simulated FORMOSAT-2, RapidEye, and WorldView-2 wavebands based on the spectral response 
functions as shown in Equation 2: 

 𝑟𝑖 =
∑ 𝑟(𝜆)𝜆𝜆𝑖
𝜆𝜆𝑖 𝜑𝑖(𝜆)

∑ 𝜑𝑖(𝜆)𝜆𝜆𝑖
𝜆𝜆𝑖

�  (2) 

In which, 𝑟𝑖 stands for the reflectance of Band i; ,𝜆𝜆𝑖 is the starting wavelength of Band i,𝜆𝜆𝑖 is the 
termination wavelength of Band i; 𝑟(𝜆) is the reflectance value at Wavelengthλ,𝜑𝑖(𝜆) is the band 
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response function of Band 𝑖 at wavelength𝜆. The band response function data of FORMOSAT-2 was 
provided by the National Space Organization of Taiwan (NSPO),and the corresponding data of 
RapidEye and WorldView-2 were supplied by the software ENVI 4.8 (ENVI, Boulder, Colorado, 
USA). 

2.5Data analysis 
The vegetation indices (VIs) listed in Table 3 have been calculated using SPSS V.20.0 (SPSS, 
Chicago, Illinois, USA) to estimate the N status indicators of the Experiment 1-10. Simple linear 
regression was used to determine the relationship between each spectral index and N status 
indicators. The coefficient of determination (R2) was used to compare the performance of the 
vegetation indices. The coefficients of determination of the relationships between single bands of 
FORMOSAT-2 (F2), RapidEye (RY), WorldView-2 (WV2) and the N status indicators were also 
performed in SPSS. 

Table 3. Vegetation indices evaluated in this study for estimating rice N status indicators. 

Vegetation Index Formula Satellite 
sensors Reference 

Ration vegetation index (RVI) NIR/R F2, RY, WV2 Jordan, 1969 

Green chlorophyll index (CI) NIR/G-1 F2, RY, WV2 Gitelson et al., 
2005 

Normalized difference vegetation 
index (NDVI) (NIR-R)/(NIR+R) F2, RY, WV2 Rouse et al., 1974 

Green normalized difference 
vegetation index (GNDVI) (NIR-G)/(NIR+G) F2, RY, WV2 Gitelson and 

Merzlyak,1996 
Optimized soil-adjusted vegetation 
index (OSAVI) 

(1+0.16)*((NIR–R) 
/(NIR+R+0.16)) F2, RY, WV2 Rondeaux et al., 

1996 
Modified chlorophyll absorption in 
reflectance index (MCARI) ((NIR–R)–0.2(R–G))*(NIR/R) F2, RY, WV2 Daughtry et al., 

2000 

Triangular Vegetation Index (TVI) 0.5*(120(NIR–G)–200(R–G)) F2, RY, WV2 Broge and 
Leblanc, 2000 

Modified transfromed chlorophyll 
absorption in reflectance index 
(TCARI) 

3*((NIR-R)-0.2(NIR-G)(NIR/R)) F2, RY, WV2 Haboudane et al., 
2002 

MCARI/OSAVI MCARI/OSAVI F2, RY, WV2 Haboudane et al., 
2002 

TCARI/OSAVI TCARI/OSAVI F2, RY, WV2 Haboudane et al., 
2002 

Red-edge chlorophyll index (CI_re) NIR/Re-1 RY, WV2 Gitelson et al., 
2005 

Nromalizeddiffernce red-edge index 
(NDRE) (NIR-Re)/(NIR+Re) RY, WV2 Fitzgerald et 

al.,2010 
MERIS terrestrial chlorophyll index 
(MTCI) (NIR-Re)/(Re-R) RY, WV2 Dash and 

Curran,2004 
Canopy chlorophyll content index 
(CCCI) 

(NDRE-NDREmin) 
/(NDREmax-NDREmin) RY, WV2 Fitzgerald et al., 

2010 

Nitrogen planar domain index (NDPI) (CI_re-CI_re_min) 
/(CI_re_max-CI_re_min) RY, WV2 Clarke et al., 2001 

Red-edge-based optimized soil-
adjusted vegetation index 
(OSAVI_re) 

(1+0.16)*((NIR–Re) 
/(NIR+Re+0.16)) RY, WV2 Wu et al., 2008 

Red-edge-based modified chlorophyll 
absorption in reflectance index 
(MCARI_re) 

((NIR–Re)–0.2(Re–G))*(NIR/Re) RY, WV2 Wu et al., 2008 

Red-edge-based Triangular 
Vegetation Index (TVI_re) 0.5*(120(NIR–G)–200(Re–G)) RY, WV2 Broge and 

Leblanc, 2000 
Red-edge-based modified 
transfromed chlorophyll absorption in 
reflectance index (TCARI_re) 

3*((NIR-Re)-0.2(NIR-G)(NIR/Re)) RY, WV2 Wu et al., 2008 

MCARI_re/OSAVI_re MCARI_re/OSAVI_re RY, WV2 Wu et al., 2008 
TCARI_re/OSAVI_re TCARI_re/OSAVI_re RY, WV2 Wu et al. , 2008 
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3. Results 

3.1Variation of the N status indicators 
The descriptive statistics of the AGB, PNC, PNU, and NNI at the PI, SE, and HE stages were listed in 
Table 4. The biomass increased from 1.11 t ha-1 at the PI stage to 1.78 t ha-1 at the SE stage, and to 
6.28 t ha-1 at the HE stag while PNU also increased from 27.53 kg N ha-1 to 40.13 kg N ha-1 at the SE 
stage, and increased to 103.34 kg N ha-1 at the HE stage. The PNC decreased from 2.47 % at the PI 
stage to 2.36 % at the SE stage, and further decreased shapely from the SE stage to 1.62% at the 
HE stage, affected by the “dilution effect” described by Plénet and Lemaire (1999). The average NNI 
was 0.96 at the PI stage, which slowly increased from 1.01 at the SE stage to 1.09 at the HE stage. 
The standard deviation of biomass, PNC, PNU, and NNI increased from the PI to HE stage, which 
indicated the difference grew lager and lager between different N rate treatments with the 
development of the growth stages. The coefficients of variation (CV) for biomass and PNU increased 
from the PI to SE stage, and peaked at the SE stage, but decreased from the SE to HE stage. In 
addition, CV for PNC and NNI increased with the development of the growth stages, especially at the 
HE, which indicated the PNC and NNI maybe easier to be remotely estimated after heading stage. 
These results also indicated the importance of using NNI for N status diagnosis, rather than other 
indicators. 

Table 4. Descriptive statistics of the measured aboveground biomass, nitrogen concentration, plant N uptake, and NNI for the 
model estimation and validation across PI, SE and HE stages. 

 
Stage   AGB(t ha-1) PNC(%) PNU(kg N ha-1) NNI 

PI 

n 57 57 57 57 
Min 0.2 2.16 4.39 0.8 
Max 2.19 3 59.32 1.29 

Mean 1.11 2.47 27.53 0.96 
SD 0.5 0.17 12.71 0.11 
CV 45.02 6.97 46.17 11.4 

SE 

n 92 92 92 92 
Min 0.57 1.53 14.76 0.77 
Max 3.96 3.15 91.82 1.47 

Mean 1.78 2.36 40.13 1.01 
SD 0.88 0.36 16.96 0.14 
CV 49.36 15.11 42.26 13.74 

HE 

n 98 98 98 98 
Min 3.44 0.83 44.59 0.53 
Max 9.92 2.18 205.64 1.63 

Mean 6.28 1.62 103.34 1.09 
SD 1.49 0.28 36.2 0.24 
CV 23.75 17.06 35.03 21.97 

n, number of observations; SD, standard deviation of the mean; CV, coefficient of variation; the unit for CV was in 
%. 

3.2 Single band analysis 
The simulated NIR1band was best correlated with AGB, PNU, and NNI for all three satellites at the 
PI stage, which explained 31-32% model variability for AGB, 29-30% for PNU, 22% for NNI, 
respectively (Fig. 1a, e, g). TheNIR2 band of WV2 was the second rank for AGB and PNU 
estimations. In visible wavelengths, the red band performed the best than others, while the green 
band performed the worst. The simulated red-edge band of WV2 was more significantly correlated to 
AGB, PNU, and NNI than RY at the PI stage(Fig. 1a, e, g). However,  the PNC was hard to be 
estimated  using the single simulated wavebands at the PI stage (Fig. 1c). The analysis results of the 
relationship between simulated single wavebands and N status indicators as mentioned in this study 
for the SE stage were similar with the PI stage (data not show). Compared to the PI stage, the 
performance of NIR1 and NIR2 decreased while the R2 of visible wavelengths increased at the HE 
stage (Fig. 1b, f, h). The PNC and NNI were better estimated, while the AGB was harder to be 
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estimated at the HE stage (Fig. 1d, h). The red band of RY and WV2, and the yellow band of WV2 
reached highest R2, which was 0.28-0.29 for PNC, 0.31-0.32 for PNU, and 0.34 for NNI estimation, 
respectively (Fig. 1d, f, h). Contrary to the PI stage, the simulated red-edge band of RY was more 
significantly correlated to AGB, PNU, and NNI than WV2 at the HE stage (Fig. 1b, f, h). 

 
Fig. 1. Coefficient of determination (R2) for the relationships between reflectance of simulated FORMOSAT-2, RapidEye, 

WorldView-2 wavebands and AGB at the PI stage (a), HE stage (b), PNC at the PI (c), PNC at the HE (d), PNU at the PI (e), PNU at 
the HE (f), NNI at the PI (g), NNI at the HE (h).  

3.3 Correlation between nitrogen indicators and vegetation index 
To evaluate the effects of wavelength for different satellites and growth stages on the relationships 
between vegetation indices and N status indicators, we calculated the same VIs based on the same 
wavebands of different satellites (Table 3), and then analyzed the linear regression correlation for 
Panicle Initiation, Stem Elongation, and Heading growth stages. The top 5 VIs were listed in Tables 
5-6. 

Most of VIs performed significantly better than single wavebands (Table 5-6). The PNC was still hard 
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to be estimated, but the R2 of the best performance also has doubled than the best single band. For 
F2, the R2 of the best performed VI slightly increased compared to the best single band. In general, 
the red-edge indices of RY and WV2 performed better than the non-red-edge VIs of F2 for estimating 
the AGB, PNU, and NNI at the PI and SE stages (Table 5 and 6). At the PI and SE stages, the red-
edge index MTCI of RY and WV2 performed the best for estimating AGB and PNU, with R2 ranged 
from 0.53 to 0.64 and from 0.60 to 0.64, respectively. This was followed by the red-edge indices 
CCCI, NDPI, CI_re, NDRE, and TVI_re, which all achieved better model results than non-red-edge 
based indices (Table 5 and 6). At the HE stage, the performance of red-edge-based indiceswas 
similar to the non-red-edge indices for AGB and NUP estimations. The top 5 indices of WV2 were 
similar to those of RY. The red-edge-based indices of WV2 performed better than RY except for 
CCCI at all three stages, which might be caused by the different red-edge band settings between the 
two satellite sensors (Table 2). 
Table 5. The top 5 coefficients of determination (R2) for the relationships between vegetation indices based on the wavebands of 

FORMOSAT-2, RapidEye, WorldView-2 and aboveground biomass, plant N concentration (PNC) at the PI, SE, HE stages, 
respectively. 

Panicle Initiation Stage Stem Elongation Stage Heading Stage 
Index AGB (t ha-1) Index AGB (t ha-1) Index AGB (t ha-1) 
F2-CI 0.39** F2-GNDVI 0.41** F2-CI 0.28** 

F2-GNDVI 0.35** F2-OSAVI 0.41** F2-GNDVI 0.27** 
F2-MCARI/OSAVI 0.33** F2-NDVI 0.41** F2-RVI 0.21** 
F2-TCARI/OSAVI 0.34** F2-CI 0.40** F2-NDVI 0.20** 

F2-RVI 0.33** F2-TVI 0.39** F2-TCARI/OSAVI 0.18** 
RY-MTCI 0.64** RY-MTCI 0.53** RY-MTCI 0.28** 
RY-CCCI 0.61** RY-CCCI 0.51** RY-CCCI 0.28** 
RY-NDPI 0.59** RY-NDPI 0.50** RY-NDPI 0.28** 
RY-CI_re 0.46** RY-CI_re 0.47** RY-CI_re 0.28** 
RY-NDRE 0.43** RY-NDRE 0.46** RY-NDRE 0.28** 
WV2-NDPI 0.65** WV2-MTCI 0.57** WV2-NDPI 0.30** 
WV2-MTCI 0.62** WV2-NDPI 0.54** WV2-MTCI 0.30** 

WV2-TVI_re 0.57** WV2-CI_re 0.51** WV2-CI_re 0.30** 
WV2-CI_re 0.54** WV2-NDRE 0.50** WV2-NDRE 0.30** 
WV2-NDRE 0.53** WV2-TVI_re 0.47** WV2-CCCI 0.30** 

Index PNC (%) Index PNC (%)  Index PNC (%) 
F2-CI 0.02 F2-NDVI 0.06* F2-CI 0.53** 

F2-GNDVI 0.02 F2-GNDVI 0.04 F2-GNDVI 0.52** 
F2-RVI 0.02 F2-OSAVI 0.03 F2-NDVI 0.46** 

F2-TCARI/OSAVI 0.02 F2-CI 0.01 F2-RVI 0.44** 
F2-TCARI 0.02 F2-RVI 0.01 F2-TCARI/OSAVI 0.42** 

RY-TCARI_re/OSAVI_re 0.07 RY-TCARI_re 0.09** RY-CI_re 0.57** 
RY-GNDVI 0.03 RY-NDVI 0.06* RY-MTCI 0.56** 
RY-CI_re 0.02 RY-NDRE 0.05* RY-NDPI 0.56** 
RY-NDPI 0.02 RY-MTCI 0.04 RY-NDRE 0.55** 
RY-MTCI 0.02 RY-GNDVI 0.04 RY-TCARI_re/OSAVI_re 0.55** 

WV2-GNDVI 0.03 WV2-MTCI 0.07* WV2-OSAVI_re 0.57** 
WV2-CI_re 0.02 WV2-NDVI 0.06* WV2-CI_re 0.56** 
WV2-NDPI 0.02 WV2-NDRE 0.05* WV2-MTCI 0.56** 
WV2-NDRE 0.02 WV2-GNDVI 0.04 WV2-NDRE 0.56** 

WV2-CI 0.02 WV2-CI_re 0.04 WV2-NDPI 0.55** 
**. Correlation is significant at the 0.01 level; *. Correlation is significant at the 0.05 level. 

The results of Table 5indicated that PNC was not significantly related to most of the vegetation 
indices at the PI and SE stages. At the HE stage, the indices significantly improved estimation of 
PNC with R2 ranging from 0.42 to 0.57. The red-edge based indices performed slightly better 
compared to the red- and green-based indices at the HE stage. The vegetation index F2-
TCARI/OSAVI、 RY-TCARI_re/OSAVI_re improved PNC estimation at HE stage. 

Table 6 indicated the red-edge indices slightly improved the NNI estimation compared to the non-red-
edge indices, especially the index MTCI, NDPI, CI_re, and NDRE. At HE stage, the red edge index 
NDPI, CI_re, MTCI, NDRE performed the best (R2=0.60-0.62), and better than CI (R2=0.58-0.59) and 
GNDVI (R2=0.57) which were the best performed non-red-edge indices.  
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Table 6 The top 5 coefficients of determination (R2) for the relationships between vegetation indices based on the wavebands of 

FORMOSAT-2, RapidEye, WorldView-2 and plant N uptake (PNU), nitrogen nutrition index (NNI) at the PI, SE, HE stages, 
respectively. 

Panicle Initiation Stage Stem Elongation Stage Heading Stage 
Index PNU (kg ha-1) Index PNU (kg ha-1) Index PNU (kg ha-1) 
F2-CI 0.39** F2-CI 0.52** F2-CI 0.50** 

F2-GNDVI 0.35** F2-TVI 0.52** F2-GNDVI 0.48** 
F2-TCARI/OSAVI 0.34** F2-GNDVI 0.50** F2-RVI 0.40** 

F2-RVI 0.33** F2-OSAVI 0.50** F2-NDVI 0.39** 
F2-MCARI/OSAVI 0.33** F2-MCARI/OSAVI 0.49** F2-TCARI/OSAVI 0.36** 

RY-MTCI 0.62** RY-MTCI 0.64** RY-NDPI 0.52** 
RY-CCCI 0.59** RY-CCCI 0.62** RY-CI_re 0.52** 
RY-NDPI 0.58** RY-NDPI 0.61** RY-MTCI 0.51** 
RY-CI_re 0.46** RY-CI_re 0.57** RY-TCARI_re 0.51** 
RY-NDRE 0.43** RY-TVI_re 0.56** RY-TCARI_re/OSAVI_re 0.51** 
WV2-NDPI 0.63** WV2-NDPI 0.65** WV2-CI_re 0.62** 
WV2-MTCI 0.60** WV2-MTCI 0.64** WV2-NDPI 0.61** 
WV2-TVI_re 0.54** WV2-TVI_re 0.61** WV2-MTCI 0.61** 
WV2-CI_re 0.53** WV2-CI_re 0.60** WV2-NDRE 0.61** 
WV2-NDRE 0.52** WV2-NDRE 0.59** WV2-OSAVI_re 0.61** 

Index NNI Index NNI Index NNI 
F2-CI 0.35** F2-TCARI 0.34** F2-CI 0.58** 

F2-TCARI/OSAVI 0.32** F2-TCARI/OSAVI 0.33** F2-GNDVI 0.57** 
F2-RVI 0.31** F2-MCARI 0.33** F2-NDVI 0.48** 

F2-GNDVI 0.31** F2-MCARI/OSAVI 0.32** F2-RVI 0.47** 
F2-MCARI/OSAVI 0.29** F2-CI 0.30** F2-TCARI/OSAVI 0.44** 

RY-MTCI 0.44** RY-MCARI_re 0.35** RY-NDPI 0.61** 
RY-NDPI 0.44** RY-CCCI 0.34** RY-CI_re 0.61** 
RY-CI_re 0.38** RY-TCARI 0.34** RY-MTCI 0.61** 
RY-CCCI 0.36** RY-MTCI 0.33** RY-NDRE 0.60** 
RY-NDRE 0.36** RY-MCARI_re/OSAVI_re 0.33** RY-TCARI_re/OSAVI_re 0.60** 
WV2-MTCI 0.41** WV2-NDPI 0.37** WV2-CI_re 0.62** 
WV2-CI_re 0.41** WV2-MCARI_re 0.36** WV2-NDPI 0.61** 
WV2-NDRE 0.41** WV2-TVI_re 0.36** WV2-MTCI 0.61** 
WV2-NDPI 0.40** WV2-TCARI 0.34** WV2-NDRE 0.61** 

WV2-TVI_re 0.38** WV2-TCARI/OSAVI 0.33** WV2-OSAVI_re 0.61** 
**. Correlation is significant at the 0.01 level; *. Correlation is significant at the 0.05 level. 

 

Tables 5 and 6 indicated that some VIs were among the Top 5 VIs for all the three stages. In Fig. 2, 
the scatter plots show the best performed VIs for AGB, PNU, and NNI. The CI based on green 
reflectance was the best one for FORMOSAT-2. MTCI and NDPI based on red-edge reflectance 
were the best one for RapidEye, and WorldView-2, respectively. Those three VIs did not saturate at 
high biomass condition (Fig. 2).  
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Fig.2. Relationships between FORMOSAT2-CI (a), RapidEye-MTCI (b), WorldView2-NDPI and aboveground biomass, FORMOSAT 
2-CI (e), RapidEye-MTCI (f), WorldView 2-NDPI (g) and nitrogen N uptake, FORMOSAT 2-CI (h), RapidEye-MTCI (i), WorldView 2-

NDPI (j) and NNI at the PI, SE, and HE stage. 

4. Discussion 
Growth stages have significant impacts on estimating N status parameters. The AGB and PNU 
increase with the advancement of growth stages, and accordingly have positive correlations with N 
nutritional status. Our results indicated that, most of the VIs estimated AGB and PNU better than 
PNC at the PI and SE stages, but estimated PNC better than AGB at the heading stage. Yu et al. 
(2013) also found the VIs performed better for estimating PNC after heading. NNI is a dimensionless 
parameter, which is defined as the ratio of actual PNC with critical PNC. NNI increased with 
increasing N rates, and this trend remains consistent during the growth cycle (Gastal et al., 2001; 
Farruggia et al., 2004). The stage-specific analysis was suitable for NNI estimation. The NNI-based 
map can directly be used to guide in-season topdressing N applications (Huang et al., 2015; Cilia et 
al., 2014). 

At early stage, the soil background may influence the vegetative reflectance at red band. Although 
the red band-based VIs (like NDVI and RVI) were the most commonly used indices in N status 
estimation, they are easily influenced by soil background. In addition, the NDVI saturated at high 
biomass condition. When the red band was replaced by red-edge band to from new VIs such as 
NDRE and CI_re, they significantly improved the estimation results compared to NDVI and RVI 
(Table 5 and 6).This was because the red-edge reflectance was proven to be highly correlated with 
chlorophyll (Cho and Skidmore, 2006; Clevers et al., 2002), responsive to variation in LAI or biomass 
(Haboudane et al., 2002;Gnypet al., 2014), and insensitive to background effects (Zarco-Tejada et 
al., 2004). The red-edge vegetation indices-MTCI, CCCI, and NDPI were proven to be highly 
correlated with AGB and PNU (Li et al., 2012;Yu et al., 2013; Shiratsuchi et al., 2011; Ramoeloet al., 

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0 4 8 12 16

N
N

I

F2-CI

PI SE HE

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0.0 0.3 0.6 0.9 1.2
WV2-NDPII

PI SE HE

0

50

100

150

200

250

0.0 0.3 0.6 0.9 1.2
WV2-NDPII

PI SE HE

0.0

3.0

6.0

9.0

12.0

0 4 8 12 16

AG
B 

(t 
ha

-1
)

F2-CI

PI SE HE

0.0

3.0

6.0

9.0

12.0

0 2 4 6
RY-MTCI

PI SE HE

0.0

3.0

6.0

9.0

12.0

0.0 0.3 0.6 0.9 1.2
WV2-NDPII

PI SE HE

0

50

100

150

200

250

0 2 4 6
RY-MTCI

PI SE HE

0

50

100

150

200

250

0 4 8 12 16

PN
U

 (k
g 

N
 h

a-1
)

F2-CI

PI SE HE

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0 2 4 6
RY-MTCI

PI SE HE

(a) (b) (c)

(e) (f) (g)

(h) (i) (j)

R2=0.39 at PI
R2=0.40 at SE
R2=0.28 at HE

R2=0.64 at PI
R2=0.53 at SE
R2=0.28 at HE

R2=0.65 at PI
R2=0.54 at SE
R2=0.30 at HE

R2=0.39 at PI
R2=0.52 at SE
R2=0.50 at HE

R2=0.62 at PI
R2=0.64 at SE
R2=0.51 at HE

R2=0.63 at PI
R2=0.65 at SE
R2=0.61 at HE

R2=0.35 at PI
R2=0.30 at SE
R2=0.58 at HE

R2=0.44 at PI
R2=0.33 at SE
R2=0.61 at HE

R2=0.40 at PI
R2=0.37 at SE
R2=0.61 at HE



Proceedings of the 13th International Conference on Precision Agriculture 
July 31 – August 3, 2016, St. Louis, Missouri, USA Page 12 

2012; Li et al., 2014).In our study, the MTCI, CCCI, and NDPI of RY, and MTCI, NDPI of WV2 had 
better relationships with AGB (Table 5), PNU (Table 6), and NNI (Table 6), which conforms to 
previous researchers.  

Over the last few years, a number of studies have re-sampled field spectra data to simulate the 
wavebands of existing or planned satellite sensors and to evaluate their application potential (Li et 
al., 2014; Ramoelo et al., 2012; Dong et al., 2015). However, the results were not validated using 
actual satellite images. Random forest regression was proven to be an effective method for 
evaluating the robustness of resampled models on real WorldView-2 images (Mutanga et al., 2015).It 
can be used to evaluate the findings of this study in future research. 

Conclusion 
This study simulated the band settings of FORMOSAT-2, RapidEye, and WorldView-2 satellite 
images to evaluate their potentials to improve rice N status estimation. The single band correlation, 
analysis indicated the NIR1 band was the most important for estimating these N status indicators. In 
addition, the red-edge band improved biomass, PNU, and NNI estimations at all three stages, 
especially at the early PI and SE stages. For VI analysis, the best performed red-edge-based VIs 
explained 53-64% biomass variability and 62-65% PNU variability, compared to 30-40% biomass and 
39-52% PNU variability using the Chlorophyll Index (CI) at the PI and SE stages. For the NNI 
estimation, the N planar domain index (NPDI) based on WorldView-2 wavebands and MERIS 
terrestrial chlorophyll index (MTCI) based on RapidEye wavebands explained 14-26% more 
variability.  
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