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Abstract. Remotely sensed vegetation data provide an effective means of measuring the spatial variability of 
nitrogen and therefore of managing applications by taking intrafield variations into account. Satellites, drones 
and sensors mounted on agricultural machinery are all technologies that can be used for this purpose. 
Although a drone (or unmanned aerial vehicle [UAV]) can produce very high-resolution images, the 
comparative advantages of this type of imagery have not been demonstrated. The goal of this study was to 
assess the potential benefits associated with the high spatial resolution (5 cm per pixel) of drone-acquired 
images in comparison to a proximal sensor used for nitrogen status determination in corn. A series of images 
were acquired over two commercial fields in June 2015. The corn phenological stages at the time of data 
acquisition ranged from V4 to V6. Images were acquired from a UAV (eBee fixed-wing drone) and from 
GreenSeeker onboard sensors. The UAV was operated with a modified commercial camera: the Canon S110 
NIR (550 nm, 625 nm and 850 nm). Field measurement campaigns were carried out and coordinated with 
image acquisition in order to obtain quantitative measurements of the biophysical parameters governing 
vegetation conditions (biomass and leaf area index [LAI]). To assess the potential benefits of image 
segmentation, a comparative analysis of normalized difference vegetation index (NDVI) maps produced from 
the GreenSeeker and UAV data was carried out. NDVI maps generated from UAV imagery contained higher 
spatial detail than those produced by GreenSeeker, but both technologies had good relationships with biomass 
and LAI. The GreenSeeker R2 relationships with biophysical parameters outperformed those of the UAV. 
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Introduction 
Remote N status assessment in corn is normally carried out by using a vegetation index or by 
estimating biophysical parameters such as biomass, leaf area index (LAI) and chlorophyll. The recent 
introduction of drones or unmanned aerial vehicle (UAV) platforms offers yet another option for 
remote N status assessment in corn. They can be deployed quickly and have very high spatial 
resolution. 

     Zhang and Kovacs (2012) produced a detailed review of the uses, potential and limitations of 
UAVs for precision agriculture. Hunt et al. (2013) summarized the problems and opportunities of 
using UAV sensing for quantitative measurements in crop assessment. They suggested that the 
approach of downscaling by averaging pixel values did not take advantage of the existence of pure 
endmembers of leaves, soil and shadow in images with such a high spatial resolution. A very high 
spatial resolution offers the opportunity to apply segmentation procedures that separate spectral 
information for vegetation from background information, as shown in Torres-Sánchez et al. (2014). 
Compared with onboard sensors such as the GreenSeeker, UAV imagery makes it possible to focus 
on crop-based information by excluding spectral information for soil or weeds. 

     Tremblay et al. (2014) compared UAV imagery (25-cm resolution) and Pléiades-1B satellite 
imagery (2-m resolution) acquired within 4 d of each other over a corn crop at early stages suitable 
for in-season nitrogen application. The soil-adjusted vegetation index (SAVI; Huete 1988) acquired 
from the UAV was better correlated with fresh biomass than that from the satellite (R2 = 0.93 for the 
UAV vs. R2 = 0.88 for the satellite). However, image segmentation on the UAV imagery improved R2 
with fresh biomass by only 0.03 points. It tended to narrow the dynamic range of the SAVI. Rey et al. 
(2013) reported that the correlation of multispectral UAV imagery with vine vigor and yield 
parameters required very complex processing in order to be useful for quantitative measurement of 
biophysical parameters. Tremblay et al. (2014) also found that additional care was needed to make 
radiometric corrections (vignetting reduction and bidirectional reflectance distribution function [BRDF] 
influences) to UAV images. While comparisons of UAV with satellite imagery exist, no examples of 
comparisons with onboard sensors were found in the literature. The objective of this study was 
therefore to compare fixed-wing UAV imagery to GreenSeeker onboard sensor measurements in the 
context of remote N status assessment. 

Materials and methods 

Field site 
The experiment was conducted in the summer of 2015 on corn (Zea mays L.) at growth stages V4 to 
V6 in two commercial fields. The fields, designated as Field 1 (45°16′35.78″ N, 73°17′26.48″ W) and 
Field 2 (45°14′23.22″ N, 73°23′53.72″ W), were located near Saint-Jean-sur-Richelieu in southern 
Quebec, Canada. Field 1 was relatively small (2.9 ha) and flat and contained areas infested primarily 
by yellow nut sedge (Cyperus esculentus L.). Field 2 was larger (12.9 ha), had a small rise in the 
midfield area and ended with a slight topographic depression. Field 2 contained areas where field 
horsetail (Equisetum arvense L.) was significantly present. 

GreenSeeker Acquisition and Processing 
The GreenSeeker Variable Rate Application and Mapping Systems (Trimble, Sunnyvale, CA) is a 
commercially available sensor capable of measuring canopy reflectance. It is an active system that 
produces its own light source: two light-emitting diodes (LEDs) illuminate the ground at two specific 
wavelengths, namely 656 nm (RED) and 774 nm (near infrared [NIR]). The normalized difference 
vegetation index (NDVI) is by far the best known vegetation index (Steven et al. 2015) and can be 
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calculated by combining those two spectral bands: 

NDVI = (NIR − RED) / (NIR + RED) 

     The NDVI was originally derived from satellite imagery (Rouse et al. 1974) but is now being 
obtained with active sensors, such as the GreenSeeker, and used as a proxy for plant biophysical 
properties and for remote N status assessment (Hatfield et al. 2008; Samborski et al. 2009; Shaver 
et al. 2009). 

     In our experiment, a GreenSeeker unit with eight heads was used to measure vegetation vigor, 
expressed as the NDVI. The tractor-mounted GreenSeeker was operated on June 12 in Field 1 and 
on June 18 in Field 2. The swath width of each GreenSeeker head was approximately 60 cm. The 
sensor heads were oriented and positioned directly over eight rows. The onboard computer was 
connected directly to the tractor’s automated steering system, equipped with a real-time kinematic 
(RTK)-enhanced GPS (Trimble, Sunnyvale, CA). The tractor speed was approximately 7.2 km h-1 in 
order to achieve 2-m spacing between each data recording. 

     Each GreenSeeker point measurement was in fact the mean NDVI value as measured by the 
eight heads over the area scanned by the sensor since the last acquisition point. Its real footprint was 
therefore a rectangle whose dimensions corresponded to the swath width of the eight heads (i.e. 
6 m) and the distance travelled by the tractor between two GPS points (i.e. about 2 m, depending on 
the tractor speed). For each GreenSeeker record, the corresponding footprint was digitized in ArcGIS 
(ESRI, Redland, CA) and assigned the measured NDVI value (NDVI_GS6×2m), as shown in Figure 1. 
NDVI_GS6×2m was used for comparison with the UAV-derived NDVI. 
 

 
Figure 1.    GreenSeeker-recorded value translated into its real footprint (NDVI_GS6×2m), used for comparison with UAV data. 

 

     A Python script was used to extract the location, as well as the value of each head recording. This 
made it possible to obtain the crop vigor for each row, rather than an average value over eight rows. 
The point dataset was then interpolated through kriging with the GS+ software (Gamma Design, 
Plainwell, MI). The grid size of the interpolated raster (NDVI_GS1m) was set to 1 m for mapping and 
data analysis (Figure 2). NDVI_GS1m was used for comparison with ground-truth points. 
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Figure 2.    NDVI_GS1m map after kriging, used for comparison with ground-truth data. Aligned points represent the GreenSeeker-

recorded values during the tractor movement. 

UAV Image Acquisition and Processing 
A converted commercial 12-megapixel camera (Canon Powershot S110) was used to acquire 
images at a very high spatial resolution (<5 cm). After conversion, the blue channel became NIR 
(850 nm), while the green (550 nm) and red (625 nm) channels remained the same. The camera was 
mounted on a fixed-wing UAV (eBee Ag unit, senseFly SA, Cheseaux-Lausanne, Switzerland), which 
was owned and operated by the Department of Geography of the Université du Québec à Montréal 
(UQAM; Montreal, Quebec, Canada). The campaign was carried out on June 13, 2015, for Field 1 
and on June 17, 2015, for Field 2 in the middle of the day (between 10 AM and 2 PM) under a clear 
sky with winds less than 15 km h−1, at mean altitudes of 150 m (Field 1) and 140 m (Field 2). Flight 
planning and monitoring was performed by the built-in software eMotion 2 (senseFly SA, Cheseaux-
Lausanne, Switzerland). 

     In order to increase image stitching success, a minimum overlap of 70% (side-lap and forward-
lap) was planned for each flight path. The raw images were converted to TIFF files and then imported 
into Pix4Dmapper Pro software (Pix4D, Lausanne, Switzerland). A georectified orthomosaic was 
generated using ground control points (GCPs) located in the fields and positioned with an RTK-
based GPS receiver (SXBlue III-L, Geneq Inc., Montreal, Quebec, Canada). 

     An image of a Spectralon panel (Labsphere Inc., North Sutton, NH) was taken before each flight 
and used by Pix4Dmapper Pro to calibrate the spectral data. Further radiometric processing was 
performed by the software to correct the rolling shutter effect, and pixel values were averaged from 
overlapping images to reduce the BRDF. A reflectance map with a resolution of 5 cm could then be 
produced and used to calculate the NDVI (NDVI_UAV5cm). 

     The UAV-based NDVI map was then segmented into two classes—vegetation and bare soil—
using Otsu’s thresholding method (Otsu 1979). This algorithm automatically calculates the optimum 
threshold in a gray-level image that maximizes the inter-class variance. 

     In order to compare the performances of the UAV and GreenSeeker performances, each 
GreenSeeker footprint was assigned the mean value of the contained pixels from the NDVI_UAV5cm 
map, generating a resampled map (NDVI_UAV6x2m). It was then possible to analyze NDVI_GS6x2m 
and NDVI_UAV6x2m. 

Ground-truthing 
A ground-truthing campaign was conducted to collect biomass and LAI data. These points were 
compared with data extracted from UAV and GreenSeeker images given that only less than 3 days 
separated the UAV flights and GreenSeeker acquisition and the ground-truth campaign. 

     A stratified sampling strategy based on two-layer spatial constraints (NDVI_GS1m map and N 
treatment strips) was used, that identified a pool of 30 and 40 points respectively for Fields 1 and 2. 
Each point was positioned with an RTK-based GPS receiver (SXBlue-III L; Geneq Inc., Montreal, 
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QC, Canada) that was accurate to 5 cm. An area covering two rows by one linear meter was defined 
from each sampling point. The real location of the sampled areas was shifted sideways to cover the 
two nearest rows and, if needed, along the rows to avoid abnormally scarce vegetation. 
Corresponding LAI measurements were taken with an LAI-2200 instrument (Li-Cor Inc., Lincoln, NE). 
Fresh biomass was sampled, weighed, dried, weighed again and used to correlate with the remote 
sensing parameters. 

     In order to analyze the collected data, all the sampling points were superimposed on the cell grids 
derived from the GreenSeeker map and the UAV imagery. Each sampling point was associated with 
the pixel on the NDVI_GS1m map located at exactly the same coordinates. As for the UAV imagery, a 
1.5 × 1 m rectangle (the “in situ plot”) corresponding to each sampled area was created and 
assigned the mean value of the pixels within that polygon (NDVI_UAVplots). To further capitalize on 
the high spatial resolution offered by the UAV images, the crop rows within each sampled area (the 
“in situ rows”) were manually delineated, and the pixels included in those rows alone were averaged 
to obtain a second NDVI mean value (NDVI_UAVrows). At the same time, the vegetation pixels 
classified as corn (i.e. vegetation located in the delineated rows) were counted. The ratio of the 
number of corn pixels to the total number of pixels in each plot could then be calculated to assess the 
vegetation cover fraction (VCF). 

Results and Discussion 

Comparison of NDVI Maps 
Figure 3a and Figure 3b illustrate how both sensors (UAV onboard camera and tractor-mounted 
GreenSeeker) perceive the NDVI variations in Field 1. As expected, the NDVI_GS1m map showed 
less detail than the NDVI_UAV5cm map. The patterns highlighted by both maps were very similar, but 
crop rows were perfectly visible in the UAV-based map (Figure 3b, inset b1). Areas infested by 
weeds (higher NDVI in red, Figure 3b, inset b2) could be seen clearly, whereas they could only be 
guessed from the GreenSeeker map (Figure 3a, inset a2). 

     The NDVI value range was wider for the UAV-based map, due to its pixel heterogeneity (Figure 
3b), which ranged from −0.10 to 0.85: at a resolution of 5 cm, most pixels were pure endmembers 
representing either crop, weed, soil or shadow. In the GreenSeeker map (Figure 3a), the NDVI 
values ranged from 0.21 to 0.65: since each scanned area was spectrally mixed, the NDVI calculated 
from the mean reflectances had a narrower range of values. Similar results were observed in Field 2 
(data not shown). 

     The NDVI assigned to each GreenSeeker footprint was used to further compare the sensors 
(NDVI_GS6×2m and NDVI_UAV6×2m). A linear regression was performed with both datasets, resulting 
in high correlations (Figure 4). However, the NDVI_UAV6×2m values were greater than NDVI_GS6×2m 
at the low end but similar at the high end of the NDVI range. Field NDVI distributions are therefore 
sensor dependent (just as in Tremblay et al. 2008), a finding that has agronomic implications for crop 
management, such as variable N rate recommendations. 

     Based on these high correlations, NDVI_GS6×2m was used to predict NDVI_UAV6×2m. A difference 
map was produced on a standard deviation basis, comparing the predicted NDVI_UAV6×2m and 
measured NDVI_UAV6×2m values for Field 1 (Figure 3c). The areas where the measured 
NDVI_UAV6×2m value was higher than its predicted value perfectly matched the areas infested by 
weeds. Similar results were observed in Field 2 (data not shown). 
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Figure 3.    Comparison between a) NDVI_GS1m and b) NDVI_UAV5cm maps. After a linear regression, c) a residual map shows the 
relative difference between the measured and predicted NDVI_UAV6×2m for each GreenSeeker footprint (sd: standard deviation). 

 

     That result could be explained in part by the different viewing geometries of the two sensors. 
Since the GreenSeeker heads were positioned directly over the corn rows and their swath width was 
only 60 cm (smaller than the 75-cm inter-row spacing), NDVI_GS6×2m was more sensitive to the corn 
canopy and less sensitive to the weeds and soil located further below in the inter-rows. In contrast, 
NDVI_UAV6×2m was averaged from all pixels (including those in the inter-rows) located within the 
GreenSeeker footprint. Since the UAV image pixels after orthorectification were viewed from the 
nadir, every pixel within the 6 × 2 m footprint had an equal weight in the calculation of the mean 
NDVI. Therefore, the presence of weeds contributed more to the NDVI_UAV6×2m than to the 
NDVI_GS6×2m. 
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Field 1 Field 2 

  
Figure 4.    Relationships between NDVI_GS6×2m and NDVI_UAV6×2m for fields 1 and 2. 

 

Comparison Between NDVI (UAV and GS) and Ground-Truth Points 
     There was a linear relationship between sampled biomass and NDVI_UAVplots for Field 1 
(R2 = 0.33) and Field 2 (R2 = 0.34). When only the pixels inside the two crop rows for each sampling 
area (“in situ rows”) were considered, the relationship between NDVI_UAVrows and biomass was 
slightly higher: R2 = 0.34 (Figure 5a) and R2 = 0.39 (Figure 5b) respectively for fields 1 and 2. The R2 
between LAI and NDVI_UAVrows was 0.33 for both fields. Lelong et al. (2008) observed a similar 
linear relationship between LAI and NDVI_UAV in experiments conducted on wheat at early stages. 
Hunt et al. (2014) found a correlation coefficient of 0.58 when they compared the Green NDVI and 
biomass at the plot scale. These studies used replicated microplots, whereas the present study was 
conducted on large-scale commercial fields with orthomosaicked images. 
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Figure 5.    Relationship between dry corn biomass and NDVI (UAV and GS) for fields 1 (a, c) and 2 (b, d). NDVI_UAVrows was 
calculated for in situ rows. 

 

     From Figure 5, it can be concluded that NDVI_GS data outperformed NDVI_UAV. Indeed, the R2 
between NDVI_GS1m and dry biomass was higher than NDVI_UAVrows for both fields. Hong et al. 
(2007) also found that NDVI measured by the GreenSeeker resulted in a good correlation with corn 
dry weight at stage V6 to V7 (r = 0.79). 

     Several factors could explain the better results produced by the GreenSeeker, including the 
following: 

     1) The geographic positioning accuracy of the in situ plots. Their GPS coordinates, though 
provided by the RTK system, were not completely accurate. These coordinates were the theoretical 
ones generated randomly beforehand. Once in the fields, however, the real location of each sampled 
area was slightly shifted. NDVI_GS1m was extracted from a kriged map, which was more robust for 
outlying values and spatial inaccuracies in plot positioning. Indeed, kriging tended to smooth the 
NDVI values for neighboring areas. Outliers had less impact, and plot positioning could tolerate an 
imprecision of a few meters. In contrast, mean NDVI_UAVplots values could be markedly different if 
the plot was erroneously shifted a few centimeters along the two rows, or worse, over different rows. 
Furthermore, the slight georeferencing errors in UAV images may have increased that spatial 
inaccuracy. 

     2) The radiometric accuracy of UAV images. Owing to its mode of acquisition, the UAV imagery 
contained noises inherent to lighting conditions (shadows, specular reflections, hot spot effects, 
canopy BRDF), sensor defects (vignetting, roller shutter, full-spectrum, etc.), and viewing geometry 
due to the unstable behavior (roll, pitch, yaw) of fixed-wing aircraft. Those effects were reported by 
Zhang and Kovacs (2012) in their review of UAV applications in precision agriculture. BRDF effects 
were expected to play an important role in reflectance correction, but little research has been done 
into their impact on UAV high-resolution imagery (Rasmussen et al. 2016). Orthomosaicking also 
decreased image quality through resampling, which generated a blurry image, where pure pixels 
became spectrally mixed. As an active sensor, the GreenSeeker was less influenced by lighting 
conditions and image preprocessing. 

     Link et al. (2013) recommended a high density of images to improve data quality. This was 
achieved for Field 1 in this study, where the flight path was supplemented with a perpendicular flight. 
Field 2 was too large, and a flight path of this kind would have required excessive operational time, 
combined with multiple UAV landings and takeoffs to replace batteries, which would ultimately have 
resulted in varying lighting conditions during data acquisition. The image stitching for Field 2 
therefore contained some defects, and those areas were removed from data analysis. 
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     Since UAV imagery offered a very high resolution, pixel counting (VCF) was used as a method of 
assessing crop vigor, as was done by Rasmussen et al. (2013) and Torres-Sánchez et al. (2014). 
However, using VCF did not improve the correlation with dry biomass. In fact, R2 was reduced to 
0.18 and 0.15 respectively for fields 1 and 2 (data not shown). Here again, the same factors (plot 
location and image quality) affected the results, the more so because the pixel-counting technique 
requires very high-quality data. A finer spatial resolution would have been necessary. Rasmussen et 
al. (2013) found that crop/soil segmentation at early growth stages in barley required ultrafine-
resolution images (<5 mm per pixel). Hunt (2014) used simulated UAV images with a resolution of 
1 mm. In order to maintain image sharpness, a multicopter was used instead of a fixed-wing UAV, 
and orthomosaicking was not applied in those experiments. 
 

Table 1. Summary of the GreenSeeker and UAV sensing limitations outlined in this paper. 
 GreenSeeker sensing UAV sensing 

Spatial information Low resolution but focused on 
the crop row with little influence 

from the inter-rows 

High resolution, depending on the 
camera resolution and the UAV altitude 

and speed 
Spectral information Few spectral bands, usually two 

(visible and NIR) 
Options for RGB, multispectral or 

thermal cameras 
Radiometric information Slightly influenced by lighting 

conditions (Barker et al. 2013) 
Dependent on tractor speed 

(Shaver et al. 2010) 

Dependent on lighting conditions and 
sensor opto-geometric parameters: 

Vignetting (Lelong et al. 2008) 
BRDF (Lelong et al. 2008) 

Atmospheric noise (Berni et al. 2009) 
and adjacency effects 

Quality reduced by resampling due to 
geometric preprocessing (fixed-wing 

UAV): 
Orthorectification 

Mosaicking 
 

Conclusion 
UAV imagery is currently the focus of much interest, including for driving variable nitrogen rate 
applications. This study compared UAV imagery with an industry standard for that purpose in a field 
operation context that included the presence of weed patches. Owing to its mode of operation, the 
GreenSeeker produced an NDVI map with a lower spatial resolution than that of UAV imagery. 
However, because the GreenSeeker is an active system, its radiometric information was less 
influenced by lighting conditions. Contrary to our initial hypothesis, the GreenSeeker map was not 
significantly affected by soil or weed effects compared with UAV imagery. Although highly correlated, 
the NDVI maps did not exhibit the same frequency distributions, which means that any use for site-
specific management should take the difference into account. Pixel counting of VCF did not produce 
results that would improve the relevance of UAV imagery, whose low radiometric quality and limited 
spatial resolution (5 cm) prevented a precise delineation of corn leaves. Further experiments need to 
be conducted with higher-resolution images (<1 cm) acquired from a multicopter UAV in order to 
determine to what extent the observed inaccuracies resulted from the limitations inherent to a fixed-
wing UAV setup. 
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