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ABSTRACT 
 
      Vegetation indices (VIs) derived from remote sensing imagery are commonly 
used to quantify crop growth and yield variations. As hyperspectral imagery is 
becoming more available, the number of possible VIs that can be calculated is 
overwhelmingly large. The objectives of this study were to examine spectral 
distance, spectral angle and plant abundance derived from all the bands in 
hyperspectral imagery and compare them with eight widely used two-band or 
three-band VIs based on selected wavelengths for quantifying crop growth 
variability. Airborne hyperspectral images and yield monitor data collected from 
two grain sorghum fields were used for this study. A total of 64 VI images were 
generated based on the eight VIs and selected wavelengths for each field. Two 
spectral distance images, two spectral angle images and a pair of plant and soil 
abundance images were also created based on a pair of pure plant and soil 
reference spectra for each field. Correlation analysis showed that the modified 
soil-adjusted vegetation index (MSAVI) produced more consistent and higher r-
values with yield than the other VIs among the selected bands. Spectral distance, 
spectral angle and abundance produced similar r-values to the VIs. The results 
from this study suggest that either a MSAVI image based one NIR band and one 
green band or a plant abundance image based on a pair of pure plant and soil 
spectra can be used to convert a hyperspectral image to a relative yield map. 
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INTRODUCTION 
 

Hyperspectral imagery contains tens to hundreds of bands of spectral data 
and therefore provides much finer spectral information than multispectral 
imagery. Traditionally, broad-band vegetation indices (VIs) derived from 
multispectral imagery are commonly used to characterize crop growing conditions 
and productivity such as leaf area index (LAI) (Baret and Guyot, 1991), 
chlorophyll content (Daughtry et al., 2000), biomass (Moran et al., 1995), and 



 

yield (Wiegand et al., 1991; Yang and Anderson, 1999). These VIs are typically a 
sum, difference, ratio, or other combination of reflectance observations from two 
or more wavebands. The simple ratio index (SRI) (Jordan, 1969) and the 
normalized difference vegetation index (NDVI) (Rouse et al., 1973) derived from 
the red band and near-infrared (NIR) band are two of the earliest and most widely 
used VIs. More recently, many new VIs were developed to improve the linearity 
and sensitivity such as the modified simple ratio (MSR) (Chen et al., 1996) and 
the renormalized difference vegetation index (RDVI) (Rougean and Breon, 1995), 
and to compensate for the effect of soil background such as the soil-adjusted 
vegetation index (SAVI) (Huete, 1988) and the modified SAVI (MSAVI) (Qi et 
al., 1994). In addition to the two-band VIs, several three-band VIs were also 
developed, including the modified chlorophyll absorption in reflectance index 
(MCARI) (Daughtry et al., 2000), and the triangular vegetation index (TVI) 
(Broge and Leblanc, 2000). Haboudane et al. (2004) proposed two modified 
versions (MCARI1 and MCARI2) of MCARI and two modified TVI (MTVI1 and 
MTVI2) to lower the sensitivity to chlorophyll effects, increase the sensitivity to 
LAI changes, and reduce soil and atmospheric effects. 

For a multispectral image which typically contains 3 bands as in SPOT 4 to 7 
bands as in Landsat-7 ETM+, there are only one green band, one red band and 
one NIR band. The multispectral image can be easily converted to one single VI 
image based on the selected VI. However, a hyperspectral image contains dozens 
of red or NIR narrow bands and the number of VIs that can be calculated is 
overwhelmingly large. For example, if a hyperspectral image has 40 red bands 
and 50 NIR bands, the number of SRIs or NDVIs can be as many as 2000. 
Although computing technology has advanced, it is not always practical to 
calculate and examine all the possible VIs (i.e., the 2000 NDVI images in the 
example) to identify the best VI for a particular application. Therefore, the 
commonly-used multispectral VIs have been applied to hyperspectral imagery 
based on selected narrow bands. For example, the 800 nm and 670 nm narrow 
bands extracted from airborne hyperspectral imagery were used as the NIR band 
and red band, respectively, in the broadband VIs for estimating crop LAI 
(Haboudane et al., 2004) and crop yield (Zarco-Tejada et al., 2005). Other 
combinations of narrow bands derived from hyperspectral imagery have also been 
used for estimating crop growth parameters (Ray et al., 2006; Wu et al., 2010). 

Thenkabail et al. (2000) used ground reflectance data measured in 490 
discrete narrow bands between 350 and 1050 nm to characterize yield and other 
crop biophysical variables. They calculated narrow-band NDVI-type indices with 
all possible two-band combinations of the 490 bands and identified the best band 
centers and band widths for each crop variable. Based on the results from NDVIs 
and other hyperspectral indices, they recommended 12 hyperspectral bands for 
estimating agricultural crop biophysical information. Yang et al. (2004) applied 
stepwise regression analysis to grain yield monitor data and 102-band airborne 
hyperspectral imagery and identified four optimum bands for one field and seven 
different bands for a second field for estimating yield. Clearly, the identified 
optimum bands were the best for the particular datasets from which they were 
derived and may not be the best for different datasets. To avoid the need for band 
selection and make use of all the bands in hyperspectral imagery, Yang et al. 
(2007) used linear spectral unmixing to convert airborne hyperspectral imagery to 



 

a single plant abundance image for quantifying the variation in crop yield. Yang 
et al. (2008) also applied spectral angle mapper (SAM) to airborne hyperspectral 
imagery to derive a single spectral angle image for the same purpose. Both linear 
spectral unmixing and SAM have been used commonly in remote sensing for 
image classification (Bateson and Curtiss, 1996; Dennison et al., 2004; Franke et 
al., 2009). Fractional abundance images determined by linear spectral unmixing 
may be preferred to NDVI as all the bands in the image are used (Bateson and 
Curtiss, 1996). Yang et al. (2007; 2008) demonstrated that both plant abundance 
images and spectral angle images provided better r-values with yield than most of 
the 5151 possible narrowband NDVIs derived from the 102-band hyperspectral 
images. 

Crop yield is perhaps the most important piece of information for crop 
management in precision agriculture. Despite the commercial availability and 
increased use of yield monitors, most of the harvesters are not equipped with 
them. Relative yield maps derived from remote sensing imagery can be used as an 
alternative for both within-season and post-season management. Relative yield 
maps can be derived using any of the two-band and three-band VIs or the all-band 
plant abundance and spectral angle. Two or three center wavelengths have to be 
selected to calculate the VIs, while plant and soil endmembers need to be defined 
to derive plant abundance and spectral angle. Although many VIs are available 
and different center wavelengths have been suggested, it is still not clear which 
VIs and wavelengths should be used to convert a hyperspectral image to a relative 
yield map. Therefore, the first objective of this study was to compare five two-
band VIs (SRI, NDVI, RDVI, SAVI and MSAVI) based on the 800 nm and 670 
nm center wavelengths suggested by Haboudane et al. (2004) and three three-
band VIs (MCARI1, TVI, and TVI2) for yield estimation. The second objective 
was to apply one NIR wavelength (825 nm) and eight visible wavelengths (495, 
525, 550, 568, 668, 682, 696, and 720 nm) suggested by Thenkabail et al. (2000) 
to the five two-band VIs for yield estimation. The last objective was to relate 
yield to spectral distance, spectral angle and plant abundance and compare the 
correlations with those from the VIs. 
 

METHODS 
 

Hyperspectral Imagery and Yield Data 
 

The airborne imagery and yield data collected from two grain sorghum 
fields (19 ha and 14 ha in size) in south Texas were used for this study. The 
description of the study sites, image acquisition, rectification, and calibration as 
well as yield data collection and processing is given in the article by Yang et al. 
(2008). The airborne imagery contained 102 usable bands with center 
wavelengths from 477.2 to 843.7 nm at 3.63 nm intervals. The swath of the 
imagery was 640 pixels and the radiometric resolution was 12 bits. The imagery 
was calibrated to reflectance (0-1) and resampled to 1 m spatial resolution. The 
yield data were aggregated to 9 m resolution (close to the effective cutting width 
of the harvester) and the number of aggregated yield samples was 2265 for field 1 
and 1658 for field 2. 

 



 

Hyperspectral Vegetation Indices 
 

Eight VIs listed in Table 1 were selected as the hyperspectral VIs to be 
calculated for this study based on their performance for the estimation of LAI and 
yield by other researchers. The five two-band hyperspectral VIs (SRI, NDVI, 
RDVI, SAVI and MSAVI) were first calculated based on the 800 nm and 670 nm 
center wavelengths suggested by Haboudane et al. (2004) and the three three-band 
hyperspectral VIs (MCARI1, TVI, and TVI2) were calculated based on the center 
wavelengths given in the formulas. 
 
Table 1. Vegetation indices calculated from hyperspectral imagery in this study. 
 

Vegetation index Equation Reference 
Simple ratio 
index (SRI) 

 Jordan, 1969 

Normalized 
difference 
vegetation index 
(NDVI) 

 Rouse et al., 
1973 

Renormalized 
difference 
vegetation index 
(RDVI) 

 Rougean 
and Breon, 
1995 

Soil-adjusted 
vegetation index 
(SAVI) 

 Huete, 1988 

Modified SAVI 
(MSAVI)  Qi et al., 

1994 
Modified 
chlorophyll 
absorption in 
reflectance index 
(MCARI1) 

 Haboudane 
et al., 2004 

Triangular 
vegetation index 
(TVI) 
 

 Broge and 
Leblanc, 
2000 

Modified TVI 
(MTVI2) 

 

Haboudane 
et al., 2004 

 
The second group of hyperspectral VIs was calculated based on the five 

two-band VIs using the center wavelengths suggested by Thenkabail et al. (2000).  
The 12 suggested center wavelengths include one blue band (495 nm), three green 
bands (525, 550, and 568 nm), three red bands (668, 682, and 696 nm), one red-
edge band (720 nm), and four NIR bands (845, 920, 982, and 1025 nm). Because 
of the narrow spectral range of the hyperspectral data used in this study, there was 
no NIR center wavelength to match the four suggested NIR center wavelengths. 
Thenkabail et al. (2000) stated in the description of the suggested 845 nm 
wavelength that a broad band or a narrow band in the NIR shoulder (845±35) will 
provide the same results due to the near-uniform reflectance throughout the NIR 
shoulder. In order to examine the sensitivity of NIR wavelengths on the results, 



 

the 810, 825 and 840 nm wavelengths were selected as the NIR band and the 
other eight visible bands as the red band in the NDVI formula to calculate the 24 
possible NDVI-type indices as well as their correlations with yield for each field. 
The results showed that the three NIR wavelengths gave essentially the same 
results. Therefore, the 825 nm wavelength and the eight visible wavelengths were 
used to calculate hyperspectral indices based on the five two-band VIs.  

 
Spectral Distance, Spectral Angle and Plant Abundance 

 
Spectral distance is a spectral measure commonly used in unsupervised 

classification and supervised minimum distance classification (Campbell, 2002). 
The spectral distance between a pixel spectrum and a reference spectrum can be 
calculated by Euclidean distance as follows: 
 

       (1) 
 
where d is the spectral distance, yi is the reflectance in band i for a pixel, ri is the 
reflectance in band i for a reference, and n is the number of bands in the image. 

Spectral distance has the potential to quantify the variation in crop growth 
and yield. For example, if a pure healthy crop canopy is selected as the reference, 
the spectral distance between high-vigor plants and the reference will be small, 
whereas the spectral distance between low-vigor plants and the reference will be 
large. Therefore, spectral distance can be used as an indirect indicator of plant 
vigor. 

Spectra angle is a spectral measure used in spectral angle mapper (SAM), a 
spectral classification technique that assigns pixels to classes based on the spectral 
angles between image pixel spectra and reference spectra (Kruse et al., 1993). The 
spectral angle between a pixel spectrum and a reference spectrum can be 
calculated by the following formula: 
 

       (2) 

 
where α is the spectral angle between a pixel spectrum and a reference spectrum 
measured in radians or degrees, yi is the reflectance in band i for the pixel, ri is  
the reflectance in band i for a reference, and n is the number of bands in the 
image. Similar to spectral distance, spectral angle is also an indirect measure of 
plant vigor and abundance. When healthy crop canopy is selected as the reference, 
small angle values correspond to high-vigor plants and large values correspond to 
low-vigor plants. 

Fractional plant cover or plant abundance within pixels can be estimated 
using linear spectral unmixing. Linear spectral unmixing models each spectrum in 
a pixel as a linear combination of a finite number of spectrally pure spectra of the 
components in the image, weighted by their fractional abundances (Adams et al., 
1986; Garcia-Haro et al., 1996). If a component such as a healthy crop canopy or 
a bare soil surface occupies the whole pixel, then the pixel spectrum can be 
considered as the reference spectrum or endmember spectrum of the ground 



 

component. For agricultural crop fields, crop plants and bare soil can be selected 
as the two meaningful ground components or endmembers for spectral unmixing 
analysis (Yang et al., 2007). Thus a simple linear spectral unmixing model has the 
following form: 
 

     (3) 
 
where yi is the reflectance in band i for a pixel, ri1 and ri2 are the known 
reflectance in band i for pure crop plants and bare soil, respectively, x1 and x2 are 
the unknown fractional abundance for plants and soil, respectively, εi is the 
residual between actual and modeled reflectance for band i, and n is the number 
of spectral bands. This model is referred to as the unconstrained linear spectral 
unmixing model. For constrained linear spectral unmixing, x1 and x2 should sum 
to unity. In this study, only the unconstrained model was used. 

To calculate plant abundance, a plant spectrum and a soil spectrum are 
needed. In comparison, only one reference spectrum is necessary to calculate 
spectral distance and spectral angle. Reference or endmember spectra can be 
obtained directly from the image or measured on the ground. In this study, healthy 
crop plants and bare soil were selected as the relevant endmembers. A pair of 
plant and soil spectra was extracted from each image to represent pure and 
healthy plants and bare soil for the respective field. To obtain pure spectra for 
crop plants, 50 pixels that had a bright red color on a color-infrared (CIR) image 
(corresponding to healthy plants and high yielding areas) were first identified 
from each image. Similarly, 50 pixels that contained pure bare soil were identified 
from each image (corresponding to non-vegetative and zero yielding areas). The 
endmember spectra for plants and soil for each image were obtained by averaging 
the spectra of the 50 respective training pixels from that image. Alternatively, 
computerized methods such as the pixel purity index and the n-dimensional 
visualizer in ENVI (Research Systems, Inc., Boulder, Colorado) can be used to 
identify purest pixels for the endmembers. However, these automatic methods are 
not always reliable. For example, weed plants can be mixed with crop plants and 
atypical soil surface areas with too dark or too bright colors can be misidentified 
as typical soil. Since there were only two endmembers in this particular 
application, the simple manual approach was used. Although only one reference 
spectrum is needed to calculate spectral distance and spectral angle, both the plant 
and soil spectra were used. Thus two spectral distance images, two spectral angle 
images, and two abundance images were calculated for each field based on the 
two reference spectra using ENVI. 
 

Statistical Analysis 
 

For correlation analysis, the 64 images based on the 10 VIs and the selected 
wavelengths and the six images based on the three hyperspectral measures 
(spectral distance, spectral angle and abundance) for each field were aggregated 
by a factor of 9 to match the 9-m yield data resolution. The digital value for each 
output cell was the mean of the 81 input cells that the 9 m × 9 m output cell 
encompassed. Correlation coefficients (r) between yield and each of the 70 
spectral indices were calculated. Linear regression equations between yield and 



 

selected spectral indices were also determined. SAS software (SAS Institute Inc., 
Cary, North Carolina) was used for statistical analysis. 

RESULTS AND DISCUSSION 
 

Table 2 gives the correlation coefficients between grain yield and the eight 
narrowband VIs for the two fields. The center wavelengths used to calculate SRI, 
NDVI, RNVI, SAVI, and MSAVI were 800 nm for the NIR band and 670 nm for 
the red band. The r-values ranged from 0.74 to 0.78 for field 1 and from 0.83 to 
0.85 for field 2. Although all eight VIs provided similar results, RNVI, SAVI, 
MSAVI and MTV1 performed slightly better than SRI, NDVI, or MTV. The three 
three-band VIs (MCARI1, MTV, and MTV1) were not superior to the two-band 
VIs for yield estimation. 
 
Table 2. Correlation coefficients (r) between grain yield and eight narrowband 

vegetation indices (VIs) derived from 102-band hyperspectral images for two 
grain sorghum fields. 

 
Vegetation 
Index[a] Field 1 Field 2 

SRI 
NDVI 
RNVI 
SAVI 
MSAVI 
MCARI1 
MTV 
MTV1 

0.74[b] 
0.75 
0.77 
0.77 
0.78 
0.75 
0.75 
0.76 

0.83 
0.83 
0.85 
0.85 
0.85 
0.85 
0.84 
0.85 

[a] The eight VIs are defined in Table 1. The center wavelengths used to calculate 
SRI, NDVI, RNVI, SAVI, and MSAVI were 800 nm for the NIR band and 
670 nm for the red band. 

[b] All the r-values were significant at the 0.0001 level. The number of samples 
was 2265 for field 1 and 1658 for field 2. 

 
Table 3 gives the correlation coefficients between grain yield and NDVI 

based on the three NIR bands (810, 825, 840 nm) and the eight visible bands for 
the two fields. For any visible center wavelength, the r-values were essentially the 
same among the three NIR center wavelengths, indicating that any of the NIR 
center wavelengths can be used. However, the r-values ranged from 0.74 to 0.80 
for field 1 and from 0.82 to 0.85 for field 2 among the eight visible center 
wavelengths.  

Table 4 summarizes the correlation coefficients between yield and the five 
two-band VIs based on the 825 nm center wavelength and the eight visible 
wavelengths for the two fields. Among the 40 VIs, the r-values varied from 0.73 
to 0.80 for field 1 and 0.82 to 0.86 for field 2. Among the five VIs, RDVI, SAVI 
and MSAVI appeared to produce more consistent r-values than SRI or NDVI 
among the eight visible bands. For example, MSAVI provided similar r-values of 
0.77-0.79 for field 1 and 0.85-0.86 for field 2 among the eight visible bands. The 



 

commonly used NIR and red combinations were not the best for the two-band VIs 
for estimating crop yield. This result agrees with the findings of Thenkabail et al. 
(2000). The green bands tended to be better than the red bands, especially for SRI 
and NDVI. The red-edge band (720 nm) provided higher r-values than the red 
bands for field 1 and the highest r-values for field 2. However, the reflectance 
around this wavelength is very sensitive to the change in wavelength, so the r-
values may not be stable. Therefore, MSAVI based on one NIR band (e.g., 825 
nm) and one green band (e.g., 550 nm) appears to be one of the best VIs. 

 
Table 3. Correlation coefficients (r) between grain yield and narrowband NDVI 

based on three NIR bands and eight visible bands derived from 102-band 
hyperspectral images for two grain sorghum fields. 

 
Visible band 
center (nm) 

NIR band center (Field 1) NIR band center (Field 2) 
810 nm 825 nm 840 nm 810 nm 825 nm 840 nm 

495[a] 
525 
550 
568 
668 
682 
696 
720 

0.79[b] 
0.80 
0.80 
0.79 
 0.75 
0.74 
0.75 
0.79 

0.79 
0.80 
0.80 
0.78 
0.75 
0.74 
0.75 
0.78 

0.79 
0.80 
0.80 
0.79 
0.75 
0.74 
0.75 
0.78 

0.82 
0.82 
0.83 
0.83 
0.83 
0.83 
0.83 
0.85 

0.82 
0.82 
0.83 
0.83 
0.83 
0.83 
0.83   
0.85 

0.82 
0.82 
0.83 
0.83 
0.83 
0.83 
0.83 
0.85 

[a] The NDVI-type indices were calculated with three NIR bands and eight 
visible bands. The red band in NDVI defined in Table 1 was replaced by the 
eight visible bands. 

[b] All the r-values were significant at the 0.0001 level. The number of samples 
was 2265 for field 1 and 1658 for field 2. 

 
Table 4. Correlation coefficients (r) between grain yield and five narrowband 

vegetation indices (VIs) derived from 102-band hyperspectral images for two 
grain sorghum fields. 

 
Visible 
band 

center 
(nm) 

Field 1 Field 2 

SRI[a] NDVI RDVI SAVI MSAVI SRI NDVI RDVI SAVI MSAVI 

495 
525 
550 
568 
668 
682 
696 
720 

0.78[b] 
0.80 
0.80 
0.78 
0.74 
0.73 
0.73 
0.78 

0.79 
0.80 
0.80 
0.78 
0.75 
0.74 
0.75   
0.78 

0.78 
0.79 
0.79 
0.79 
0.77 
0.76 
0.77 
0.79 

0.77 
0.78 
0.79 
0.79 
0.77 
0.76 
0.77 
0.79 

0.78 
0.78 
0.79 
0.79 
0.77 
0.77 
0.77 
0.79 

0.82 
0.83 
0.85 
0.85 
0.83 
0.83 
0.84 
0.86 

0.82 
0.82 
0.83 
0.83 
0.83 
0.83 
0.83   
0.85 

0.84 
0.85 
0.85 
0.85 
0.85 
0.85 
0.85 
0.86 

0.84 
0.85 
0.85 
0.85 
0.85 
0.85 
0.85 
0.86 

0.85 
0.85 
0.85 
0.85 
0.85 
0.85 
0.85 
0.86 

 [a] The narrowband indices were calculated with one NIR band (825 nm) and 
eight visible bands. The red band in the five VIs defined in Table 1 was 
replaced by the eight visible bands. 



 

[b] All the r-values were significant at the 0.0001 level. The number of samples 
was 2265 for field 1 and 1658 for field 2. 
 

Table 5 gives the correlation coefficients between grain yield and the three 
hyperspectral measures (spectral distance, spectral angle and abundance) derived 
from the 102-band hyperspectral images based on the plant and soil reference 
spectra for the two fields. Yield was negatively related to spectral distance and 
spectral angle and positively related to plant abundance based on the plant 
reference spectra. In contrast, yield was positively related to spectral distance and 
spectral angle, while negatively related to soil abundance based on the soil 
reference spectra. These r-values were within the ranges of the r-values for the 70 
hyperspectral indices examined.  
 
Table 5. Correlation coefficients (r) between grain yield and three hyperspectral 

measures (spectral distance, spectral angle and abundance) derived from 102-
band hyperspectral images based on plant and soil reference spectra for two 
grain sorghum fields. 

 
Hyperspectral  
measure 

Field 1 Field 2 
Plant-
based 

Soil-
based 

Plant-
based 

Soil-
based 

Spectral distance[a] 
Spectral angle 
Abundance 

-0.76[b] 
-0.77 
0.78 

0.75 
0.77 
-0.75 

-0.85 
-0.83 
0.85 

0.84 
0.84 
-0.82 

[a] A pure plant spectrum and a pure soil spectrum extracted from each image 
were used to calculate spectral distance, spectral angle, and abundance.  

[b] All the r-values were significant at the 0.0001 level. The number of samples 
was 2265 for field 1 and 1658 for field 2. 

 
Yang et al. (2008) evaluated 10 different reference spectra for sorghum 

plants, soil, roads, and water extracted from hyperspectral images and from 
ground measurements for calculating spectral angle images. They found that 
spectral angle images based on reference spectra derived from bare soil, highway 
surface, or water provided similar or slightly better r-values than those derived 
from plants. Therefore, spectra for soil and other surfaces derived from the image 
can also be used to generate spectral angle images. When the soil spectra were 
used as the reference spectra for generating spectral angle images in this study, 
the r-values with yield were 0.77 for field 1 and 0.84 for field 2, compared with -
0.77 and -0.83 for the respective fields based on the plant spectra (Table 5). 
Similarly, when the same soil spectra were used as the reference spectra for 
generating spectral distance images in this study, the r-values with yield were 0.75 
for field 1 and 0.84 for field 2, which are similar to the r-values of -0.76 and -0.85 
for the respective fields based on the plant spectra (Table 5). 

Yang et al. (2007) examined how variations in endmember spectra affect 
plant abundance and its correlations with yield using 15 very different plant and 
soil spectrum pairs. Although the selection of the plant and soil endmember 
spectra affected the magnitude of the plant abundance values, the correlation 
coefficients between yield and unconstrained plant abundance were only 



 

minimally affected. In their study, the r-values varied from 0.62 to 0.64 for one 
field and 0.79 to 0.81 for a second field among the 15 plant and soil spectrum 
pairs. In this study, the r-values between yield and unconstrained plant abundance 
were 0.78 for field 1 and 0.85 for field 2. Although the r-values for soil abundance 
(-0.75 for field 1 and -0.82 for field 2) are similar to those for plant abundance, it 
is more meaningful to use a plant abundance image as a relative yield map 
because plant abundance is a direct indicator of plant canopy cover.  

Figures 1 and 2 show the scatter plots and regression lines of grain yield 
with (a) spectral distance, (b) spectral angle, (c) plant abundance, and (d) MSAVI 
derived from a 102-band airborne hyperspectral image for fields 1 and 2, 
respectively. Although there were clear linear correlations between yield and each 
of the four hyperspectral indices, there existed large variability in yield for any 
given value of each spectral variable. This is understandable because not every 
area with full canopy cover will have a high yield. Nevertheless, these general 
linear correlations with yield provide the basis for converting a hyperspectral 
image to a relative yield map using one of the spectral measures. 

 

 
Fig. 1. Scatter plots and regression lines of grain yield with (a) spectral 
distance, (b) spectral angle, (c) plant abundance, and (d) MSAVI (NIR=825 



 

nm and red =668) derived from a 102-band airborne hyperspectral image 
based on a reference plant spectrum for a grain sorghum field (field 1). 

 
Fig. 2. Scatter plots and regression lines of grain yield with (a) spectral 
distance, (b) spectral angle, (c) plant abundance, and (d) MSAVI (NIR=825 
nm and red =668) derived from a 102-band airborne hyperspectral image 
based on a reference plant spectrum for a grain sorghum field (field 2). 
 
 

CONCLUSIONS 
 

This study examined five two-band VIs (SRI, NDVI, RDVI, SAVI and 
MSAVI) and three three-band VIs (MCARI1, TVI, and TVI2) as well as three all- 
band hyperspectral measures (spectral distance, spectral angle and abundance) for 
yield estimation. MSAVI produced more consistent and generally higher r-values 
than the other VIs based on one NIR and eight visible wavelengths. The 
commonly used NIR and red combinations were not the best for the two-band VIs 
and the NIR and green band combinations tended to do better for yield estimation. 
The three all-band hyperspectral measures provided comparable results with the 
VIs. The three all-band hyperspectral measures do not need band selection, but 



 

they require one or two reference spectra for the calculation. Compared with 
spectral distance and spectral angle, plant abundance provides a direct measure of 
crop canopy cover. This feature makes plant abundance even more attractive than 
traditional VIs. Therefore, to convert a hyperspectral image to a relative yield map, 
one can create a MSAVI image based one NIR band (e.g., 825 nm) and one green 
band (e.g., 550 nm) or a plant abundance image based on a pair of pure plant and 
soil spectra. More experiments are needed to validate these recommendations for 
other agricultural crops over diverse environments. 
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