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Abstract. Visible and near infrared reflectance spectroscopy (VNIR) is becoming an extensively 
researched technology to predict soil properties such as soil organic carbon, inorganic carbon, total 
nitrogen, moisture  for precision agriculture. Due to its rapid, non-destructive nature and ability to 
infer multiple soil properties simultaneously, engineers have been trying to develop proximal sensors 
based on the VNIR technology to enable horizontal soil sensing and mapping. Since the vertical 
variation of soil properties are equally important as the lateral variation for precision agriculture 
decisions, VNIR can be utilized to develop sensors for vertical soil sensing as well. The objective of 
this study was to evaluate the performance of two VNIR probe designs using an independent soil 
VNIR library for model calibration. We developed and tested two designs (referred to as D1 and D2) 
One hundred and fifty Nebraska soil samples were randomly selected from the USDA-NRCS-KSSL 
soil archive and scanned by the two VNIR probes. Same soil samples were also scanned by ASD’s 
mug lamp accessory as the standard laboratory scans. The spectra obtained from the VNIR probes 
were compared with standard mug lamp scans. A soil library of 1595 sample scans was used to 
calibrate models using partial least squares regression (PLS) for total carbon (TC), organic carbon 
(OC) and total nitrogen (TN). The models were used to predict for the scans obtained from D1 and 
D2 and the mug lamp to evaluate the performance of the designs. Results showed that, in general, 
both D1 and D2 followed the mug lamp scans with D1 having higher noise levels at the beginning 
and end of the spectrum as compared to D2. The comparison of predictions suggested that D2 
performs comparably to the standard mug lamp; whereas D1 fails to achieve such accuracy due to 
its inherent noises in scans. Overall performance of D2 suggested its ability to be integrated into a 
hydraulic penetrometer for high resolution vertical soil sensing. 
 Keywords. Visible and near infrared reflectance spectroscopy, soil VNIR penetrometer, vertical soil 
sensing, soil organic carbon, total nitrogen, total carbon. 
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Introduction 
The demand for high resolution 3D soil data is increasing for many disciplines such as precision 
agriculture, hydrological and ecological modeling, climate modeling, and land resource management. 
Digital soil mapping is the sub-discipline of soil science which provides 3D quantitative soil data 
across different scales utilizing traditional and modern soil measurement and inference methods 
(Minasny and McBratney 2016). However, financial constraints usually restrict intensive sampling at 
higher densities, which leads to the employment of different sensing technologies (de Gruijter et al. 
2010; Rossel and McBratney 1998). Researchers around the world are trying to develop more 
accurate and efficient soil sensors to detect different soil properties using different sensing 
technologies (Adamchuk et al. 2004; Hummel et al. 1996; Sudduth and Hummel 1993). 

There are different sensing technologies used by soil sensing community including satellite remote 
sensing (Barnes et al. 2003; Ben-Dor 2002), on-the-go soil sensors (Adamchuk et al. 2004), 
apparent electrical conductivity/resistivity (Corwin and Lesch 2003), ground penetrating radar (Han et 
al. 2016; Iwasaki et al. 2016), γ-ray sensor (Egmond et al. 2010; Iwasaki et al. 2016; Triantafilis et al. 
2013) and visible and near infrared sensors (Christy 2008; Hummel et al. 2001; Kodaira and 
Shibusawa 2013). They are widely used to capture the lateral variability of soil characteristics and the 
technologies to characterize soil profiles without pulling a soil core or opening a soil pit are still limited 
(Hartemink and Minasny 2014).  

Visible and near infrared (VNIR) spectroscopy has some advantages over other sensing 
technologies such as non-contact and non-destructive nature of sensing, ease of miniaturization for a 
VNIR sensing probe and the ability to derive multiple soil properties using one scan. There have 
been numerous efforts to develop sensors based on VNIR for deriving horizontal soil properties such 
as organic carbon, moisture, texture, etc. (Christy 2008; Hummel et al. 2001; Kodaira and Shibusawa 
2013; Mouazen et al. 2007). However, lateral soil sensing does not provide adequate inputs to cater 
the demand of high resolution 3D soil data for different disciplines, which creates a need to develop 
vertical soil sensors.  

Several researchers tried to simulate vertical soil sensing by retrieving soil cores from the fields and 
scanning at fine vertical resolution. Hummel et al. (2001) obtained 48 soil cores from Illinois and 
scanned at 2.5 cm vertical resolution in six moisture levels to predict soil organic matter and 
moisture. Waiser et al. (2007) and Morgan et al. (2009) utilized 72 soil cores collected from Texas to 
conduct a simulated profile characterization of clay and soil organic and inorganic carbon. Doetterl et 
al. (2013) demonstrated the simulated high vertical resolution (3 cm) soil organic carbon assessment 
with 151 soil cores retrieved from central Belgium. In addition to laboratory simulated vertical VNIR 
sensing, in situ vertical soil sensing also sporadically reported in the literature. Custom-made spectral 
head device that can penetrate into the subsoil of a drilled hole by Ben-Dor et al. (2008), commercial 
Veris P4000TM probe (Veris technologies Inc., Salina, Kansas, USA) for the measurement of soil 
texture and organic matter (Wetterlind et al. 2015) are some example scenarios. Poggio et al. (2015) 
evaluated the optical performance of a newly developed VNIR foreoptic under laboratory conditions 
using 389 milled and pressed surface and obtained comparable results to standard ASD contact 
probe.  

In this paper, we reported the testing of two newly developed VNIR probes in the lab. The long term 
goal of the authors is to use these VNIR probes to develop an integrated system for in situ high 
resolution vertical soil sensing. The specific objective of this study was to evaluate the performance 
of the two VNIR probe designs using an independent soil VNIR library to calibrate models. This 
particular effort was to mimic the practical application of such a sensing system where an 
independent VNIR library is most likely to be used for model calibrations to reduce cost constraints 
and achieve higher accuracy comparable to standard ASD MugLite scans. 
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Materials and Methods 

VNIR library and soil samples 
The spectral library used for model calibration in this study was extracted from Rapid Carbon 
Assessment (RaCA) Project which was initiated in 2010 by the Soil Science Division of USDA-
NRCS. This was national-wide effort to capture the baseline soil carbon stocks across the 
conterminous U.S (CONUS).  RaCA used a multi-hierarchical design to ensure that samples were 
evenly distributed across regions based on major land resources areas (MLRA) and land use land 
cover classes (LULC). A detailed description of the sampling design of the project can be found in 
Wills et al. (2014). A subset of RaCA samples from RaCA Region 5 was used as the library. This 
give a total of 1595 samples, all having the full characterization of Organic Carbon (OC), Total 
Carbon (TC), and Total Nitrogen (TN), as well as the VNIR reflectance spectrum of dry ground 
samples. All VNIR spectra were collected with an ASD Labspec® spectrometer and its MugLite 
accessory in the lab setting.  

One hundred and fifty air-dried and ground soil samples archived at National Soil Survey Center of 
USDA-NRCS were extracted and used for the performance assessment of the VNIR probes. Three 
criteria were employed for sample selection from the archive. First, the geographic region of the 
samples should be from Nebraska, USA. This matches with the RaCA Region 5 of the soil library 
used from model calibration. Second, the samples should have the measurement of OC, TC, and TN 
(again, to be consistent with the library). Since OC was an emphasis property, the third criterion was 
used to select the samples representing the full range of OC in the archive through a 20-stratum 
stratified random sampling.  
Table 1. Summary statistics of soil Organic Carbon (OC), Total Carbon (TC) and Total Nitrogen (TN) for 

the library and the sample set used in the lab testing of the VNIR probes. 

Dataset No. of 
samples 

Spectra 
measured by 

Soil 
property Min. Median Mean Max. 

Library n = 1595 MugLite 
OC (%) 0.00 0.93 1.48 38.96 
TC (%) 0.01 1.21 1.84 38.96 
TN (%) 0.00 0.12 0.17 3.09 

Sample set n = 150 VNIR probes 
OC (%) 0.00 0.83 1.11 9.21 
TC (%) 0.01 1.03 1.31 10.67 
TN (%) 0.00 0.11 0.14 0.76 

The library contains the samples from Region 5 of the Rapid Carbon Assessment Project. 

Laborotory testing of VNIR probes 
Two VNIR probes were developed to be tested in this study. First probe (D1) consisted of an angled 
fiber optic cable with light source outside; while the second probe (D2) consisted of a light source 
and a mirror inside. The detailed information regarding the design of the two VNIR probes are not 
presented here due to the proprietary reasons. 
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The testing of VNIR probes was conducted at the Kellogg Soil Survey Laboratory of USDA-NRCS 
and Figure 1 shows the experimental setup. Probes were mounted on a table with the viewing 
aperture pointing upwards using a vise clamp to hold their position and orientation tightly. Since D2 
used a halogen lamp as the light source, a DC power supply was used to provide a constant 1.0 
ampere electric current with approximate 3.8 V supply voltage. For D1, SLS201 - compact stabilized 
broadband light source (Thorlabs Inc., Newton, New Jersey, USA) was used as the light source. 
Reflected light energy from the probe was acquired by an ASD LabSpec® spectrometer through the 
fiber optical bundle. Pucks with soil samples were then placed on the top of the viewing aperture of 
the probe for scanning. This configuration is similar to standard soil spectra acquire by ASD MugLite® 
attachment where light goes through two layers of fused silica windows between the samples and the 
receiving fiber optics. However this is slightly different from the intended field application since there 
will only be one layer of silica window (only the window of the probe).  

A standard Spectralon panel with 99% reflectance (Labsphere Inc., North Sutton, NH, USA) was 
used as the white reference in 10 minute intervals to ensure proper calibration of the spectrometer. 
Additionally, a standard dark reference panel with 2% reflectance (Labsphere Inc., North Sutton, NH, 
USA) was used to acquire the internal light back scattering of the probes. All acquired spectra from 
D1 and D2 were corrected as shown in Equation 1. 

                                                           𝑅𝐷𝐷𝐷 =  𝐸𝑠−𝐸𝐷𝐷
𝐸𝑊𝑊−𝐸𝐷𝐷

 (1) 

where 𝑅𝐷𝐷𝐷 is the dark reference corrected (DRC) reflectance of the sample, 𝐸𝑠 is the reflected 
energy by the sample, 𝐸𝐷𝐷 is the reflected energy by the dark reference panel and 𝐸𝑊𝑊 is the 
reflected energy by the white reference panel. 

The selected 150 samples were scanned with D1 and D2, and then with the ASD MugLite (ML) 
attachment. The original spectra consisted of wavelengths from 350-2500 nm. However, only 400-
2500 nm range was used for the data analysis due to noises observed in the 350-399 nm range. All 
spectra including the modeling library were preprocessed with Savitzky-Golay (Savitzky and Golay 
1964) smoothing with 3rd order polynomial and 11 nm window prior to the data analysis.  

All the models for the different properties (i.e. OC, TC and TN) were calibrated for the modeling 
library (n = 1595) using partial least squares regression (PLS). The number of latent factors (nLV) was 
allowed to vary from 1 to 30, and the size of a model was selected for the nLV that gave the minimum 
RMSECV (Root Mean Squared Error of Cross Validation) with 25 random segment cross-validation. 
Since the spectra acquired from D1 exhibited significant noises at the beginning and end of the 
spectrum, PLS models were calibrated using two wavelength ranges: 400-2500 nm and 500-2300 
nm (noisy region of D1 removed).  

Models were used to predict different soil properties using the sample spectra acquired by D1, D2 

Fig 1. Laboratory experimental setup for the testing of the VNIR probes 
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and ML. R2 (Coefficient of Determination), Bias, RMSEP (Root Mean Squared Error of Prediction), 
and RPD (Ratio of Performance to Deviation) were calculated for all the predictions to compare the 
performance of the designs against the standard MugLite. The data analysis was conducted in the R 
environment (R Core Team 2015) with packages “pls” for PLS model calibration (Mevik et al. 2013), 
“prospectr” for Savitzky-Golay preprocessing (Stevens and Ramirez-Lopez 2013), “caret”  as the 
modeling wrapper (Max et al. 2015), “doParallel” for parallel processing (Analytics and Weston 2015) 
and “ggolot2” for graphing (Wickham 2009). 

Results and Discussion 

Spectral quality 
Figure 2 shows the spectrum of one selected sample obtained from D1, D2 and ML. 

It can be seen in Figure 2 that both D1 and D2 had systematic lower reflectance throughout the 
entire wavelength range. This could be mainly attributed to the difference in optical configurations 
between the MugLite and the VNIR probes. If the soil surface acts as perfect Lambertian surface, 
both MugLite and VNIR probes should receive the same amount of energy at any viewing angle. 
However, since these soil surfaces are not Lambertian and the viewing angles of the MugLite and 
VNIR probes are different, VNIR probes could intercept lower reflected energy compared to MugLite. 
This type of systematic deviations of spectra can be corrected using spectral treatment methods 
such as direct standardization and piecewise direct standardization (Fearn 2001; Feudale et al. 2002; 
W Ji et al. 2015; Wang et al. 1991). 

Dark reference correction did not affect the spectra significantly, suggesting lower internal scattering 
(<2%) in the VNIR probes. According to Figure 2, it was evident that D1 had higher noises at the 
beginning (400-499 nm) and end (2301-2500 nm) of the wavelength range. This could be due to the 
optical characteristics of the custom made bifurcation cable used in D1 restricting sufficient energy 
throughput at lower and higher wavelength regions. Unlike D1, D2 showed smooth spectra 

Fig 2. Spectra obtained from VNIR probe designs D1, D2, dark reference corrected D1 (DRC-D1), dark 
reference corrected D2 and MugLite (ML). 
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analogous to ML spectra throughout the whole wavelength range. This suggests satisfactory optical 
configuration of D2 in comparison with ML. Since the noise free wavelength range for D1 was 500-
2300 nm, convex hulls using all the spectra with 500-2300 nm were plotted in PC space for different 
scanning sources to evaluate their overall spectral discrepancies (Figure 3). 

 

According to Figure 3, the convex hulls of the designs approximately preserved the shape of the 
convex hull of MugLite, suggesting the satisfactory optical performance of the designs to acquire 
spectra comparable to standard MugLite. However, the distance between the center of MugLite and 
the VNIR probes clearly represents the systematic variation of the spectra (as indicated in Figure 2 
as well). The centers of the D1 and D2 were closer to the corresponding dark reference corrected 
spectra indicating non-significant effects of dark reference correction.  

Prediction performance of different VNIR designs 
The PLS models calibrated using 400-2500 nm wavelength range had a cross-validation R2 of 0.77, 
0.79 and 0.74, RMSE of 1.27%, 1.27% and 0.12%, for OC, TC and TN, respectively. Similarly, 
models calibrated with 500-2300 nm wavelength range had a cross-validation R2 of 0.74 for all 
properties with RMSE of 1.26%, 1.42% and 0.11% for OC, TC and TN, respectively. It was observed 
that the R2 of all models calibrated are quite similar and higher than 0.74, indicating similar and 
adequate model performances. Table 2 shows the prediction performance of different VNIR probes 
as compared to MugLite for OC, TC and TN. 

 

 

Fig 3. Convex hulls for all spectra by VNIR probes D1, D2, dark reference corrected D1 (DRC-D1), 
dark reference corrected D2 and MugLite (ML). 
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Table 2. Prediction performance of different VNIR probes as compared to MugLite for Organic Carbon 
(OC), Total Carbon (TC) and Total Nitrogen (TN). 

Wavelength 
Range (nm) Property Scanning 

source R2 RMSEa
P 

(%) 
Bias 
(%) RPDb 

400-2500 

OC 

MLc 0.67 0.99 0.20 1.25 
D1d 0.00 10.38 7.25 0.12 
D2e 0.65 1.44 -1.24 0.86 
DRC-D1f 0.02 9.35 2.55 0.13 
DRC-D2g 0.65 1.17 -0.90 1.06 

TC 

ML 0.69 1.00 0.33 1.33 
D1 0.00 49.64 22.52 0.03 
D2 0.68 1.59 -1.40 0.83 
DRC-D1 0.00 51.90 4.88 0.03 
DRC-D2 0.66 1.28 -1.03 1.03 

TN 

ML 0.67 0.09 0.02 1.53 
D1 0.00 1.19 0.87 0.11 
D2 0.64 0.10 -0.07 1.28 
DRC-D1 0.00 1.01 0.32 0.13 
DRC-D2 0.63 0.09 -0.03 1.55 

500-2300 

OC 

ML 0.68 0.96 0.30 1.29 
D1 0.51 1.29 0.94 0.96 
D2 0.67 0.94 -0.61 1.32 
DRC-D1 0.43 1.51 1.16 0.82 
DRC-D2 0.67 0.85 -0.44 1.46 

TC 

ML 0.51 1.40 0.61 0.94 
D1 0.34 1.38 0.59 0.96 
D2 0.49 1.00 0.21 1.33 
DRC-D1 0.20 1.66 0.76 0.80 
DRC-D2 0.50 1.13 0.58 1.17 

TN 

ML 0.67 0.09 0.03 1.52 
D1 0.54 0.15 0.12 0.90 
D2 0.65 0.08 -0.01 1.65 
DRC-D1 0.42 0.16 0.13 0.80 
DRC-D2 0.65 0.08 0.01 1.67 

aRoot means squared error of prediction; bRatio of prediction to deviation; cMugLite 
scans; dScans from design 1; eScans from design 2; fScans from Design 1 with 
dark reference correction; gScans from Design 2 with dark reference correction 

According to Table 2, all the predictions showed a highly varying statistics. R2 and RPD varied from 0 
– 0.69 and 0.03 – 1.67 respectively. When the models were applied for MugLite scans, it resulted R2 
>0.67 except for TC with 500-2300 nm range, indicating the applicability of the library models to the 
sample set selected for the study. The highest performance was always observed when the models 
were applied for MugLite scans since MugLite was the standard scanning source for the modeling 
library as well.  Figure 4 shows the prediction plots for different scanning sources for OC. Though not 
shown here, TC and TN showed similar performances as in Figure 4. 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig 4. Prediction plots for scans by different scanning sources for Organic Carbon (OC). First 
column represents spectra for the wavelength range 400-2500 nm and second column for 

wavelength range 500-2300 nm. First, second and third rows indicate MugLite, D1 and D2 scanning 
sources respectively. 
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According to Table 2 and Figure 4, it was evident that when the models were applied for the scans 
derived from D1 with full wavelength range (i.e. 400-2500 nm), the prediction performances were 
significantly decreased with very low R2 and higher RMSEP. This was mainly due to the high noises 
observed at the starting and end of the spectra as shown in Figure 2. However, the prediction 
performances were significantly increased (Figures 4c vs d), when noisy regions were removed from 
the spectra indicating the D1 also has the ability to be used to acquire soil VNIR spectra if the noise 
regions are removed.  

According to Table 2, dark reference correction did not significantly affect the prediction accuracies of 
D1 and D2, indicating lower internal scattering of the probe designs. Figure 2 and 3 suggested that 
the dark reference correction did not significantly altered spectra and thus leading to similar 
prediction accuracies. As compared to MugLite scans, D2 and D1 with noise removed wavelength 
region (i.e. 500-2300 nm) showed higher bias across all the properties tested. This could be 
attributed to the systematic spectral shift in D1 and D2 as shown in Figures 2 and 3.  

Unlike D1, D2 performed similarly across all the properties regardless of the wavelength regions 
used and always showed higher performance than D1. Since D2 had the ability to acquire smooth 
spectra along the whole wavelength region as shown in figure 2, it was able to perform comparably 
to MugLite and yield higher accuracies. This indicated the robustness and superiority of the VNIR 
probe D2 over D1 and the ability to use as a substitute for MugLite in field conditions.  

Future work 
In this study the optical performance of two newly developed VNIR probes for soil sensing were 
evaluated in laboratory conditions in comparison to the standard MugLite scans. From the results it 
was evident that probes (especially D2) have the ability to be used in field conditions. However, field 
implementation of such a VNIR system for soil sensing poses a few more challenges to be 
addressed. 

First challenge is that spectral discrepancies created by field conditions (i.e. moisture, aggregation, 
temperature) and global-local library variation. The laboratory spectra are usually obtained under dry 
ground conditions; while the field samples are highly diverse in moisture and aggregation, which can 
significantly affect the spectra (Minasny et al. 2011). Literature suggests different techniques such as 
spiking, direct standardization, piecewise direct standardization and external parameter 
orthogonalization could remove these external effects from spectra (Ge et al. 2014; W Ji et al. 2015; 
W. Ji et al. 2015; Minasny et al. 2011; Wijewardane et al. 2016). 

There is a tendency to develop easily accessible large spectral libraries (Brown et al. 2006). 
However, spectral differences between modeling library (i.e. global) and target field (i.e. local) can 
pose a significant influence on the performance of the models calibrated on a global library (Guerrero 
et al. 2016). The global spectral library may not represent and capture the spectral variation in the 
local conditions, leading to poor model performance of global models in the local conditions. There 
are several reports in the literature to suggest that spiking can significantly improve the applicability 
of the models calibrated for global libraries in local conditions (Guerrero et al. 2016; Sankey et al. 
2008).  

The second challenge is develop a complete integrated VNIR system robust enough to different field 
conditions such as different soil textures, temperatures, and aggregation. This requires a durable and 
flexible engineering design to acquire high quality spectra comparable to laboratory spectra under 
diverse working environments.  

The overall success of such a system depends on the careful integration of a well-engineered 
hardware to capture high quality spectra with low noises and software to correct for spectral 
discrepancies created by field conditions. Still the research question remains whether to use different 
layers of spectral corrections for field conditions and global-local variation or use one robust 
correction technique to address all the spectral differences at once. Our long term objective is to 
seek for the answers to this question via well-planned field evaluation of an integrated VNIR vertical 
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soil sensing penetrometer. 

Conclusions 
In this study two VNIR probes for high resolution vertical soil sensing were evaluated under the 
laboratory condition. A spectral library with 1595 samples was used to calibrate models for three 
different properties: Organic Carbon, Total Carbon and Total Nitrogen. One hundred and fifty 
samples selected from Nebraska were scanned from the two VNIR probes and standard MugLite 
attached to ASD Labspec® spectrometer. According to the results, the D1 probe was observed with 
high noise at the beginning and end of spectra leading to poor performance in the predictions. 
However, when the noise regions were removed, D1 significantly improved the performance and 
resulted comparable accuracy to standard MugLite scans. Conversely, D2 probe yielded smooth 
spectra throughout the whole wavelength regions and obtained similar performance to MugLite. Both 
designs had low internal scattering. Overall D2 showed superior performance to D1. The field 
implementation of D2 with a complete VNIR system should be able to acquire quality spectra to 
enable rapid and accurate sensing of vertical soil characteristics.  
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