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Abstract. Today’s intensive agricultural production needs to increase its efficiency in order to keep 
its profitability in the current market of decreasing prices on one hand, and to reduce the 
environmental impact on the other. Crop growers are starting to adopt side dressing nitrogen 
fertilization as part of their fertilization programs, for which they need accurate information about 
biomass development and nitrogen condition in the crop. This information is usually acquired through 
ground sampling, missing the spatial variability, and therefore forcing an average field-base 
management.  
The Robin System has shown high capability for identifying spatial variability throughout a large 
range of crops and conditions. These results have established the basis to start developing 
algorithms for the retrieval of quantitative biophysical parameters. Synthetic data was used for 
establishing empirical relationships between crops’ biophysical parameters and reflectance data. A 
large Look-Up-Table (LUT) was build, from which the most reliable and sensitive functions were 
selected for retrieving Chlorophyll content and Leaf Area Index (LAI) from the Robin Eye spectral 
bands.  
The main objective of this study was to validate the crop biophysical parameters retrieved using the 
selected LUT functions from two Robin Eye images that were acquired over wheat crop in South 
Africa during the southern winter season of 2015. Between the two acquisition dates, ground 
sampling was performed for biomass and nitrogen content analysis. As the sampling was performed 
after the first image was acquired, the definition of the sampling points was performed from the first 
image so to characterize the spatial variability of the field. A coefficient of determination of 0.96 was 
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obtained for the LAI vs. Biomass relationship, while 0.97 for the Chlorophyll Content vs. Nitrogen 
concentration relationship. These results confirm that the combination of highly sensitive and 
accurate data together with robust theoretical models, can generate reliable and valuable information 
for the crop decision making process. 
Keywords. Multispectral sensor, unmanned aerial systems, nutrient management. 
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Introduction 
Today’s main challenges for the remote sensing community in order to gain a larger place in leading 
agriculture, relies on its capability to deliver accurate information about crop condition, enabling the 
grower to improve the field’s management decisions. Space- or air- borne images have been used in 
precision agriculture for almost two decades to map crop condition and define management zones so 
as to apply site specific management based on fields’ spatial variability (Plant, 2001; Pinter et al., 
2003). However, the real embracement of this technology by commercial field/industrial crops or fruit 
production industries has been limited to cutting edge growers. Stark (2014) untangle this limited 
technology adoption to some serious satellite or airborne drawbacks. In comparison to space- or air- 
borne images, Unmanned Aerial Vehicle (UAV) has the ability to provide data at a higher temporal 
resolution, lower economic cost, avoid cloud obstructions, and provide more flexible data acquisition, 
while keeping high accuracy potential.  

The development of the aircraft itself among the UAV industry has grown by leaps and bounds during 
the last decade. However, despite the vital importance of data quality, development of UAV 
applications has been relegated by the industry to a secondary place of importance. This, lag behind 
the ability to turn the acquired images quickly into usable data. Under this scenario, Sensilize’s Robin 
System was developed to fill this gap, following a careful design process that included system 
engineering, optical planning and application algorithms. This design was an application-driven 
process focused on agricultural and natural environments, selecting specific wavelengths for 
vegetation mapping and relevant optics to reach suitable spatial resolution. In addition to the 
discussed limitations of satellite images, the fact that most products that service providers and even 
researchers offer growers and field managers are still based on the well-known Normalized 
Difference Vegetation Index (NDVI), has not helped in the technology adoption. NDVI can be a good 
approach for estimating vegetation condition when low to medium biomass is present. However, it is 
limited at high biomass due to signal saturation (Aparicio et al., 2002; Hansen & Schjoerring, 2003; 
Pimstein et al., 2007; Gittelson, 2011). In this respect, during the last decade the high sensitivity of 
the optical range between red and near infrared wavelengths (i.e. the red-edge of the vegetation 
spectrum) even for high biomass conditions has been raised. Several indices based on this range 
have shown strong correlation with biomass, LAI and Chlorophyll content in various crops such as 
wheat, corn and soybean, among others (Viña et al., 2004; Schlemmer, et al. 2005; Pimstein et al., 
2007). 

Additionally, growers and agronomist are now demanding for more actionable information than the 
regularly accepted spatial variability maps (e.g. zone managements). Nellis et al. (2009) raised the 
importance of the role that this technology is capable to bring into crop management by providing 
quantitative information as vegetation cover, chlorophyll content and LAI. The most common 
approach for retrieving crop biophysical characteristics (BPCs) is to relate them to one or more 
vegetation indices (VIs) through an empirical relationship that can be later applied to crops that were 
grown under similar conditions. On this regard, Hatfield et al. (2008) concluded that this approach is 
valid only under conditions similar to those at the time the correlation was established, so the 
relationship is broken when the BPCs values escape from the calibration. In addition, in order to 
obtain significant variability in the calibration of this relationship, complex field trials with combined 
factors are required. 

An additional approach refers to the inversion of synthetic reflectance data (SRD), which retrieve the 
BPCs that define the SRD directly from the image reflectance value for each pixel (Verhoef & Bach, 
2003). This approach is based on the comparison of simulated images with actual remotely sensed 
images so to retrieve the crop’s parameter by means of a feedback loop. For doing so, strong 
computation resources are needed, which limits its application for an operational service for growers. 
Alternatively, SRD’s are used for simulating reflectance at different vegetation conditions, and later 
building empirical relationships between VIs and BPCs from these simulations. This combined 
approach have been tested in several field crops and open tree crops showing high accuracy on the 
retrieval of LAI and chlorophyll content from hyperspectral images (Haboudane et al., 2004; Zarco-
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Tejada et al., 2004).  

Moreover, among growers all over the globe there is a constant request that beyond the 
characterization of the field spatial variability, it is needed to develop algorithms that incorporate both 
spectral and agronomic parameters to provide economically viable, practical products. According to 
Nellis et al. (2009), in order to make use of the biophysical properties in a practical manner and to 
see remote sensing gaining wide acceptance and use, the remotely sensed products must be linked 
to a set of ‘agronomic indicators’. 

The main objective of this study was to validate the crop biophysical parameters retrieved using the 
selected LUT functions from two Robin Eye images that were acquired over wheat crop in South 
Africa during the southern winter season of 2015.  

Materials and Methods 
The present work was based on previous development of Look-Up-Tables (LUT) functions for the 
retrieval of biophysical crop characteristics (BPCs) from multispectral images. These LUT considered 
a wide range of vegetation conditions, varying the different model’s input parameters so to evaluate 
vegetation algorithms and establish the most robust empirical function for the different BPCs. The 
main factors that are considered in the used canopy synthetic reflectance data are Leaf Area Index 
(LAI), Leaf Angle Distribution (LAD) and soil and leaf reflectance. During 2015 growing season, two 
Robin Eye flights were performed over a wheat field in South Africa from where crop samples were 
obtained to validate the results of the developed algorithms. 

In order to test the LAI and Chlorophyll algorithms, two flights were performed over a pivot irrigated 
wheat field in the Northern Cape South Africa, on 08-Sep-15 and 06-Oct-15. Because large areas of 
the field that had poor emergence, the grower decided to reseed almost 75% of the field. Only a 
center strip of 130 m width showed good emergence and was therefore left with no reseeding. The 
first flight happened about 5 days after the emergence of the reseeded area. By the time of the 
second flight, the whole field had reached homogeneous full coverage. Flying height was about 100 
m above ground (~10 cm ground pixel size) with an overlapping of at least 70%, both along- and 
cross-track. Pre-processing correction and mosaic building was performed using Sensilize 
proprietary Local Robin Processor (LRP) software. More details about LRP characteristics and 
capabilities can be found in Sensilize newsletter (http://sensilize.com/wp-
content/uploads/2015/01/newsletter-sensilize-Jan16.pdf). LRP output correspond to a geo corrected 
and geo referenced reflectance multispectral mosaic, ready for computing any VI and/or alternate 
algorithm. All this post-processing was performed with Sensilize automatic processing routine that is 
written in IDL. 

  
Figure 1. LAI sensitivity analysis – Reflectance at different LAI levels. 
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Results and Discussion 
In order to be able to generate accurate functions that suits crops conditions at critical phenological 
stages, it is needed to limit the range of alternatives to generate the synthetic data. The data was 
designed for comparing the sensitivity to different LAI and canopy architecture. Figure 1 shows the 
sensitivity to biomass development up to LAI=3, noticing a reduction in red range and increase in the 
NIR range while increasing LAI. 

 

VIs vs LAI 
The relationship between the analyzed VIs and LAI followed an exponential curve with lack of 
sensitivity after LAI of 4, matching what has been reported by several authors (Aparicio et al., 2002; 
Hansen & Schjoerring, 2003; Pimstein et al., 2007; Gittelson, 2011). Figure 2 shows the relationship 
between LAI and VI for Sensilize’s red edge index and for NDVI that is the most commonly used VI 
for monitoring biomass development. As can be seen, Sensilize’s red edge index shows a higher 
sensitivity than NDVI given by the wider value range and the fact that Red Edge saturates only at LAI 
4, while NDVI at LAI 3 does not show non variability. All this resulted in a higher coefficient of 
determination between the index and LAI.  

  

 
Figure 2. LAI vs. VI relationship. The horizontal variability of the VI values at a certain LAI shows the sensitivity to variability of 

leaf parameters (e.g. LMA and Cab) 

 

Using only the data with LAI between 0 and 4, empirical functions were created for vegetation 
indices, which were applied into a new synthetic data for validation purposes. As can be seen in 
Figure 3 (left), both NDVI and Red Edge indices shows high level of accuracy for LAI 0 to 4, showing 
that NDVI reached saturation slightly before the Red Edge. This was confirmed when analyzing the 
slope of these relationships, clearly showing that NDVI reached slope zero (saturation) at LAI 3, 
while Red Edge index did not reach slope zero. 
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Figure 3. Measured vs. Predicted LAI validation of NDVI and Sensilize’s Red Edge (left). Measured/Predicted slope for both 

indices for increasing LAI (right) 

VIs vs Chlorophyll 
Synthetic data was used for analyzing the relationships between the VI’s and the Chlorophyll content. 
All the VIs showed a linear relationship with Chlorophyll content. However, this relationship is 
strongly affected by variable LAI, decreasing the slope until reaching a constant value for LAI larger 
than 3. This is explained by the fact that the Chlorophyll energy absorption is mainly located in the 
blue and red range of the spectrum that reach maximum absorption levels at those LAI values. As 
can be seen from Figure 4, a differentiated function should be applied for variable LAI until 3, while a 
unique function applies for conditions of higher biomass development. This approach suits the 
previously discussed capabilities of Sensilize’s Red Edge index for monitoring high levels of LAI.  

As can be seen from Figure 4 (left), when selecting all the data with LAI bigger or equal than 3, it can 
be generated a general formula that precisely fit all the data (R2 = 0.98). This Cab/VI function was 
applied to an independent validation dataset (different set of the model parameters). Considering that 
Chlorophyll content of field crops with LAI between 3 and 7 is relatively constant around 45 µg cm-2 
(Gandia et al. 2007), the validation of this function was limited to narrower range (35 – 65 µg cm-2). 
As can be seen from Figure 4 (right), the use of Sensilize’s Red Edge for LAI bigger than 3, showed 
high levels of accuracy and low error. 

 
Figure 4.(Right) Chlorophyll content (Cab) vs. VI calibration. The presented VI Cab function is based on all the data of LAI >= 3. 

(Left) Validation of Sensilize’s Red Edge function for predicting Chlorophyll content 
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LAI and Chlorophyll Validation on Robin Eye image 
For the retrieval of LAI and Chlorophyll content, the developed algorithms were applied to the 
resulting reflectance mosaic of the wheat field. 

For validating these products, 5 samples were collected from the field on September 14th 2015 for 
Nitrogen concentration and dry biomass. As mentioned, the field showed lack of homogeneity during 
emergence, so the location for collecting the samples was defined before reseeding by the field 
managers so to try to understand the source of this non-uniformity. Figure 5 shows the samples 
distribution among the field over the RGB mosaic acquired on 08-Sep-15 over an archive satellite 
image of the area. As can be seen, samples M03 and M05 shows the highest biomass because they 
were acquired from the central strip that was not reseeded. On the other hand, the nitrogen 
concentration does not show significant fluctuation between the samples. 

 

  
Figure 5. RGB Robin Eye mosaic acquired on 08-Sep-15. Inset present the lab analysis of the samples that were acquired on 14-

Sep-15 

 

After computing reflectance for each flight, the selected algorithms for LAI and Chlorophyll content 
were applied to each image. Figure 6 shows the Chlorophyll and LAI products for each acquired 
image. As can be seen, the field completely recovered after re-seeding, showing no differences 
between the central strip and the rest of the field during the second acquisition image. Interesting to 
see in the second image the weaker development around the center of the pivot, suggesting a strong 
lack of homogeneity in the water distribution along the pivot. For validating these algorithms a buffer 
of 600 pixels (~1.5 m radius) was selected around the location of the ground samples. The 
importance of this is to reduce GPS errors between the one used during ground sampling and one on 
board the UAV. The LAI and Chlorophyll content values were retrieved from each of the images and 
the average of the buffer was computed for each sample. Figure 7 shows the relationship between 
lab samples and the retrieved data from the first image (closest to the date when the lab samples 
were collected). From this figure, it can be seen an almost perfect match between biomass and LAI, 
confirming that the LAI product it is a reliable product for early stages of development. In order to 
match the units of the nutritional analyses and the retrieved biophysical parameters, the total nitrogen 
content was computed. This way, the overall nitrogen available per surface unit is compared to the 

Sample Dry Biomass 
(g/m2)

%N (gN/g 
Biomass)

M01 203 5.60
M02 529 6.05
M03 808 5.64
M04 164 5.39
M05 602 5.85
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total chlorophyll content per surface area that it is retrieved from the canopy reflectance models. As 
can be observed in Figure 7, the total nitrogen content and the Chlorophyll content shows an almost 
perfect fit with the data from the first image. This explains the fact that for this flight the LAI and 
Chlorophyll content show a very similar distribution pattern, making it very clear here that the main 
limiting factor is more related to biomass development and not to nutrient condition. For this reason, 
the field managers decided to undergo a deep review of the pivot homogeneity, but not to apply 
additional nitrogen as side dressing. The importance in the retrieval of these biophysical parameters 
is the fact that more and more researchers and growers are adopting local agronomical models as 
integral part of their operational decision process, optimizing the economical results of a certain field 
along the season. One example is a Decision Support System that is currently being applied among 
wheat growers of the northern Negev desert in Israel (Bonfil et al., 2004). Depending on the water 
and nitrogen plant condition during expansion of flag leaf (before heading), plus rain forecast for the 
following weeks, this DSS recommends whether to apply more nitrogen or not so to improve grain 
quality and yield, or to interrupt earlier the crop for hay. Similar approach is starting to be applied in 
Corn management, were nitrogen side dressing is being applied at the end of the vegetative stages 
in order to ensure a good nitrogen availability in the soil towards grain filling stages (Mulvaney et al., 
2006). Therefore, identifying those areas among the field with different nutrient condition is crucial for 
defining a variable rate side dressing application.  

 

  
Figure 6. LAI and Chlorophyll content computed from developed algorithms onto both acquired Robin Eye images, North Cape, 

South Africa. 
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Figure 7. LAI and Chlorophyll content relationship with Biomass, Nitrogen concentration and total nitrogen content. 

 

Conclusions  
Spectral simulations of different crop canopy conditions through the use of synthetic data enabled the 
development of empirical functions for the retrieval of wheat Leaf Area Index and Chlorophyll 
content. In addition, this approach gives accurate information about the sensitivity and variability of 
the crop’s condition and response without the need of running many field trails.  

After applying these empirical functions to images acquired by Robin System, it is possible to 
generate accurate spatial information about the crop’s condition through the models’ quantitative 
parameters. These parameters are important crop’s indicators for being applied in the decision 
making process during the growing season.  

References 
Aparicio, N., Villegas, D., Araus, J. L., Casadesus, J. & Royo, C. (2002). Relationship between growth traits and spectral 
vegetation indices in Durum Wheat. Crop Science, 42, 1547-1555. 

Bonfil, D.J., Karnieli, A., Raz, M., Mufradi, I., Asido, S., Egozi, H., Hoffman, A. & Schmilovitch, Z. (2004). Decision support 
system for improving wheat grain quality in the Mediterranean area of Israel. Field Crops Research, 89, 153-163.  

Gitelson, A. A. (2011). Remote Sensing estimation of crop biophysical characteristics at various scales. In: Thenkabail, P. S., 
Lyon, J. G. and Huete, A. (Eds.), Hyperspectral Remote Sensing of Vegetation, (pp. 329-358), Taylor and Francis. 

Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. & Strachan, I. B. (2004). Hyperspectral vegetation indices and 
novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. 
Remote Sensing of Environment, 90, 337-352. 

Hansen, P. M. & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops 
using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86, 542-
553. 

Mulvaney, R.L., Khan, S.A. & Ellsworth, T.R. (2006). Need for a Soil-Based Approach in Managing Nitrogen Fertilizers for 
Profitable Corn Production. Soil Science Society of America Journal, 70,172–182 

Nellis, M.D., Price, K.P. and Rundquist, D. (2009). Remote Sensing of Cropland Agriculture. Papers in Natural Resources. 
Paper 217. http://digitalcommons. unl.edu/natrespapers/217 

Pimstein, A., Karnieli, A. & Bonfil, D. J. (2007). Monitoring of wheat and maize crops based on ground spectral measurements 
and multivariate data analysis. Journal of Applied Remote Sensing, 1,013530. 

Pinter, P. J., Hatfield, J. L., Schepers, J. R., Barnes, E. M., Moran, M. S., Daughtry, C. S. & Upchurch, D. R. (2003). Remote 
sensing for crop management. Photogrammetric Engineering and Remote Sensing, 69(6), 647-664. 

Plant, R. E. (2001). Site-specific management: the application of information technology to crop production. Computers and 
Electronics in Agriculture, 30, 9-29. 

R² = 0.9703

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50

To
ta

l N
 c

on
te

nt
 (g

/m
2 )

Chlorophyll Content (µg/cm2)

R² = 0.9331

0
100
200
300
400
500
600
700
800
900

1000

0.0 0.5 1.0 1.5

D
ry

 B
io

m
as

s (
g/

m
2 )

LAI



Proceedings of the 13th International Conference on Precision Agriculture 
July 31 – August 3, 2016, St. Louis, Missouri, USA Page 10 

Stark, R. (2014). Thoughts on New Technology in Agriculture: Unmanned Aircraft Systems, The Farmer’s edge, 19(5), 1 -12. 
www.hurleyandassociates.com 

Schlemmer, M. R., Francis, D.D., Shanahan, J.F. & Schepers, J. S. (2005). Remotely Measuring Chlorophyll Content in Corn 
Leaves with Differing Nitrogen Levels and Relative Water Content. Agronomy Journal, 97,106–112. 

Seelan, S. K., Laguette, S., Casady, G. M. & Seielstad, G. A. (2003). Remote sensing applications for precision agriculture: A 
learning community approach. Remote Sensing of Environment, 88, 157-169. 

Verhoef, W. & Bach, H. (2003). Remote sensing data assimilation using coupled radiative transfer models. Physics and 
Chemistry of the Earth, 28, 3-13. 

 Viña, A., Gitelson, A. A., Rundquist, D. C., Keydan, G., Leavitt, B., & Schepers, J. (2004). Monitoring Maize (Zea mays L.) 
Phenology with Remote Sensing. Agronomy Journal, 96, 1139-1147. 

Zarco-Tejada, P. J., Miller, J. R., Morales, A., Berjon, A., & Aguera, J. (2004). Hyperspectral indices and model simulation for 
chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 90, 463-476. 


	Retrieving crops’ quantitative biophysical parameters through a newly developed multispectral sensor for UAV platforms
	A paper from the Proceedings of the
	13th International Conference on Precision Agriculture
	July 31 – August 4, 2016
	St. Louis, Missouri, USA
	Introduction
	Materials and Methods
	Results and Discussion
	VIs vs LAI
	VIs vs Chlorophyll
	LAI and Chlorophyll Validation on Robin Eye image

	Conclusions
	References

