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Abstract. Precision agriculture is a practical approach to maximize crop yield with optimal use of 
rapidly depleting natural resources. Availability of specific and high resolution crop data at critical 
growth stages is a key for real-time data driven decision support for precision agriculture 
management during the production season. The goal of this study was to evaluate the feasibility of 
using small unmanned aerial system (UAS) integrated remote sensing tools to monitor the abiotic 
stress of eight irrigated pinto beans (Phaseolus vulgaris L.) with varied irrigation and tillage 
treatments. A small UAS integrated with a multispectral and an infrared thermal imaging camera was 
used to collect data of bean field plots on 54, 76 and 98 days after planting (DAP). Indicators such as 
green normalized vegetation index (GNDVI), canopy cover (CC, ratio of ground covered by crop 
canopy to the total plot area) and canopy temperature (CT, °C) of crops were extracted from imaging 
data of the two types of sensor. The statistical difference of the developed indictors in crops with 
different treatments was analyzed to show their performance in detecting crop stress. The indicators 
and their combinations of temporal data were also correlated with ground reference yield data to 
validate the effectiveness in stress monitoring. Results show that the GNDVI, CC and CT were able 
to differentiate crop grown under full and deficit irrigation treatments at each of the three growth 
stages. The developed indicators were strongly correlated with crop yield with Pearson correlation 
coefficients (r) of 0.71 and 0.72 for GNDVI and CC, respectively, in the early growth stage (54 DAP). 
Canopy temperature also showed high correlation with yield with r of 0.84 at 76 DAP and 0.77 at 98 
DAP. Performance of small UAS based indicators in crop yield estimation was improved substantially 
when temporal data of each indicator were used for correlation. Overall, the small UAS based remote 
sensing tool has the potential in rapid crop stress monitoring and management. 
Keywords. Unmanned aerial system; multispectral imagery; thermal imagery; water stress; 
vegetation indices; canopy temperature. 
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Introduction 
Global food security is under extreme pressure from a growing population, which requires an 
increase of 44 million metric tons per year in crop production within the next 35 years (Ray et al. 
2013). However, maintaining crop yield is becoming a challenge under adverse environmental 
conditions, such as shortage of water and rapidly changing climate. For example, about 93% of 
common bean growing areas are subject to water-deficit stress at some time (Devi et al. 2013), and 
drought may cause yield losses up to 80% in some regions (Gallegos and Shibata 1989; Cuellar-
Ortiz et al. 2008). Precision agriculture with important crop management practices including variable 
irrigation, variable fertilization, and reduced soil tillage have critically increased crop yield (Barbera et 
al. 2012; Karlen et al. 2013; Šíp et al. 2013), but site-specific information is needed for improving the 
use efficiency of natural resources and crop management.  

The proper decision making for crop management is facilitated by accurate site-specific crop 
information, which requires timely and high-resolution data for support. Conventionally, crop 
response to different field managements was measured using ground-based sensors, such as 
handheld ceptometer to measure leaf area index (Delalieux et al. 2008) and chlorophyll meter to 
measure leaf greenness (Gitelson, 2004; Taugourdeau et al. 2014). However, ground-based 
methods are often time-consuming and not suitable for large acreage, and may not be adequate to 
acquire sufficient information for crop management.  

The potential of using remote sensing technologies to monitor the temporal and spatial variability of 
crops has been studied for many years (Zhang and Kovacs 2012; Mulla 2013). Common remote 
sensing platforms include satellites, airplanes, balloons and helicopters, and a variety of sensors 
such as multispectral / hyperspectral sensors, thermal sensors and light detection and ranging 
(LiDAR) or radio detection and ranging (Radar) sensors. Such sensors have been integrated with the 
platforms to gather data at a larger scale. Diagnostic information of crops and soil, such as 
vegetation indices, leaf area index and water indices, can be derived from data collected using above 
sensing devices. During the past few years, small unmanned aerial systems (UASs) are attracting 
the interest of researchers and commercial sectors for high-throughput data collection in precision 
agriculture and phenomics. Compared to satellite-based remote sensing, small UASs can collect 
data with higher spatial resolution (up to centimeter) and higher temporal frequency (hourly or daily).  

Small UAS-based remote sensing technologies have been used for the research of yield prediction 
(Swain et al. 2010), stress detection (Elarab et al. 2015), field management (Bellvert et al. 2014; 
Castro et al. 2011; Khot et al., 2016; Tilly et al. 2015) and high-throughput phenotyping in field 
conditions (Sankaran et al., 2015a; Sankaran et al., 2015b). However, the potential of using small 
UAS-based remote sensing technologies to detect the effect of irrigation and tillage on crop yield of 
pinto beans has not been fully studied. Therefore, the objectives of the study were to 1) evaluate 
feasibility of small UAS-based multispectral and infrared thermal imaging for rapid crop stress 
monitoring in irrigated pinto beans, and 2) the usefulness of temporal data in improvement of the 
yield estimation accuracy.  

Materials and methods 

Establishment of experimental plots 
Pinto bean, a market class of common bean (Phaseolus vulgaris L.) was planted in 56 cm rows in a 
sandy loam soil containing 1.3% organic matter at Washington State University research farm near 
Prosser, WA on May 21, 2015. Four irrigation plots of 80.1 m by 12.2 m in dimension with 4.6 m 
buffers were scheduled with two irrigation levels, full (100%) irrigation and deficit (50%) irrigation. 
The plots were irrigated using linear move low energy spray application technique with nozzles 
spaced 1.5 m and just above the crop canopy. Each irrigation plot was spilt into four tillage plots in 
dimension of 18.3 m by 12.2 m with 2.3 m buffers and prepared with two tillage treatments, i.e. 
conventional and strip tillage. A preceding cover crop of fall-planted winter wheat was killed with 
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glyphosate in early April, 2015. Conventional tillage consisted of disking twice and a final pass with 
Lely power harrow with a packer. Strip tillage consisted of tilling a 30 cm wide strip over each row to 
be planted using double disk row cleaners, a chisel shank in the crop row, and rolling packer 
baskets. Final tillage in all plots occurred 15 days before bean planting.  

Within each tillage plot, eight subplots of 4.6 m by 6.1 m were used to plant eight cultivars of pinto 
bean based on randomized complete block design (RCBD). Overall, each pinto bean cultivar was 
repeated four times on 16 subplots with two irrigation levels and two tillage treatments, resulting in 
128 subplots in total. The details of the eight pinto bean cultivars are listed in Table 1. All plots were 
fully irrigated to replace evapotranspiration (ET) until 30 days after emergence at which time two 
irrigation treatments were implemented and applied to different plots until senescence (September 
11, 2015). ET was estimated and weather data recorded from WSU AgWeathernet 
(weather.wsu.edu) station located near field plots. Plots were irrigated 2 to 3 times per week with the 
full irrigation treatments designed to replace 100% ET while deficit irrigation treatments received half 
as much irrigation during each irrigation event. The full irrigation treatments received 53 cm of 
irrigation water for the entire growing season, whereas the deficit irrigation treatments received 31 
cm. Total rainfall for the months of May, June, July, August, and September were 1.5, 0, 0, 0, and 4.3 
cm, respectfully. Plots were harvested September 15, 2015 with a growth period of 117 days. 

 
Table 1 Details of the pinto bean cultivars. 

Cultivars Drought tolerance Maturity/senescence 

C1 Susceptible Medium season 
C2 Susceptible Full season 
C3 Intermediate-susceptible Medium season 
C4 Tolerant Full season 
C5 Tolerant Full season 
C6 Tolerant Medium season 
C7 Tolerant Full season 
C8 Tolerant Early season 

Field data collection 
A small UAS was used to collect multispectral and thermal images of the field plots. The small UAS 
(ARF OktoXL 6S12, HiSystems GmbH, Moormerland, Germany) is a remote controlled platform with 
a payload lift capability of up to 4 Kg and flight time up to 20 min using a 6500 mAh Lithium-ion 
polymer battery pack. A radio transmitter (MX20 Hott, Graupner, Stuttgart, Germany) with the range 
of up to 4 km was used to remotely operate the small UAS. A modified multispectral digital camera 
(NiteCanon ELPH110 LDP LLC, Carlstadt, NJ, USA) with near infrared (NIR, 670-750 nm), green (G) 
and blue (B) bands was used for aerial imaging. The camera was mounted onto a gimbal underneath 
the small UAS that is capable of automatically adjusting the nick and roll shifts to the pre-set 
orientation during flight. A firmware was used to enable geo-referenced interval shooting to acquire 
images every 5 s during waypoint navigated flights. The captured 8-bit JPG images with the 
resolution of 16.1 megapixels (4608 × 3456) were stored to an on-board camera SD card. During 
above flights, an infrared thermal imaging sensor (Tau 640 uncooled cores, Flir Systems, Goleta, CA, 
USA) combined with a custom designed ThermalCapture hardware (TeAx Technology UG, 
Wilnsdorf, Germany) with pre-define sampling interval of 3 s was used in this study. The thermal 
camera has a resolution of 640×512 with a field of view (FOV) of 32°×26° (19 mm lens). The thermal 
camera was powered using a portable 5 VDC battery. 

To reduce the influence of light variation and shade on the image quality, all the images were 
acquired at solar noon time with the least shade of plants in clear sky. A reference reflectance panel 
(Micasense, Seattle, WA, USA) was placed on the ground in the imaging area to correct the diffuse 
of reflectance during post-processing of images. The optimal flying altitude was set as approximately 
105 m above ground level based on the preliminary tests in previous research (Sankaran et al., 
2015a), resulting the spatial resolution of 3.5 and 9.4 cm·pixel-1 for multispectral camera and thermal 
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camera respectively. The images taken at the predefined altitude covered the experimental field plots 
including the reference board. Images were collected at three growth stages, i.e. on July 14, August 
5 and August 26, 2015, which were 54, 76 and 98 days after planting (Table 2). These collection 
dates represented three distinct crop growth stages for measuring crop response. Early stage 
imaging represented bloom stage and early pod development of the crop nearing canopy row 
closure. Mid stage imaging represented mid to late pod fill stage and full row closure of the canopy, 
and late stage imaging represented mature pod stage with pods beginning to yellow (desiccate).  

 
Table 2 Aerial data collection and field management with respect to days after planting (DAP). 

Activities/Plant stage Sensor Date (2015) DAP 

Planted -- 5/21 -- 
Irrigation levels initiated -- 6/26 36 

Early stage imaging Multispectral 7/14 54 
Mid stage imaging Multispectral + thermal 8/05 76 
Late stage imaging Multispectral + thermal 8/26 98 

Ground reference yield -- 9/15 117 

Image processing and data analysis 
Pinto beans with different irrigation and tillage treatments may show difference in vegetation indices, 
visible canopy size and canopy temperature. The selected vegetation index in this study was green 
normalized difference vegetation index (GNDVI), which has been widely used as a reliable index for 
indicating the crop canopies vigor (Gitelson et al., 1996; Khot et al., 2016). The average value of 
GNDVI of each plot was extracted with a customized algorithm developed using Matlab® (2014a, The 
MathWorks, MA, USA) with the following processing protocol: (1) Separate multispectral images into 
three bands of NIR, G and B; (2) Adjust the pixels of three bands with the difference between 255 
and the maximum pixels of the reference board; and (3) Calculate GNDVI and removing background 
(soil) with a threshold. Thresholding was based on the assumption that crops reflect more NIR and 
absorb more G, resulting in substantially higher GNDVI for crops than that for soil. In the end, 128 
subplots were segmented from GNDVI images by evenly splitting one tillage plot into eight subplots, 
and the average GNDVI of each subplot was calculated. Also, the number of pixels with value over 
zero (visible crop canopy) in each subplot was counted to calculate the canopy cover using the 
following equation (Trout et al. 2008): 

𝐶𝐶 =  𝑁𝐶
𝑁𝑃

  (1) 

where CC is canopy cover of a subplot, NC and NP are the number of pixels over zero and the overall 
number of pixels for a subplot, respectively. Canopy cover is considered as an indicator of light 
interception and was used to relate to crop yield and water use (Grattan et al. 1998; Neale et al. 
2005; Trout et al. 2008). 

Crop canopy temperature is also closely related to crop stress/water requirement (Jackson et al. 
1977; Wang et al. 2016), crop yield (Irmak et al. 2000) and chlorophyll concentration (Elarab et al. 
2015). To evaluate the potential of thermal images in the detection of crop stress, crop canopy 
temperature (CT) was extracted using the similar image processing protocol as that of multispectral 
images. The crop canopies were segmented by removing the background (soil), which had higher 
temperature than crops, from thermal images. The average temperature of all plants in each subplot 
was calculated as a potential parameter to monitor crop stress and estimate crop yield.  

The statistical analysis of GNDVI, CC and CT of each subplot was performed using SAS® (9.2, SAS 
Institute, Cary, NC, USA). The treatment effects were assessed using ANOVA (‘PROC GLM’) 
analysis with the least square mean difference (‘LSMEANS/PDIFF’) option to compare the treatment 
at 0.05 level of significance. The correlation of the calculated indicators of GNDVI, CC and CT with 
yield data (ground truth) was performed using ‘PROC CORR’ procedure with ‘Pearson’ option. 
Meanwhile, a linear regression analysis (‘PROC REG’) was conducted between yield data and a 
temporal combination of GNDVI, CC and CT at different growth stages to test the potential. The 
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output trends were plotted using SigmaPlot® (11.0, Systat Software, San Jose, CA, USA). 

Results and discussion 

Crop stress monitoring using multispectral imaging 
Pinto bean cultivars under two irrigation levels and two tillage methods had different response in 
GNDVI, CC and CT. The means of GNDVI of all bean cultivars under different treatments at 54, 76 
and 98 DAP are shown in Fig. 1a. Overall, ANOVA analysis showed no significant difference 
between GNDVI means of two tillage treatments under full irrigation in all three growth stages. 
However, the pertinent treatments resulted in significantly different vigor (i.e. GNDVI) of crops under 
deficit irrigation level at 54 DAP. Pinto beans in strip-tilled plots had more vigor than those in 
conventional-tilled plots under deficit irrigation in the early growth stage, but the effect lessened as 
the crop approached maturity. The ANOVA suggests that the interaction effect of irrigation and tillage 
was not significant on GNDVI at any of the three growth stages, with p-values of 0.21, 0.09 and 0.85 
at 54, 76 and 98 DAP, respectively. The irrigation level had significant effect (p < 0.0001) on vigor at 
three growth stages with the means of GNDVI in fully irrigated crops (0.25 ± 0.05 [mean ± s.d.], 0.29 
± 0.03 and 0.22 ± 0.04 at three growth stages, respectively) were significantly higher than those with 
deficit irrigation (0.16 ± 0.06, 0.25 ± 0.04 and 0.17 ± 0.03). Overall, the multispectral imaging derived 
GNDVI had the ability to distinguish crops with full irrigation and deficit irrigation (drought stress) at 
all three growth stages studied in this research. 

 
Fig. 1 Mean values of (a) GNDVI and (b) canopy cover of all bean cultivars under four irrigation-tillage treatments at three growth 

stages specified as days after planting (DAP). The letters signify difference between means of irrigation-tillage treatments 
associated GNDVI or canopy cover evaluated separately for respective growth stages.  

 

Similar patterns were observed in canopy cover of pinto bean cultivars with different treatments, as 
shown in Fig. 1b. Canopy cover was not significantly different within different tillage treatments in full 
irrigation at all three growth stages. However, canopy cover was significantly lower in bean cultivars 
with deficit irrigation and conventional tillage than that of fully irrigated beans with both tillage 
methods. Up to 76 DAP, the effect of tillage was significant for the cultivars with deficit irrigation 
suggesting that tillage method may affect the growth of pinto beans more under the water stress than 
non-stress condition. In the late season (senescence stage), bean plants were brown. Less 
chlorophyll content in leaves at senescence resulted in less reflectance in NIR channel, which 
reduced the GNDVI difference between crops for the two tillage methods. Overall, the canopy cover 
of the bean plots increased from 0.80 ± 0.19 at early stage (54 DAP) to 0.95 ± 0.72 at mid growth 
stage (76 DAP) and saturated to 0.94 ± 0.69 at late growth stage (98 DAP). The canopies were not in 
full row closure in early stage resulting in lower canopy cover than that of fully closed canopies in mid 
and late growth stages. Thus, canopy cover might be a useful indicator for crop stress monitoring 
during early growth stage, but inadequate during the late stages. 

The performance of GNDVI and canopy cover in yield estimation was evaluated by correlating them 
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with ground reference yield data. The average yields of all bean cultivars were 5332.1±722.4, 
5712.3±731.9, 2661.3±1330.6 and 3032.0±1292.6 kg·ha-1 under the treatments of full irrigation-
conventional tillage, full irrigation-strip tillage, deficit irrigation-conventional tillage and deficit 
irrigation-strip tillage, respectively. ANOVA analysis shows that the overall yield of fully irrigated 
crops was significantly higher than that of deficit irrigated crops, regardless the tillage method. 
However, there was no significant difference between yields of crops with different tillage methods in 
each irrigation level. The correlation coefficients between yield and the developed indictors are 
reported in Table 3. The overall correlation between crop yield and average GNDVI within the whole 
field was strong (r = 0.71) at the early growth stage (45 DAP) compared to 76 and 98 DAP where the 
respective r values were 0.54 and 0.55. Similarly, CC was strongly closely related to crop yield in 
early growth stage with a higher r (= 0.72) than that of later stages (Table 3). Key reason for the 
lower correlation might be the saturation of the GNDVI at later growth stages. Also, varied crop yields 
for different cultivars could have contributed to the above effect as well. Furthermore, the correlation 
coefficients of GNDVI within each bean cultivar had larger variation with r ranged from 0.50 to 0.92 
for 54 DAP, 0.30 to 0.83 for 76 DAP and 0.64 to 0.84 for 98 DAP (Table 3). Similar patterns were 
also observed in the correlation coefficients of CC. Note that understanding the effect of cultivars on 
the crop yield is beyond the scope of this study.  

  
Table 3 Pearson correlation coefficients (r) between pinto bean yield and aerial image derived indicators of GNDVI and canopy 

cover (CC) with respect to three growth stages. 

Cultivars 
Pearson correlation coefficient (r) 

GNDVI CC 
54 DAP 76 DAP 98 DAP Combined 54 DAP 76 DAP 98 DAP Combined 

C1 0.86 0.82 0.70 0.94 0.89 0.79 0.63 0.95 
C2 0.86 0.64 0.82 0.97 0.82 0.43 0.49 0.95 
C3 0.61 0.48 0.64 0.80 0.46 0.49 0.37 0.72 
C4 0.81 0.83 0.84 0.88 0.78 0.56 0.77 0.98 
C5 0.92 0.51 0.67 0.97 0.89 0.50 0.30 0.95 
C6 0.50 0.30 0.70 0.70 0.44 0.18 0.25 0.88 
C7 0.84 0.78 0.83 0.91 0.84 0.71 0.60 0.94 
C8 0.80 0.75 0.70 0.94 0.80 0.60 0.56 0.93 

Overall 0.71 0.54 0.55 0.85 0.72 0.46 0.37 0.82 

 

Performance of the developed indicators towards representation of crop yield was increased 
substantially when data from different growth stages were combined. Overall, correlation with yield 
increased to 0.85 and 0.82 using the combined GNDVI and CC, respectively, which were higher than 
that in individual stages (Table 3). Meanwhile, the correlation of the combined data with yield for 
each bean cultivar also increased and ranged between 0.70-0.97 and 0.72-0.98 for combined GNDVI 
and combined CC, respectively. In summary, findings indicate that using temporal data of small UAS-
based remote sensing might have higher potential towards crop yield estimation than using individual 
growth stage data. 

Crop stress monitoring using infrared thermal imaging 
Fig. 2 shows a false-color thermal image of the pinto bean test plots acquired at 98 DAP and the 
pertinent effect of irrigation and tillage on the canopy temperature (CT). At either of two growth 
stages, the CT with deficit irrigation was significantly higher than that of plots with full irrigation in 
both tillage methods. ANOVA indicated that the interaction of irrigation and tillage was not 
significantly affecting CT at both mid (p = 0.85 on 76 DAP) and late (p = 0.13 on 98 DAP) growth 
stages. However, the effect of irrigation was significant with p < 0.0001 for both stages, but the tillage 
effect was not significant (p = 0.56 and 0.25 respectively on 76 and 98 DAP). Thus, CT had the 
ability to distinguish the crops under different irrigation regimes. Similar to this study, Wang et al. 
(2016) reported that crop temperature derived from thermal images varied due to different irrigation 
treatments at different growth stages. However, the data in the early growth stage was not available 
for analysis and need to be considered to evaluate the earliest potential stage to detect the crop 
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stress. Additionally, the CT may be affected by surrounding micro-climate. The average ground 
surface temperature measured by the thermal images was 41.6 and 38.1 °C at 78 and 98 DAP 
respectively, and overall average CT of crops was 28.5 and 29.5 °C at the corresponding days. 
Resulting temperature differences were 13.1°C and 8.6°C respectively on 76 and 98 DAP, indicating 
the small difference between crop and soil in the late growth stage. The crops in the late growth 
stages have less water content and might have higher CT, which could have reduced the difference 
between crop and soil temperature. 

 

Fig. 2 a False-color infrared thermal image of pinto bean plots acquired at 98 days after planting (DAP). T1 to T4 represent the 
different irrigation levels of full, deficit, deficit and full irrigation, respectively. b Effect of irrigation-tillage treatment on the 

canopy temperature (CT). The letters signify difference between means of irrigation-tillage treatments associated CT evaluated 
separately for respective growth stages. 

The performance of the canopy temperature in the representation of crop stress was also evaluated 
using the correlation between the indicator and ground reference yield data. Table 4 reports such 
correlation coefficients. It shows that the canopy temperature was strongly correlated with crop yield. 
The negative correlation signifies that higher the temperature due to higher canopy stress, lower was 
the crop yield. The overall correlation coefficients were -0.84 and -0.77, with the corresponding 
variation range of -0.71 to -0.92 and -0.77 to -0.93 among pinto bean cultivars at 76 and 98 DAP, 
respectively. When the CC data of two stages were combined to correlate with crop yield, the 
correlation with yield was getting stronger than that of data in individual growth stages. Overall, 
similar to GNDVI & CC, the temporal canopy temperature data showed better potential in crop yield 
estimation. Compared to the pertinent GNDVI and CC data, CT had stronger correlation with yield, 
which might be because former indicators might have saturated in the mid and late growth stages, 
but temperature was sensitive in all growth stages.  

 
Table 4 Correlation coefficients between pinto bean yield and aerial image derived canopy temperature (CT).  

Cultivars 
Correlation coefficient (r): CT vs yield 
76 DAP 98 DAP Combined 

C1 -0.87 -0.87 -0.88 
C2 -0.91 -0.90 -0.93 
C3 -0.89 -0.77 -0.93 
C4 -0.90 -0.85 -0.96 
C5 -0.92 -0.91 -0.96 
C6 -0.71 -0.80 -0.81 
C7 -0.88 -0.93 -0.95 
C8 -0.87 -0.84 -0.88 

Overall -0.84 -0.77 -0.85 

Conclusion 
This study evaluated the performance of multispectral and infrared thermal imagery from low altitude 
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small UAS for rapid/early crop stress monitoring of pinto beans. The small UAS-based low-altitude 
remote sensing technologies exhibited great potential for monitoring the crop stress in pinto beans 
grown under different irrigation and tillage treatments. The results showed GNDVI and canopy cover 
from multispectral camera might be used as crop stress indicators to monitor crops water stress level 
at the growth stage as early as 54 days after planting, which was only 24 days after implementing 
deficit irrigation. Overall, the developed indicators had strong correlation with crop yield in the early 
stage (54 DAP), and combined data from three stages improved the correlation substantially. 
Moreover, canopy temperature derived from thermal images at mid and late growth stages had 
strong correlation with yield in both growth stages, and might be used as a good crop stress/yield 
indicator. Overall, small UAS-based imagery has the potential to rapidly monitor crop stress of pinto 
bean and other row crops. 
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