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Abstract.  
The development of Unmanned Aerial System (UAV) makes it possible to take high resolution 
images of trees easily. These images could help better manage the orchard. However, more 
research is necessary to extract useful information from these images. For example, irrigation 
schedule and yield prediction both rely on accurate measurement of canopy size. In this paper, a 
workflow is proposed to count trees and measure the canopy size of each individual tree. The 
performances of three different methods to classify tree canopies are compared. Then morphological 
methods are used to filter grass patches and separate the trees from each other. Finally, the number 
of trees and the size of tree canopies are obtained. 
Keywords. Tree counting, canopy size measurement, unmanned aerial system (UAV) 
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1 Introduction 
There are quite a few studies on tree inventory.  Jang (2008) discussed how to retrieve raster height 
of apple tree groves using LIDAR. Karantzalos and Argialas (2004) obtained robust counting results 
for well-spaced, non-overlapping olive trees based on aerial cameras. Camargo and Miranda (2009) 
researched a method to count citrus trees and measure the diameters based on satellite images. 
She et al. (2014) proposed a method to count nursery crops based on aerial images.  None of these 
studies provide an approach to count almond trees and estimate the size of tree canopies with the 
help of unmanned aerial system (UAV). 

It has been shown that the size of canopy is related to crop coefficient (Johnson and Scholasch, 
2005) and can be used to optimize irrigation schedule. Motivated by this, we are interested to count 
trees and more importantly, to measure the size of tree canopy of each individual tree. 

2 Materials and Methods 

2.1 Field Description 
This test field is a mature, commercial almond (Prunus dulcis) orchard in Ballico, Merced County, 
California (37.493498°N, -120.634914°W).  Three different varieties were planted on Lovell Peach 
rootstock 15 years ago, spacing at 5.5m*6.1m.  

2.2 UAV and Payload 
The UAV used in this study was built using DIY Quadkit (3DRobotics, Berkeley, USA), modified to 
carry a single camera payload to do the remote sensing. The maximum takeoff weight of the aircraft 
is 2.0 Kg and its flight time is 15 minutes. One modified commercial-off-the-shelve (COTS) near-
infrared (NIR) camera (ELPH110HS, Canon, Japan) was flown from August, 2014 to October, 2015. 
It includes three bands, NIR, green, blue. It has a resolution of 4608*3459, with 24 bit radiometric 
resolution and focal length of 4.3 mm. The aerial image was stitched using PhotoScan (Agisoft, 
Russia).  

2.3 Methods Description 
2.3.1 Ostu Method 

In 1979 Noboyuki Otsu devised a way of easily evaluating the effectiveness of a threshold to produce 
an automated means of threshold selection (Otsu, 1975). This variant of clustering creates tight 
clusters in the hopes of preventing overlap. This is done by altering thresholds, but by increasing the 
spread of one threshold results in the decrease in another threshold. As a rule, one wants to choose 
the threshold that will minimize the combined spread. Through computational analysis Otsu was able 
to come up with the between class variance which could be simplified to: 

                                  𝜎2𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑇)=𝑛𝐵(𝑇)𝑛𝑜(𝑇)[𝜇𝐵(𝑇)−𝜇𝑜(𝑇)]2                             (1)                      

Since the computation for the candidacy of thresholds are not independent of each other when 
moving from threshold to threshold the 𝑛𝐵(𝑇),𝑎𝑎𝑎 𝑛𝑜(𝑇) values can be updated along with their 
cluster means 𝜇𝐵(𝑇),𝑎𝑎𝑎 𝜇𝑜(𝑇) as pixels change location from one cluster to another. Through the 
use of recurrence relations, the aforementioned values can be updated in order to test another 
threshold. In short, Otsu’s method provides a powerful tool for threshold selection which facilitates 
image segmentation.                      

2.3.2 HSV color space 

Hue, Saturation, and Value (HSV) is a three dimensional color space which sees use primarily in the 
generation of computer graphics. In the HSV space Hue represents the color in an image 
represented in some form such as an angle, typically in the 00 to 3600 range. Saturation denotes the 
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span of grey in the HSV color space, usually represented by a range of 0% to 100% where 0% 
represents the color grey, 100% a primary color, and anything in between is a mixture of the two. 
Value is the brightness of a color which is dependent on the amount of saturation present. It too is 
usually within the scale of 0% to 100% in which 0% corresponds to a hue that is completely black 
while one with 100% gives very bright hues. By converting images from the RGB plane into the HSV 
an object’s specific hues, saturation, and Value or intensity in a given image can be exploited to 
isolate the selected image via color segmentation and a threshold mask based either off Hue, 
Saturation, or intensity (Gonzalez and Woods, 2008). 

2.3.3 Gray Level Concurrence Matrix (GLCM) 

The unique texture of an image in question can be harnessed to distinguish it from the textures of 
other objects or even the background when combined with the K-Nearest Neighbor algorithm (Guru 
et al., 2010). This twostep process first requires the use of the Gray Level Concurrence Matrix 
method. This method extracts textural features from a given image and stores them in matrix that has 
the same number of rows and columns that a given image has gray levels (Albregtsen, 2008). The 
GLCM shows how often two pixels i and j representing intensity i and j respectively occur at a given 
pixel distance (∆x,∆y) within a neighborhood denoted by the matrix element P(i, j|∆x, ∆y). Additionally, 
the matrix element P(i,j|d,θ) accounts for changes in the gray levels in i and j at a distance d 
positioned at angle θ. Haralick et al. (1973) developed set of features for classifying pictorial data. 
Specifically, it provides a general technique for the extraction of textural properties from gray-tone 
special-dependency matrices. Haralick, et al. created 14 measures for the extraction of textural 
features. However, Newsam and Kamath (2004) showed that only about five are frequently used 
such as Angular Second Moment (ASM), Contrast (COR), Inverse Different Moment (IDM), Entropy 
(ENT), and Correlation (COR) defined by their respective equations. 

                                                       𝐴𝐴𝐴 = ∑ 𝑃(𝑖, 𝑗)𝑖,𝑗                                                                  (2)                            

                                 𝐶𝐶𝐶 = ∑ |𝑖 − 𝑗|2𝑖,𝑗 𝑃(𝑖, 𝑗)                                                       (3)                                   

                                𝐼𝐼𝐼 = ∑ 𝑃(𝑖,𝑗)
1+|𝑖−𝑗|2𝑖,𝑗                                                               (4)     

                                 𝐸𝐸𝐸 = ∑ −ln (𝑃𝑖,𝑗)𝑃𝑖,𝑗𝑁−1
𝑖,𝑗=0                                                       (5)                                 

                                𝐶𝐶𝐶 = ∑ (𝑖−𝜇𝑖)(𝑗−𝜇𝑗)𝑃�⃗ (𝑖,𝑗)
𝜎𝑖𝜎𝑗𝑖,𝑗                                                      (6)                                                                                                                                                                                   

 

2.3.4 K-NN  

In a paper by Fix and Hodges (1952) an important method regrading nonparametric discrimination 
through the use of consistency properties was conceived. This method deals with, at least in a two 
population case, a random variable Z with value z that is present within some space that is p 
dimensional based of the distribution of the two populations denoted by F and G. It is possible to 
discriminate between the two populations with training samples (X1,X2,…,Xm) and (Y1,Y2,…,Ym) 
from populations F and G respectively.  The density in each population is denoted f and g. If the 
values of population F and G are known, then the classification of a sample point at z is given by the 
likelihood ratio: 

                                                                               

                                          𝜄(𝑧) = 𝑓(𝑧)
𝑔(𝑧)

                                                                       (7)                                                                          

However, if the values of the given populations are unknown then it is commonly assumed that f and 
g are part of a parametric family in which estimates of f and g can be made for insertion into equation 



Proceedings of the 13th International Conference on Precision Agriculture 
July 31 – August 3, 2016, St. Louis, Missouri, USA                                                                                                             Page  3 
 

(7). Fix and Hodge’s method instead assumes that f and g satisfy specific smoothness assumptions 
(Silverman et al., 1989). From this observation Fix and Hodge were able to devise two methods of 
nonparametric discrimination through the use of density estimates one of which is the variant of 
nearest neighbor density estimation used in this study. This nearest neighbor variant method makes 
use of the naïve kernel density estimate given by: 

                                                       𝑓(𝑧) = 𝑚−1∑ 𝐾𝑚(𝑋𝑖 − 𝑧)𝑚
𝑖=1                                                  (8)                                                                                                                                                         

to produce an estimate for density f by choosing a neighborhood ∆m that is just large enough to 
encompass a given number of k points in a sample. The new neighborhood now denoted by ∆m,n 
aids in the creation of an estimate for density g. Eventually, these values are used to create a 
nearest neighbor regression estimate based of the value of k, where k denotes the number of 
nearest neighbors to include in the discrimination process. The varying values of k determine what 
class a specific point in question will be assigned. A k value of 1 will classify this point based on its 
nearest neighbor while a k value that is larger than 1 will base the classification off which neighbor is 
present in majority of all possible neighbors. In this manner the K-Means Nearest neighbor provides 
a powerful method for object classification.  

3 Results and discussion 
The test image for this paper was taken in May 20th, 2015, as show in Fig 2.(a). In this paper we 
tried two types of classification methods to differentiate trees from non-tree parts. One of the 
methods is unsupervised the Otsu threshold method. The other two are supervised methods based 
on histogram similarity in HSV color space and text features described by GLCM. 20 samples are 
prepared as model samples for supervised classifications, including 10 tree samples, 2 shade 
samples, 3 soil samples and 5 grass samples. All these samples are of size 10*10. It is clear that 
grass and trees have almost the same color, so the grass samples account for 50 percent of non-tree 
samples.  All the 20 samples are displayed in Fig. 1. In addition to 20 model samples, there are 
another 100 samples selected to test the classification performance, composed of 50 tree samples 
and 50 non-tree samples. 

3.1 Classification 

 
Fig 1. Model Samples, including 10 tree samples,  

2 shade samples, 3 soil samples and 5 grass samples. 
 

3.1.1 Otsu method 

According to the fact that the difference of crops between NIR and blue is larger than that of soil, the 
original image is converted to a gray image by taking the difference between NIR band and blue 
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band. The threshold is calculated based on the large image Fig.2(a) using the Otsu method. For 
each test sample, if the number of pixels, whose intensity are larger than the threshold, is greater 
than 50, then this sample is classified as a tree sample. Otherwise, it is marked as a non-tree sample. 
According to the results (Table 1), all the tree samples are predicted as trees. The problem is that, 
however, more than 40 non-tree samples are recognized as trees, which will introduce a big trouble 
to measure the size of tree canopies.  

Table 1. Classification performance of Ostu method. 
Ostu (grey image ) Tree(Predicted) Non-tree(Predicted) 
Tree(Real) 50 0 
Non-tree(Real) 40 10 

3.1.2 HSV histogram 

The RGB color space is nonlinear and it is better to convert the image from RGB to more uniform 
color space HSV. First all the samples are converted to HSV color space. Then, histograms of all the 
samples in H, S, V are calculated individually. The histograms are divided into 32 bins and each bin 
cuts 3.125 (1/32) percent of the range of H, S, V intensity.  The empty bins are set to one to make 
the definition of distance between histogram distributions applicable according to Kullback’s minimum 
cross-entropy principle (Equation. (9)). The distances of H, S, V are added together as the overall 
distance between model samples and test samples. Finally, K-NN is applied to predict the label of 
the sample, where k is 5 in the test. 

𝐷(𝑠,𝑚) = ∑ 𝑠𝑖𝑙𝑙𝑙
𝑠𝑖
𝑚𝑖

𝑛
𝑖=1                                                                                                (9) 

It shows that (Table 2) HSV method helps filter non-tree pixels, where only 10 non-tree samples are 
labeled as trees, although it increases the possibility to classify tree pixels as non-tree pixels at the 
same time. Further check indicates that all the non-tree samples recognized as tree samples are 
grass samples, which means grass and trees have similar color even in HSV space. 

Table 2. Classification performance of HSV method. 
HSV Tree(Predicted) Non-tree(Predicted) 
Tree(Real) 45 5 
Non-tree(Real) 10 40 

 

3.1.3 GLCM+HSV histogram 

In order to get better classification accuracy, we also combined texture with color to help differentiate 
grass from trees. As an important texture feature, GLCM has been widely used in many applications. 
Gray-level co-occurrence matrixes are calculated in 8 directions, 0°, 45°, 90°, 135°, 180°, 225°, 315°, at 
16 gray levels in NIR, red and blue bands. Contrast, correlation, energy and homogeneity obtained 
based from the matrixes and then are averaged in 8 directions to become rotation invariant. For each 
sample, there are three GLCM feature vectors composed of contrast, correlation, energy and 
homogeneity in NIR, green and blue bands. The GLCM distance between samples is measured by 
sum of square of distance between their GLCM vectors in three bands. The HSV distance and GLCM 
distance are normalized individually before added as a combined feature. Similarly, K-NN is applied 
in the tests. As shown in Table 3, the combined method decreases the fault rate of classifying non-
tree as trees, which is better than both HSV method and Otsu method. At the same time, all the tree 
samples are recognized, better than HSV method, and as good as Otsu method.  

Table 3. Classification performance of HSV combined with GLCM. 
HSV+GLCM Tree(Predicted) Non-tree(Predicted) 
Tree(Real) 50 0 
Non-tree(Real) 7 43 
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3.2 Segmentation 
The original image is converted to binary image using three methods, the Otsu method, the HSV 
method and the combined method. HSV method does help filter out some grass patches, as pointed 
out by red arrows in Fig.2(b,c). However, the combined method recognizes many soil parts as 
canopies. Its performance is not as good as the one in the previous test. Considering the 
requirement of learning samples, and border effect of texture methods, we finally chose the Otsu 
method.  The Otsu method is unsupervised, so it does not need training samples. As for the high 
fault rate of classifying grass as trees, we can tell the difference based on their morphological 
features.   

  

   

Fig 2. (a) Original image. (b) Binary image with Ostu method. (c) Binary image with HSV method. (d) Binary image with HSV 
combined with GLCM method. Tree canopy is white and others are black. 

3.2.1  Filter small grass region and correct shaded region  

There are some isolated patches labeled as canopies in the image obtained directly from the Otsu 
method. These patches are either small grass regions or soil regions, which can be deleted based on 
their size. Fig.3(b) shows the image obtained after white patches with area less than 500 pixels are 
deleted. In addition, there are some patches, shaded region in the canopies are labeled as non-tree. 
These patches can be corrected according to their size too. Fig.3(c) shows the image after the dark 
patches with area less than 500 pixels are re-labeled as tree canopies. Note that erosion and dilation 
are not appropriate here, since they will change the size of canopies. In this paper, we are interested 
in measuring the size of canopies as accurate as possible. 

(a) (b) 

(c) (d) 
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Fig 3. (a) Binary image obtained with Ostu method. (b) Binary image after deleting small patches outside canopies.  
(c) Binary image after deleting small patches within canopies. 

 

3.2.2 Delete large grass region 

Small isolated patches are easy to process according to their size. However, there are still some 
large grass patches left connected with tree canopies. We have to cut these patches away from 
canopies according to certain features. First, they are narrower than canopies. Fig. 4(a) filters all the 
patches less than 25 pixels wide. The problem is that, two type of canopy region are filtered too. One 
part is from the top or bottom of the canopy circle. The other part is from the region connecting two 
canopies. These two parts are characterized by their orientations, height and major axis length. Fig. 
4(b) shows the image with patches height less than 5 pixels. After patches of orientation angles 
(absolute value) less than 5 degrees, and major axis length less than 25 pixels are taken away, the 
obtained image is as Fig. 4(c), where all the large grass patches are left. By taking all these large 
grass patches, we obtain the image in Fig. 4(d). There are two remaining troubles preventing 
counting trees and the pixels in each canopy. First, there are certain parts between the forth row and 
the fifth row are connected. Second, there are many tree canopies are connected in each row.  

  

  

Fig 4. (a) Connected regions less than 25 pixels in the horizontal direction. (b) Image 4.(a) after deleting regions less than 5 in 
vertical direction. (c) Image 4.(b) after deleting regions with orientation angle (absolute value) less than 5 degree, major axis 

length less than 25 pixels. 

(a) (b) 

(c) 

(d) 

(d) 

(a) (b) (d) 
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3.2.3 Separate every row 

To separate the connected rows, we need to find the border for each row. By calculating the number 
of pixels in each column, we can see clear six local minimum points in Fig 5(a). In Fig 5.(b), a line is 
put between rows right at the point with locally minimum number of canopy pixels.  It turns out these 
lines are good estimations of borders to separate each row. After deleting the canopy pixels in the 
lines and the remained isolated patches generated, we have five separate rows in Fig 5.(d). 
 

     

    

Fig 5. (a) Number of canopy pixels in each column. (b) Binary image with lines separating each row of trees. (c) Pixels on the 
lines marked as non-canopy. (d) Image 5.(c) after deleting regions smaller than 100. 

3.2.2 Separate every tree 

After obtain the border for each row, we could focus on separating each tree in a row. Similarly, we 
can segment each tree in a row according to the number of canopy pixels in each line within a row.  
Fig 6 shows the number of pixels in each line in each row, where there is a local minimum every 
around 100 lines.  After deleting the pixels in the lines where these local minimum are, we could have 
the image Fig 7.(a) composed of 27 single tree canopies. In both Fig 7.(a) and Fig 7.(b), centroid of 
each tree canopy are marked in blue. The location and area (in pixels) for each individual tree are 
listed in Table 4.  

(a) (b) 

(c) (d) 
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Fig 6. Number of canopy pixels in each line within a row of trees. 
 

  

Fig 7. (a) Each tree is separated and its centroid is marked in the binary image. (b) The centroid of each tree is marked in the 
original image. 

Table 4. Centroid location and the area of each tree. 
Tree 
NO. 

Centroid Area 
Row Column 

1 251.1815 53.08843 6638 
2 455.0114 55.39915 5875 
3 134.3472 58.93714 6602 
4 50.42477 55.93564 4739 
5 358.6278 61.64048 7677 
6 20.59761 167.9282 3929 
7 99.66654 164.2116 8166 
8 212.7864 174.4781 6331 
9 300.0748 173.6795 8424 
10 410.5728 175.4413 6850 
11 473.347 160.7197 2519 

(a) (b) 
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12 40.59725 287.8382 7044 
13 148.8681 285.6326 5776 
14 254.0608 290.8541 5311 
15 356.4398 283.2237 6473 
16 457.3133 294.7792 5036 
17 20.20303 392.8246 3694 
18 189.4533 395.4826 8649 
19 309.284 394.2629 7899 
20 477.9896 393.8793 2021 
21 85.88611 399.8406 7551 
22 409.167 399.3958 7448 
23 150.6768 516.7222 8484 
24 256.7604 516.6707 7910 
25 362.5341 513.098 7483 
26 452.3773 516.5105 7170 
27 43.06107 522.5649 3668 

 

Conclusion or Summary 
Three different algorithms are developed in the paper to classify trees from grass and soil. Tests 
show that the combined method of HSV and GLCM performs best, but when it is applied to the 
original image, more non-tree pixels are misclassified as trees. Therefore, the Otsu method is used 
to obtain the binary image for post processing.  Then a post-processing workflow is developed to 
segment the connected trees, count the number of trees, and measure the size of the canopies. 
Though the hypothesis for this approach that trees are uniformly spaced is general, the approach still 
needs to be tested on more images. For example, more images taken at different growing stages 
and different weather conditions could bring new troubles, which require further detailed research. 
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