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Abstract.  
In this paper by prediction we have defined maize yield in precision plant production technologies 
according to five different climate change scenarios (Ensembles Project) until 2100 and in one 
scenario until 2075 using DSSAT v. 4.5.0. CERES-Maize decision support model. Sensitivity 
analyses were carried out. The novelty of the method presented here is that precision, variable rate 
technologies from relatively small areas (in our case 2500 m2) enable a large amount of data to be 
collected and conclusions to be extended to larger areas. We have concluded for the soil chemical 
parameters that according to the summarized ranking indexes the order is P2O5, clay content, Ca, 
NO2-NO3-N. Concerning yield, in the model predicting most critical changes 5.22 mm precipitation 
compensates for 1ppm CO2 increase, or 1 degree temperature maximum increase compensates for 
2.18 degrees temperature minimum increase or 18.56 ppm CO2 increase is compensated for by 1 
degree temperature minimum increase. 

Keywords. maize yield (Ceres-Maize), climate change and impacts, sensitivity analysis, site-specific 
data collection 

Introduction  
This article is the continuation of the article entitled “Climate change and sustainable precision crop 
production with regard to maize (Zea mays L.)” (Kovács et al., 2014). Maize yield in precision plant 
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production technologies according to five different climate change scenarios (Ensembles Project) 
until 2100 and in one scenario until 2075 using DSSAT v. 4.5.0. CERES-Maize decision support 
model was defined. The applied climate change models were: DMI-ARPEGE, KNMI-ECHAM5, 
SMHI-BCM, ETZH-HadCM3Q, MPI-ECHAM5, C4I-HadCM3. Referring to the methods published in 
the above mentioned article yield was predicted and sensitivity analysis was carried out for soil and 
climate parameters. 

Recently several articles have been published in connection with evaluating the effect of climate 
change and soil properties on agricultural production with sensitivity analysis, using the results 
provided by decision support models, such as DSSAT, CERES-Maize (Bert et al., 2007; Ruane et al., 
2013a; Ruane et al., 2013b). Bert et al., 2007 concluded that higher soil nitrogen content at sowing 
and soil water storage capacity increase maize yield.  

Ruane et al., (2013a and 2013b) in the AgMIP (The Agricultural Model Intercomparison and 
Improvement Project) with their sensitivity analysis have determined the rate of climate change by 
the following parameters:  minimum and maximum temperature, precipitation and carbon dioxide 
concentration. The investigations clearly indicated that in the case of increasing temperatures a 
decrease in yield can be expected. At the same time precipitation change can lead to positive or 
negative sensitivity. CO2 changes have a positive effect on plant production in the analysis, however 
the authors also mention that this depends on emissions and the applied climate models.  

The basis of the creation of agricultural regions is the farm level, within the farm the field level and 
the management zones (Fischer et al., 2006, Kovács et al., 2014; Ruane et al., 2013a). Based on the 
modelling and calculations we can state that precision crop production technologies can moderate 
the effect of climate change on plant production (Fischer et al., 2006, Kovács et al, 2014). 

 

Material and methods 
The research area is a 15.3 ha research farm (47o54’20.16” N, 17o15’08.57” W; University of West 
Hungary, Faculty of Agricultural and Food Sciences) which is divided into 66 treatment units (each 
unit is ~0.25 ha). The determination of the size of the treatment units is described by Mesterházi 
(2003) and Mike-Hegedűs (2006). In this project 11 treatment units were investigated. In the selected 
treatment units, soil physical parameters showed certain variability. 

Eight different meteorological parameters were used for yield predictions: daily maximum and 
minimum temperatures, wind speed, amount of precipitation, relative humidity, potential evaporation, 
duration of sunshine and surface radiation. The global climate models (GCMs) DMI-ARPEGE, KNMI-
ECHAM5, ETZH-HadCM3Q, MPI-ECHAM5, C4I-HadCM3 and SMHI-BCM have daily parameters in 
a 25 km2 resolution (Table 1.). Each global climate model includes the A1B carbon dioxide model, 
which predicts a moderate CO2 increase until 2100.  

 

Table 1. Basic characteristics of the regional climate models. 

Model Country Institute 
Spatial and temporal distribution (2000-
2100 in data packages of ten years 
duration) 

DMI-ARPEGE Denmark Danish Meteorological Institute 174*190*3652 

KNMI-ECHAM5 Netherlands The Royal Netherlands Meteorological 
Institute 170*190*3652 

ETZH-HadCM3Q Switzerland Swiss Institute for Technology 170*190*3600 
MPI-ECHAM5 Germany Max-Planck-Institute for Meteorology 170*190*3652 

SMHI-BCM Sweden Swedish Meteorological and Hydrologic 
Institute 170*190*3652 

C4I-HadCM3 Ireland Community Climate Changes Consortium 
for Ireland 190*190*3600 
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The DSSAT v. 4.5.0. CERES-Maize model (Hoogenboom et al., 2003; Hoogenboom et al., 2010; 
Nyéki et al., 2013; Tian et al., 2012) inputs contain soil, experiment, management and phenological 
phase’s database and daily meteorological data, as well. This biophysical crop model requires at 
least four meteorological parameters (daily minimum and maximum temperature, daily rainfall and 
daily solar radiation). 
The measured soil and other input parameters are included in Table 2. It should be noted that the 
nitrogen fertilizer level was 60kg N/ha, potassium and phosphorous levels were 30-30 kg/ha. Given 
the above the previous crop of the baseline year (2013) was soybean. As energy balance 
calculations and experiments showed that 100 kg/ha N fertilizer is the optimum level for maize 
production we have calculated with 40 kg/ ha N residuum after soybean.   

 

Table 2. Site, technology and soil input parameters for Ceres-Maize model.  
Parameters Soil type Parameters 

 loam sandy loam silt loam Technology                                           Phenological 
pH KCl* 7.58 7.48 7.51 Planting date, method, depth  
CaCO3 %* 18.20 16.98 17.73 Harvest date  
P2O5  mg/kg* 223.67 220.50 245.50 Cultivar (hyrid)  
K2O mg/kg* 294.67 314.50 387.25 Fertilizer application and material (N*, P, K)  
Ca cmol/kg* 58.03 61.70 59.40 Irrigation  
NO2-NO3-N 
mg/kg* 9.32 9.57 10.15 Plant Population  

water content 
cm3/cm3* 0.14 0.12 0.13 Previous crop (root weight, nodule weight, residue) 

SO4 mg/kg* 27.67 34.23 32.45 Field position, slope  
bulk density  
cm3/cm3* 1.60 1.42 1.48 Fertilizer methods, depth 

saturation * 1.99 3.16 2.54 Tillage implement 
pH in water* 7.60 7.50 7.58 P1juvenile phase 
organic carbon %* 1.70 1.60 1.73 P2 photoperiod sensitivity 
clay content %* 15.6 12.3 8.3 P5 grain filling duration 
silt content %* 38.8 30.8 66.3 G2 potential kernel number 
Cation exchange capacity, soil layer L  
Soil type, colour 
Thickness of soil layer  
Bare soil albedo 
Maximum temperatures, 
minimum temperatures,  
wind speed, 
amount of precipitation,  
relative humidity,  
potential evaporation, 
sunshine duration  
surface radiation 
CO2 level 

 

G5 potential kernel weight 

 
Sensitivity analysis  

This sensitivity modelling (Saltelli et al., 2008; Pannell, 1997) framework was described by Newlands 
et al. 2012 in Biome-BioGeoChemical Cycles with carbon-water-nitrogen and energy balance 
models, focusing on forest and agricultural production. Hidy et al., 2012 used Biome-BGC model for 
simulation of phenology, soil processes in C3 and C4 grasslands. The aim of yield prediction is to 
identify the effect on yield caused by climate, soil and other parameter changes. In this study we 
have investigated the effects of climate scenarios together with soil physical and chemical parameter 
changes. Fifteen soil physical and chemical parameters were taken into consideration (marked with 
an asterisk in Table 2.) and seventy-five different soil parameter groups were generated from them. 
Sensitivity analysis is a statistical approach. The presented results are based on variance (scattering) 
and calculated two indices: main effects (first-order) sensitivity index and total effect index. Sensitivity 
tests were run for all six climatic models which provided daily data. The evaluations were carried out 
for the two extreme value scenarios mentioned earlier. Sensitivity tests ranked CO2 concentrations, 
minimum and maximum temperature and precipitation change for agricultural response.    
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Based on the available data basis we can reconstruct the calculation method for the indices. 
According to Newlands et al. (2012), for this even where well-chosen input parameters are available, 
the modelling has to run several thousand times in order to have consistent calculated indices. 
However, the calculation of the effective indices can only guarantee a good estimate of the relevance 
and ranking, if the input parameter vectors have a given distribution and are constructed as Sobol 
sequences (Sobol, 1993), which have the low-discrepancy sequence property. 

To this end, where we have “s” input parameters, “s” points have to be defined in an “s” dimension 
unit hypercube in accordance with certain rules, while the input parameter vectors can be formed 
(one point – one vector) (Czitrom, 1999).  This also means that for the sensitivity analysis – in 
contrast to the earlier one – the executing has to be done by input parameters defined by the 
constructing rule of the Sobol sequence in the above mentioned numbers. The evaluations were 
carried out for the two earlier mentioned scenarios resulting in extreme values: ETZH-HadCM3Q and 
SMHI-BCM. 

The climate parameter effect express what changes are realized in the yield, for instance in the case 
of one unit change in the input parameter CO2. This is calculated based on five designated years 
(2013, 2025, 2050, 2075, 2100) using the modelled yield by linear regression as the basis. In a given 
climate scenario this parameter was constant independent of the investigated area, therefore we 
have concluded that during the simulation the climate parameter changes induce linear changes in 
yield (within an investigated area the non-climatic parameters i.e. soil parameters such as Ca or clay 
fraction were constants in time, therefore these caused the constant members of the linear 
prediction. 

Scattering can be calculated for each input parameter (such as CO2) which expresses the variability 
of the parameter in time. The normal effect of the parameter is expressed by the multiplication of the 
climate parameter by the (time horizon) scattering of the parameter – in practice this describes how 
an average change in the parameter affects the value of the yield.  

In the parameter-sensitivity analysis evaluation, new simulations have to be carried out with the 
defined parameter combinations in order to be able to execute the sensitivity tests. After the 
simulations have been carried out we could define the sensitivity indices (i=1..15) for all Si (main 
effect) and STi (total effect)  parameters in the five investigated years for the calculated yield. In the 
course of indexing the parameters this can be interpreted as S3  (main effect) and ST3 (total effect) 
indices belong to soil organic matter content. The sensitivity result table contains 5year*15parameter 
*6yield*2effectindex ~ 870 data as C4I-HadCM3 scenario provides data only until 2075.  

 

Results and discussion 
According to the sensitivity analysis the parameters exercising the main effect on the maize yield 
were P2O5, clay content, NO2-NO3-N. According to total effect indexes the most important parameter 
was clay content, in second place P2O5 and in third place NO2-NO3-N.  

Averaging the effect indexes show the average effect of the given parameter (weight, importance), 
whilst scattering indicates the expected accuracy of the average value. The scattering of the data 
was similar to the average data, highlighting the uncertainty of the data and questioning the 
applicability of the average; therefore the conclusions about the ranking of the sensitivity effect 
indexes had to be supported in a different way as well.  

The above described parameters were in summarized ranking, therefore the order of the indexes 
was: P2O5, Ca, Na, NO2-NO3-N. The NO2-NO3-N parameters have a huge effect on the ETZH-
HadCM3Q predicted models but have no effect on the other models. Based on the summarized 
ranking indexes the order repeated itself: P2O5, clay content, Na, NO2-NO3-N.  

According to the results provided by all the simulations for maize yield the most negative climate 
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model is ETZH-HadCM3Q, and the least negative is SMHI-BCM (Table 3.). 

Based on the sensitivity analysis, climate scenarios can be differentiated even if very small scattering 
(consistent database) appears.  The highest negative effect in the basic simulation was given by 
ETZH-HadCM3Q model (effect: -0,08286, scattering: 1,45551E-17), the least was given by SMHI-
BCM (effect: - 0.00621, scattering: 9,09697E-19). Based on the sensitivity analysis carried out by the 
75 generated parameter input simulations the highest negative effect was produced by ETZH-
HadCM3Q model (effect: -0,05753, scattering: 0,026174-17), the least effect was provided by SMHI-
BCM (effect: - 0,02903, scattering: 0,025786).  

 
Table 3. Base and total simulations results 

 Base simulations Total simulations 

Scenario Effect Scattering Effect Scattering 

ETZH-HadCM3Q -0,08286 1,45551E-17 -0,05753 0,026174 

MPI-ECHAM5 -0,0449 1,45551E-17 -0,04602 0,02369 

DMI-ARPEGE -0,02783 3,63879E-18 -0,03712 0,025707 

KNMI-ECHAM5 -0,01648 3,63879E-18 -0,03018 0,024808 
C4I-HadCM3 -0,02412 3,10317E-18 -0,03895 0,039073 
SMHI-BCM -0,00621 9,09697E-19 -0,02903 0,025786 

 

In the climate effect evaluation we have considered the designated years effect of the four 
parameters on maize yield. This means a ranking based on the effectiveness of the scenarios. 
During the investigation four-dimension linear regression was applied. Table 4 shows the coefficients 
connected to climate parameters that are (given identical scenarios) the same for each treatment 
unit, which means that the areal parameters of each treatment unit were constant in the yield 
function, changes in the designated year being caused only by climatic parameters. Rising CO2 and 
temperature in nearly all cases caused a decrease in the yield, and rising precipitation always 
increases yield. A rise in minimum temperature generally also increases maize yield.  
 
Table 4. Climate parameters ranking with sensitivity analysis  - Normalized effect index with scattering. 
Climate model Climate parameters effect 

 CO2 ppm precipitation maximum 
temperature 

      minimum   
temperature constant-change 

MPI-ECHAM5 -0,018960243 0,001574 -2,47269 0,596704 1,778 

ETZH-HadCM3Q -0,036826056 0,007045 1,491355 0,68335 1,778 

SMHI-BCM -0,001529906 0,000442 -0,36137 0,435233 1,778 

KNMI-ECHAM5 -0,006911322 0,00787 -0,5114 -0,28296 1,778 

DMI-ARPEGE 0,00539868 0,011239 -1,44363 2,161368 1,778 

C4I-HadCM3 0 0,011076 -1,99137 1,718008 1,778 
C4I-HadCM3 -0,0108 0 1,532759 -0,73706 1,778 

Conclusions 
Based on the results of the sensitivity tests the ranking of the indexes are: P2O5, clay content, Ca, 
NO2-NO3-N. According to the results provided by all the simulation carried out in the sensitivity tests 
the most negative effect on maize yield is ETZH-HadCM3Q, the least negative is SMHI-BCM climate 
model. Based on the calculations carried out by climate parameters ranking with sensitivity analysis 
(Normalized effect index with scattering) the coefficients in the case of SMHI-BCM model: 3.46 mm 
increase of precipitation balances 1 ppm CO2 increase, or 1 degree temperature maximum increase 
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is balanced by 0.83 degree temperature minimum increase, or 284.48 ppm CO2 increase is balanced 
by 1 degree temperature increase. These balances are calculated for the predicted yield. The 
coefficients in case of ETZH-HadCM3Q model: 5.22 mm increase of precipitation compensates for 1 
ppm CO2 increase, or 1 degree temperature maximum increase is compensated for by 2.18 degree 
temperature minimum increase, or 18.56 ppm CO2 increase is compensated for by 1 degree 
temperature increase. These compensation factors are also calculated for the predicted yield. 
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