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Abstract 
 
The goal of this research was to adapt spatial regression methods to on-farm trials 
in a farm management context. Different experimental designs and statistical 
analysis methods are tested with site-specific data under a range of spatial 
autocorrelation levels using Monte Carlo simulation techniques.  Simulations 
indicated that data usable for farm management decision making could be 
gathered from limited replication experimental designs if that data were analyzed 
with the appropriate spatial statistical model.   
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Introduction 
 
     Many farmers conduct on-farm comparisons of new varieties and other 
categorical practices in large non-replicated blocks. Although these on-farm 
comparisons are not considered statistically valid from the perspective of 
traditional agronomic methods, farmers nevertheless continue to conduct these 
comparisons to provide information for farm management decisions. With 
precision agriculture technologies and spatial regression methods, new 
opportunities are created for design and analysis of on-farm experimentation. The 
general objective of this research was to determine if spatial econometrics can 
help farmers make better use of the limited replication data they currently collect 
with precision agriculture technologies. The specific objective of this research 



was to determine if spatial statistical analysis can increase the probability of 
making the correct decision from split-field, paired-field and other limited 
replication large block experimental designs. A simulation approach was used to 
accomplish these objectives.   
 
Background and Literature Review 

 
     Prior research has used simulation to evaluate the performance of estimators 
used on spatial and aspatial models (Das et al., 2002; Florax and Folmer, 1991; 
Florax et al., 2002).  These studies evaluating estimators for spatial models 
indicated models explicitly modeling spatial autocorrelation were more efficient 
than aspatial models, thus estimators used on aspatial models with spatial data 
lead to unreliable inference.  Previous agricultural simulation studies using spatial 
analyses focused on plant breeding programs (Singh et al., 2003; Baird and Mead, 
1991), a comparison of statistical models (Brownie and Gumpertz, 1997), 
suggestions for theoretical models (Cullis and Gleeson, 1991), at least one study 
on a Bayesian approach (Besag and Higdon, 1999), and comparisons of field-
scale experimental designs for agriculture (Lowenberg-DeBoer et al. 2003; 
Griffin et al., 2005b).  
     Lowenberg-DeBoer et al. (2003) evaluated the performance of aspatial and 
spatial error process models for two experimental designs and two levels of 
spatial autocorrelation.  They compared a non-replicated design to a randomized 
five block experimental design under moderate (λ=0.5) and high (λ=0.9) levels of 
spatial autocorrelation.  Lowenberg-DeBoer et al. (2003) assigned four 
homogeneous zones mimicking the seminal field-scale spatial econometric work 
reported in Anselin et al. (2004) and Bongiovanni (2002) in a 15 by 15 grid and 
used the estimated coefficients from the Anselin et al. (2004) study as the true 
treatment effects for variable rate nitrogen application.  Griffin et al. (2005b) 
evaluated the bias, mean squared error, and percent of correct decisions of spatial 
and aspatial models for four field-scale experimental designs under six levels of 
positive spatial autocorrelation.  Griffin et al. (2005b) used non replicated, two, 
four, and eight block designs with eight blocks mimicking field-length strip-trials.  
Designs were evaluated under spatial autocorrelation levels ranging from 
independent errors (λ=0.0) to high levels (λ=0.72) including λ=0.8. 0.24, 0.40, 
and 0.56.  Griffin et al. (2005b) used a 16 by 16 grid with equal proportions of 
four homogenous zones with two categorical treatments.  Unlike Lowenberg-
DeBoer et al. (2003) which used a discrete neighbor specification of a spatial 
weights matrix in the data generating process (DGP), Griffin et al. (2005b) used a 
continuous Gaussian semivariogram. Although Brownie and Gumpertz (1997) 
performed similar field-scale simulations as Lowenberg-DeBoer et al. (2003) and 
Griffin et al. (2005), they randomly assigned plot yields and treatment 
assignments with each Monte Carlo dataset. Lowenberg-DeBoer et al. (2003) and 
Griffin et al. (2005) concluded that on-farm trial data from non-replicated single 
block experimental designs were as useful as traditional randomized block and 
field-length strip-trial designs if that data is analyzed with the appropriate 
statistical methods explicitly modeling spatial autocorrelation. 
     This research builds upon the field-scale on-farm trial work of Lowenberg-
DeBoer et al. (2003) and Griffin et al. (2005) by evaluating spatial and aspatial 



model performance under differing levels of spatial autocorrelation and differing 
field-scale experimental design blocking scenarios. Previous simulation studies 
have generated data by one of two approaches. One approach uses a discrete 
specification of the spatial correlation structure by means of a spatial weight 
matrix in the DGP.  The other approach uses a semivariogram to generate the 
two-dimensional surface.  This research expands the work of Lowenberg-DeBoer 
et al. (2003) and Griffin et al. (2005) by conducting simulations with the R 
Software using the discrete spatial process as the DGP under a range of spatial 
autocorrelation levels and experimental designs.  This chapter built upon two of 
the future research suggestions of Lowenberg-DeBoer et al. (2003) including 1) 
conducting more simulation runs of each scenario with automated computer 
routines and 2) evaluating experimental designs farmers tend to conduct 
including, side-by-side non-replicated split-field single blocks and field-length 
strip-trial designs along with intermediate blocking designs.  
 

Methodology 
 
     Monte Carlo simulation methodology was used for crop production under a 
range of field replications and positive spatial autocorrelation levels evaluated 
with aspatial and spatial models (Griffin et al., 2005b; Lowenberg-DeBoer et al., 
2003; Robert and Casella, 2004). Spatial autocorrelation ranged from zero to high 
levels found in field-scale precision agriculture datasets. Simulation is required to 
determine the bias, variance, and mean squared error from estimators used in 
aspatial and spatial models. Simulation was also required to test alternative 
experimental designs on the same field in the same weather year, an almost 
impossible task to accomplish with real field-scale experiments. It is only with 
simulation that true parameters are known. Working null hypotheses include 1) 
field-scale treatment replication negates spatial autocorrelation, 2) aspatial 
statistical analysis offers inference equal to spatial analysis, and 3) there are no 
difference in farm management recommendations made from differing spatial 
techniques.  
     In this study, two broad regression methods were compared for analysis of 
simulated data. The first method was a standard aspatial model estimated using 
ordinary least squares (OLS). The second broad method were spatial models 
estimated using both Anselin’s (1988) discrete approach and Cressie’s (1993) 
direct representation continuous geostatistical approach.  
          Aspatial models assume spatial independence. If spatial autocorrelation 
does exist, OLS estimates remain unbiased but are inefficient (Cressie, 1993). 
When there is no spatial autocorrelation among observations, OLS is the best 
linear unbiased estimator (BLUE) of the data. When there is spatial 
autocorrelation, OLS is no longer BLUE. The matrix notation for the familiar 
linear model is ε+= Xβy  where y is a vector of observations, X is a matrix of 
explanatory variable values, β is the vector of regression parameters, and ε  is a 
vector of errors.  
     Theory and a priori information implies that field-scale precision agricultural 
datasets have spatially autocorrelated error terms rather than spatially 
autocorrelated dependent variables.  To simulate these conditions, spatially 



autocorrelated errors (εi’s) were generated by a spatial autoregressive 
transformation of a random normal (0,3) uncorrelated iid errors (μ) using the 
simultaneous autoregressive random variables generator operator (invIrM) of the 
spdep contributed package (Bivand, 2006) to R (R Development Core Team, 
2006) as described by Anselin (2005) ( ( ) μλε 1−−= WIn ).  Six levels of spatial 
autocorrelation (λ = 0%, 20%, 50%, 70%, and 90%) were imposed on the 
uncorrelated random error term (μ) of a 16 x 16 structure (N=256) using the first 
order queen contiguity spatial weights matrix. The dependent observation variable 
was constructed by adding the spatially autocorrelated error term, ε, to the Xβ 
vector. Explanatory variables included homogenous zones and treatment binary 
variables plus interaction terms between zones and treatments. Homogenous 
zones and treatment binary variables were restricted to sum to zero so that the 
coefficients including intercept are interpreted as the difference from mean field 
response. In this scenario the dependent variable was constructed and could be 
regressed upon a matrix of explanatory variables without an omitted variable 
problem.   
     Four experimental designs were developed to compare the effects of two 
treatments:  single non-replicated block, and two, four, and eight blocks (Figure 
1). The single non-replicated block may be analogous to the side-by-side non-
replicated split-field experimental design used by farmers.  The two and four 
replicated block designs of this research may be similar to other field-scale 
experiments farmers conduct such as limited field-length replication, split-planter, 
and strip-trial experimental designs.  The eight replication blocks of this research 
represents the ideal strip-trial designs derived from classical small-plot research in 
which treatment blocks, i.e. strips, are very narrow and no spatial autocorrelation 
exists in the treatment block.   
     Each block has two experimental units, or one each of two treatments. Figure 1 
is a visual representation of the four experimental designs that differ in number of 
experimental blocks. The four horizontal areas labeled z1, z2, z3, and z4 are zones of 
homogeneous production potential areas (for example, topography, zones, and/or 
soils) that represent fixed effects. The shaded areas indicate where treatment 1 
and treatment 2 are situated.  The following model was estimated: 
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where yi is a response variable, [ ]1,...,256∈i ;  
τk is a treatment effect; 
zs is a site in a field with unique attributes, [ ]1,...,4∈s ;  
zs is constrained as ∑ ; = 0sδ
Tk is treatment; 
and εi is a random disturbance term. 
 

     Starting with the parameters used by Griffin et al. (2005b), the simulated 
relationship between the dependent variable (y) and the explanatory variables is 
given in Equation (2): 

 



y = 50 + 0.5*z2 - 0.9*z3 - 1.1*z4 + 3.75*T + 1.2*T*z2 - 1.8*T*z3 + 0.10*T*z4  + e
 (2) 

 
where z2, z3, and z4 are areas with more homogeneous properties, T is the 
treatment, and interaction terms of T and the four zones. This relationship among 
treatments, zones and y may be thought of as a categorical agricultural 
experiment, i.e., tillage, herbicide, or variety across zones of soils, elevation, etc. 
These are the “true” parameter values of the model (Equation 2).  
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Shaded areas are treatments and z1, z2, z3, and z4 are homogeneous zones 
Figure 1:  Representations of Four Experimental Designs  
 
     One Monte Carlo dataset from each of the five levels of spatially 
autocorrelated errors are represented with shaded areas as the random level sets of 
the simulated fields (Figure 2). Traditional analysis assumes the “ideal situation” 
of no spatial autocorrelation between experimental units is represented by the 0% 
spatial autocorrelation level. At λ = 0, values are randomly distributed across the 
grid. When spatial autocorrelation approaches 100%, correlation between 
observations becomes evident as grid cells cluster together. A grid cell with a 
given error value tends to cluster with other grid cells of similar value. In all, 
there were 20 experiments from five levels of spatial autocorrelation and four 
levels of blocking, each evaluated 1,000 times using aspatial and spatial analysis.  

 

  

λ=0.0 Moran’s I = 0.06 λ=0.2 Moran’s I = 0.10 

  



λ=0.5 Moran’s I = 0.16 λ=0.7 Moran’s I = 0.34 

 
 

λ=0.9 Moran’s I = 0.60  
Figure 2:  Representation of five spatially autocorrelated (λ) level sets 
 
     The spatial error process model was estimated using one of three row-
standardized spatial weights matrices.  The first matrix was specified as a first 
order queen, the same as used in the DGP.  The second matrix was specified as a 
first order rook contiguity.  The third matrix was specified as an inverse distance 
matrix with the distance band empirically determined at each iteration by the 
spatial range.  The spatial range was determined by the spatial correlogram of the 
OLS residuals at the distance Moran’s I becomes negative. Observations 
separated by distances greater than the distance band were not considered 
neighbors. The spatial error process model was estimated with ML as called by 
the errorsarlm function and with GM as called by the GMerrorsar function within 
spdep (Bivand, 2006) contributed package of R (R Development Core Team, 
2006).  Although the OLS estimator is expected to be unbiased when the spatial 
error model is appropriate, the variance of estimators may lead to wrong farm 
management decisions.  In addition, some bias may be expected because of 
misspecification of spatial weights matrix. 
     Similar to the spatial error process models using inverse distance matrices, the 
geostatistical (GEO) approach estimates parameters at each iteration.  The partial 
sill ( ) and range (φ) for a spherical semivariogram were estimated using the 
variog function and used by the likfit function in the geoR contributed package 
(Ribeiro and Diggle, 2001) for R. Spherical semivariogram functional forms have 
been used for field-scale agricultural studies (Adamchuk et al., 2004; Gotway and 
Harford, 1996; Solie et al., 1999) and is given by 
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where a is the range (Isaaks and Srivastava, 1989). The partial sill is calculated as 
the difference between the sill and nugget (Isaaks and Srivastava, 1989).  The sill 
is the value of the semivariogram at the plateau reached for larger distances and 
the nugget is the unexplained variance of the semivariogram model (Cressie, 
1993; Isaaks and Srivastava, 1989). GEO model coefficients were estimated with 
restricted maximum likelihood (REML) (Cressie, 1993). The restriction is that 
estimators are “obtained by applying maximum likelihood to error contrasts rather 
than the data themselves” (Cressie, 1993, p. 92).  



     Measures of a good estimator include bias, variance, and mean squared error 
(MSE) (Casella and Berger, 2002). Bias is estimated as the difference between the 
expected value, i.e. mean estimated coefficient across all simulation 

replications, and the true parameter value β
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used to gauge the performance of the regression estimators. An estimator with 
desired MSE properties has small combined variance and bias (Casella and 
Berger, 2002). In other words, desired MSE properties come from controlling 
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much the parameter estimates vary. MSE is equal to bias squared plus the 
variance. MSE is particularly useful in comparing biased estimators because for 
unbiased estimators, the MSE is equal to the variance.   
     To be certain that spatial autocorrelation was introduced into the simulated 
error term, a Moran’s I test for global spatial autocorrelation was conducted on 
the estimated OLS residuals (not the simulated error terms) using the row-
standardized first order queen continuity spatial weights matrix (Anselin, 1988). If 
the associated p-value for the Moran’s I test statistic at an iteration was below the 
10% level, then the null hypothesis of no spatial autocorrelation was rejected. In 
cases where spatial autocorrelation was greater than or equal to 0.5 ( 5.0≥λ ), the 
Moran’s I test null hypothesis was rejected more than 99% of the time for any 
experimental design, i.e. number of treatment blocks (Table 1). When λ=0.2, the 
Moran’s I test statistic null hypothesis was rejected between 33% and 60% of the 
time.  In the four cases where spatial autocorrelation was zero, the Moran’s I test 
null hypothesis was rejected less than seven percent of the time.  As the number 
of experimental blocks increased, the null hypothesis of no spatial autocorrelation 
was rejected more often similar to Lowenberg-DeBoer et al. (2003).  Rather than 
the differing experimental designs inducing additional spatial autocorrelation into 
the data, the experimental designs may have induced spatial heteroskedasticity in 
the form of structural changes across the data.  Since Moran’s I has power over 
both spatial autocorrelation and spatial heteroskedasticity, the increased rejection 
of the null hypothesis with increased number of replicated blocks may be from the 
mistaken identity between the spatial effects. 
 
Table 1:  Moran’s I Rejection Rate for Spatially Autocorrelated Residuals 
(p=0.10)  

lambda 0.0 0.2 0.5 0.7 0.9 
1 block 0.01 0.33 0.99 1.00 1.00 
2 blocks 0.02 0.38 0.99 1.00 1.00 
4 blocks 0.04 0.48 1.00 1.00 1.00 
8 blocks 0.07 0.60 1.00 1.00 1.00 

 
Results 

 



     Mean estimates of bias and MSE over 1,000 Monte Carlo trial runs for the 
aspatial and seven spatial models are presented in Table 2 and Table 3. The MLQ 
and GMQ models are the spatial error process models using a row-standardized 
first order queen contiguity matrix estimated with maximum likelihood and 
general moments, respectively. The MLr and GMr models are the spatial error 
process models using a row-standardized first order rook contiguity matrix 
estimated with maximum likelihood and general models, respectively. The MLIDW 
and GMIDW are spatial error process models using row-standardized inverse 
distance spatial weights matrices with empirically determined distance bands. The 
GEO model indicates the geostatistical model where the semivariogram priors of 
partial sill and range were estimated at each iteration and estimated with REML.  
The GEO, the MLIDW and GMIDW models are the three models expected to be 
used in real field-scale experimental analysis since the spatial interaction structure 
is empirically determined in an otherwise unknown DGP.  
     The bias and MSE were calculated from estimated parameter values for the 
treatment variable, T, from these models. The treatment variable, T, was used 
because it was the coefficient the farm manager would use to determine their 
decisions.  Although the interaction terms between the treatment variable and soil 
zones would be used for site-specific decisions, the ultimate decision criteria 
would be based upon the treatment variable since it is interpreted as difference 
from mean field condition due to the specification of the binary variables. 
Parameter estimated treatment coefficients for all models were similar when 
spatial autocorrelation was zero for any block designs.  
     Simulation results confirmed the theoretical notion that OLS is unbiased 
relative to other estimators (Table 2).  However, when spatial autocorrelation 
exists in the data (λ>0.5), the spatial models had lower bias than OLS although 
the spatial models with empirically determined spatial interaction structures had 
similar bias.  In addition, the number of blocks and experimental design 
replications reduced the estimated bias when λ>0. 
 
Table 2:  Bias of Treatment Variable Estimator under Differing Experimental 
Designs and Spatial Autocorrelation Levels  

λ 
OLS MLQ GMQ MLr GMr MLIDW GMIDW GEO 
1 block 

0.0 -0.0057 -0.0052 -0.0051 -0.0054 -0.0054 -0.0054 -0.0063 -0.0051 
0.2 0.0156 0.0168 0.0164 0.0160 0.0160 0.0169 0.0157 0.0161 
0.5 0.0109 0.0124 0.0123 0.0115 0.0116 0.0102 0.0105 0.0069 
0.7 0.0432 0.0252 0.0275 0.0386 0.0376 0.0253 0.0244 0.0305 
0.9 0.0198 0.0282 0.0227 0.0168 0.0154 0.0307 0.0390 -0.0127 
 2 blocks 
0.0 0.0038 0.0037 0.0041 0.0034 0.0034 0.0035 0.0051 0.0032 
0.2 -0.0131 -0.0126 -0.0134 -0.0130 -0.0130 -0.0130 -0.0111 -0.0123 
0.5 -0.0059 -0.0018 -0.0022 -0.0041 -0.0042 -0.0015 -0.0012 -0.0048 
0.7 0.0059 -0.0034 -0.0028 0.0001 0.0009 -0.0083 -0.0077 -0.0025 



0.9 0.0151 0.0009 0.0001 0.0070 0.0021 0.0003 -0.0027 0.0027 
 4 blocks 
0.0 0.0036 0.0032 0.0050 0.0034 0.0034 0.0038 0.0053 0.0035 
0.2 -0.0002 -0.0006 0.0014 -0.0002 -0.0002 -0.0001 0.0045 -0.0005 
0.5 -0.0148 -0.0138 -0.0138 -0.0144 -0.0144 -0.0138 -0.0146 -0.0148 
0.7 0.0107 0.0064 0.0064 0.0099 0.0085 0.0052 0.0051 0.0074 
0.9 0.0051 -0.0042 -0.0040 0.0230 -0.0017 -0.0019 -0.0040 -0.0047 
 8 blocks 
0.0 -0.0038 -0.0044 -0.0050 -0.0039 -0.0039 -0.0038 -0.0039 -0.0039 
0.2 0.0020 0.0019 0.0020 0.0020 0.0020 0.0020 0.0028 0.0019 
0.5 -0.0068 -0.0060 -0.0060 -0.0067 -0.0067 -0.0061 -0.0062 -0.0072 
0.7 0.0037 0.0006 0.0006 0.0008 0.0008 -0.0002 -0.0005 0.0000 
0.9 -0.0001 -0.0041 -0.0040 -0.0032 -0.0034 -0.0033 -0.0041 -0.0038 
GM Q and ML Q used first order queen weights matrix 
GMr and MLr used first order rook contiguity weights matrix  
MLIDW and GMIDW used IDW with distance band determined by spatial 
correlogram 
GEO uses the REML estimator in a geostatistical model 
 
     As the number of blocks increased, MSE decreased for all estimators for every 
positive level of spatial autocorrelation.  As the level of spatial autocorrelation 
increased, the difference in MSE between OLS and spatial models widened; 
however this gap closed as the number of blocks increased.  Increased number of 
blocks and thus replications decreased MSE for all models and estimators.  
     When there were no spatial autocorrelation in the data, i.e. λ = 0, then there is 
virtually no effect of blocking on MSE (Table 2 and Table 3).  However as spatial 
autocorrelation levels increased, MSE increased but at differing rates with respect 
to model and number of replication blocks (Table 3).   
 
Table 3:  MSE of Treatment Variable Estimator under Differing Experimental 
Designs and Spatial Autocorrelation Levels 

λ 
OLS MLQ GMQ MLr GMr MLIDW GMIDW GEO 

1 block 
0.0 0.0330 0.0330 0.0333 0.0329 0.0329 0.0330 0.0336 0.0330 
0.2 0.0531 0.0532 0.0536 0.0530 0.0530 0.0533 0.0550 0.0559 
0.5 0.1297 0.1153 0.1162 0.1233 0.1239 0.1199 0.1204 0.1188 
0.7 0.3140 0.2266 0.2286 0.2712 0.2773 0.2809 0.2983 0.2439 
0.9 2.3741 0.4265 0.6026 1.0996 1.4549 0.7191 0.9738 0.6448 

 2 blocks 
0.0 0.0356 0.0359 0.0360 0.0355 0.0355 0.0356 0.0372 0.0357 
0.2 0.0489 0.0488 0.0493 0.0486 0.0486 0.0492 0.0544 0.0489 



0.5 0.0960 0.0800 0.0804 0.0873 0.0880 0.0846 0.0880 0.0840 
0.7 0.1980 0.1113 0.1141 0.1440 0.1509 0.1414 0.1392 0.1185 
0.9 0.8839 0.1566 0.1746 0.2501 0.3818 0.4349 0.3900 0.1844 
 4 blocks 
0.0 0.0344 0.0345 0.0437 0.0344 0.0344 0.0344 0.0449 0.0344 
0.2 0.0424 0.0421 0.0498 0.0422 0.0422 0.0424 0.0529 0.0422 
0.5 0.0542 0.0503 0.0503 0.0515 0.0516 0.0510 0.0517 0.0512 
0.7 0.0716 0.0578 0.0579 0.0603 0.0609 0.0596 0.0597 0.0604 
0.9 0.1723 0.0664 0.0665 0.0711 0.0984 0.0780 0.0779 0.0689 
 8 blocks 
0.0 0.0339 0.0340 0.0343 0.0340 0.0340 0.0340 0.0341 0.0339 
0.2 0.0283 0.0281 0.0281 0.0281 0.0281 0.0282 0.0286 0.0281 
0.5 0.0222 0.0211 0.0211 0.0214 0.0215 0.0212 0.0211 0.0216 
0.7 0.0229 0.0198 0.0198 0.0200 0.0201 0.0200 0.0201 0.0201 
0.9 0.0404 0.0164 0.0164 0.0176 0.0180 0.0173 0.0174 0.0170 
GM Q and ML Q used first order queen weights matrix 
GMr and MLr used first order rook contiguity weights matrix  
MLIDW and GMIDW used IDW with distance band determined by spatial 
correlogram 
GEO uses the REML estimator in a geostatistical model 
      
     Although the estimators using empirically determined spatial interaction 
structures, e.g. GEO, MLIDW, and GMIDW, had higher MSE than the spatial 
models using a similar weights matrix as used to generate the data, these models 
had lower MSE than using traditional analysis methods with increased replication 
blocks.  With real data, the true DGP is not known and spatial interaction 
structures must either be chosen a priori or empirically determined.  
     Looking at the relative changes in bias and MSE across the number of blocks 
indicates improved estimation precision from lower variance (Table 3).  However, 
it is also important to account for the spatial structure of the data, and doing so 
may allow fewer blocks while achieving roughly the same level of precision.  
Farm managers would obtain more reliable information by applying spatial 
analysis to one and two block experimental designs when λ=0.7 and λ=0.9, 
respectively, than adding another experiment replication block. At lower levels of 
spatial autocorrelation ( )5.0≤λ , an additional experimental design block was more 
useful than choice of statistical model; however it is unlikely that field scale 
datasets would have spatial autocorrelation levels in the vicinity. 
     Rather than examine the asymptotic properties of estimators and models, farm 
managers are more concerned with how often the statistical results will lead to 
farm management recommendations for the right decision. The estimated 
treatment coefficients of each statistical model were examined at each iteration to 
determine if the farm management recommendation was the same as the true 
treatment effect. The treatment variable was the only coefficient evaluated 



because the specification of the binary variable, i.e. 0=Σ id , allowed the 
coefficient to be interpreted as the difference from the mean condition. The 
coefficients were evaluated based upon if statistically significantly greater than 
zero. 
     This criterion uses the classical t-test to test whether the estimated coefficient 
was greater than zero at the 10% confidence level. Since the farm management 
recommendation would be to choose the treatment that had the highest average 
for the field, i.e. the highest average from all four zones, a statistically significant 
strictly positive estimated coefficient provided a farm management 
recommendation consistent with the true treatment effect.  
     In situations of a categorical treatment, the farm manager may be concerned 
with whether one treatment outperformed another.  At each iteration the null 
hypothesis that the estimated coefficient was greater than zero was evaluated at 
the 10% confidence level and enumerated to determine the percent incorrect 
decisions (Table 4).  In the non-replicated single block design, the spatial models 
outperformed the aspatial model however the spatial models did not always lead 
to correct decisions.  The MLQ model had the lowest percent incorrect decisions 
however the specification of W was similar to the DGP. The three models that 
empirically estimated parameters for the spatial interaction structure were similar 
however the geostatistical model dominated the spatial error process models. 
          Under conditions when the observations were independent (i.e. spatial 
autoregressive parameter equaled zero), farm management recommendations 
based upon statistical inference were similar for all models. However, when 
positive spatial autocorrelation existed in the data, differences between models 
existed.  When no spatial autocorrelation, the aspatial model estimated as OLS 
appropriately estimated the model parameters for any amount of replications 
tested.  Under these “ideal” conditions, farm management recommendations 
based on this model would have been inappropriately made less than 5% of the 
time (Table 4). When spatial autocorrelation increased to levels expected at field 
scales, i.e. 7.0≥λ , the aspatial model did not accurately estimate the model 
parameters as well as at lower levels of spatial autocorrelation. The farm 
management recommendation would have been incorrectly made more than 23% 
and 40% of the time when λ=0.7 and λ=0.9, respectively (Table 4).  
      
Table 4:  Percent Incorrect Decisions for Treatment Variable  
λ= 0 0.2 0.5 0.7 0.9 
1 block 
OLS 0.02 0.05 0.14 0.23 0.40 
MLQ 0.02 0.04 0.12 0.21 0.27 
MLIDW 0.02 0.05 0.13 0.23 0.33 
GMIDW 0.02 0.05 0.13 0.22 0.38 
GEO 0.02 0.05 0.13 0.21 0.32 

2 blocks 
OLS 0.03 0.06 0.12 0.20 0.33 



MLQ 0.02 0.06 0.11 0.13 0.18 
MLIDW 0.03 0.06 0.10 0.17 0.29 
GMIDW 0.03 0.06 0.11 0.16 0.27 
GEO 0.03 0.06 0.10 0.13 0.19 

4 blocks 
OLS 0.02 0.04 0.06 0.08 0.19 
MLQ 0.02 0.04 0.05 0.05 0.08 
MLIDW 0.02 0.04 0.05 0.06 0.10 
GMIDW 0.03 0.05 0.05 0.06 0.09 
GEO 0.02 0.04 0.06 0.06 0.08 

8 blocks 
OLS 0.02 0.01 0.01 0.01 0.04 
MLQ 0.02 0.01 0.00 0.00 0.00 
MLIDW 0.02 0.01 0.00 0.01 0.00 
GMIDW 0.03 0.01 0.00 0.00 0.00 
GEO 0.02 0.01 0.01 0.00 0.00 
ML Q used first order queen weights matrix 
MLIDW, GMIDW used IDW with distance band determined by spatial correlogram 
GEO uses the REML estimator in a geostatistical model 
 
     When replications were included in the experimental design, the accuracy of 
the farm management recommendation increased to levels similar to the ideal 
condition of zero spatial autocorrelation for eight replication blocks which mimics 
condition of very narrow field-length strip-trials. The use of four replicated 
experimental design blocks was unable to achieve the same accuracy as eight 
blocks. The farm management recommendation was made incorrectly more than 
8% and 19% of the time with the four replicated blocks for λ=0.7 and λ=0.9, 
respectively, the spatial autocorrelation expected at field scales (Table 4).  
     From the farm manager point of view, the spatial models performed better 
relative to the aspatial model estimated with OLS in the presence of positive 
spatial autocorrelation but were not perfect under the conditions of this 
simulation.  As expected, the spatial model with the lowest percent incorrect 
decisions rate was the MLQ.  In order to mimic real conditions where the true 
DGP is unknown, spatial models empirically estimating the spatial interaction 
structure were compared.  All three models, i.e. MLIDW, GMIDW, and GEO, 
performed similarly although the GEO had slightly lower percent incorrect 
decisions for any level of blocking and level of spatial autocorrelation.  Increasing 
the number of treatment blocks improves the percent of correct decisions for all 
models.  
     When the second experimental design block was considered, the OLS model 
had similar percent incorrect decisions as the single block design data analyzed 
with the spatial models.  This indicates that the farm manager would be as well 



off to use spatial analysis with single block designs as using aspatial analysis with 
two blocks.  When the four block experimental designs were considered, the 
decision became less clear.  The percent incorrect decisions for the OLS model 
under four blocks was similar to the percent incorrect decisions for GEO under 
two block designs while decisions based upon the other candidate spatial models 
were less accurate. Once an eight block experimental design was used, the percent 
incorrect decisions were controlled for any statistical model. An eight block 
experimental design in this analysis does not necessarily represent any eights 
block field-scale experiment designs but rather a situation of field-length narrow 
strips such that no spatial autocorrelation exists in the width of the strip.  The use 
of real on-farm trial with eight replicated blocks may be more closely represented 
by the two or four blocks of this study with respect to spatial autocorrelation and 
independence of observations. 
     Although this research indicated similar results as previous studies, the 
magnitudes of the percent incorrect decisions differed from Lowenberg-DeBoer et 
al. (2003) and Griffin et al. (2005b).  These differences can be explained by the 
statistical test to determine the percent incorrect decisions of the model, the 
underlying DGP, and the choice of semivariogram priors used in the model 
estimation of the estimated coefficients.  
     Griffin et al. (2005b) reported the percent incorrect decisions for their spatial 
model was below the 6% level for any level of spatial autocorrelation or number 
of replication blocks while their aspatial model had very high percent incorrect 
decisions for any strictly positive level of spatial autocorrelation regardless of the 
number of replication blocks.  Not only was the spatial models of the current 
research unable to reproduce the low percent incorrect decisions of Griffin et al. 
(2005b), the aspatial results were relatively better than those that they suggested.  
One limitation of the Griffin et al. (2005b) study that explains this difference was 
the perfect knowledge of the DGP when estimating treatment response.  The level 
of the percent incorrect decisions for their spatial model was most likely the 
random process of the DGP since the semivariogram used to estimate the 
coefficients were exactly the same as the one used in the DGP.  The DGP for the 
spatial correlation structure of each simulated field of the current research was not 
directly used during estimation of coefficients but were estimated using 
techniques that spatial analysts may choose. Although the first order queen spatial 
weights matrix was used in the DGP, it was not row-standardized like the matrix 
used in the spatial error process models.  Furthermore, the spatial error process 
models using the inverse distance weights matrices and the GEO model all 
estimated the spatial correlation structure, i.e. inverse distance weights matrix 
distance band and semivariogram parameters, at each iteration without prior 
knowledge of the DGP.   
     The differences between aspatial model results from the three studies are the 
result of choice of statistical test. The F-test used by Griffin et al. (2005b) jointly 
tested all estimated coefficients and rejected the null hypothesis too often relative 
to the treatment variable. The MSE associated with the higher levels of spatial 
autocorrelation ( 5.0≥λ ) from the current research and Griffin et al. (2005b) were 
within the same ranges.  The MSE of the treatment variable estimated by the 
aspatial model from the non-replicated design in Griffin et al. (2005b) was 1.57 
and 4.4 for λ=0.40 and λ=0.72, respectively.  The MSE of the current research 



was 0.13, 0.31, and 2.37 for λ=0.5, 0.7, and 0.9, respectively, for the single block 
design using OLS.  When the eight replicated block designs were evaluated, 
Griffin et al. (2005b) reported MSE of 0.05 and 0.07 for λ=0.40 and λ=0.72, 
respectively, when the treatment variable estimated with OLS.  The current 
research indicated that MSE was 0.22, 0.23 and 0.040 when λ=0.5, 0.7, and 0.9, 
respectively, for eight blocks and OLS. The MSE for Griffin et al. (2005b) 
treatment coefficient tended to be smaller than the MSE for other variables in 
their study, and was always larger than the corresponding MSE of the spatial 
model.  
     Griffin et al. (2005b) reported the percent incorrect decisions as the F-test that 
jointly tested all estimated coefficients were different from the true parameter 
value.  While the F-test was a statistically valid test, it was inappropriate for 
determining the percent incorrect decisions of the model.  The true decision and 
percent incorrect decisions would be based on the treatment coefficient since the 
binary explanatory variables were restricted to sum to zero, i.e. .  
Therefore, a difference in the statistical test used and choice of estimated 
coefficient to test lead to differences in the magnitude of results, especially for 
aspatial models.   

0=Σ id

     The higher percent incorrect decisions in Griffin et al. (2005b) were likely 
from inappropriate use of the F-test to jointly test all estimated coefficients.  
Although the same F-test was used on their spatial regression coefficients, very 
low percent incorrect decisions resulted from the estimation using the same 
spatial structure as the DGP.  
 

Summary 
 

     Large block comparisons are the types of experiments farmers want to 
conduct. With yield monitor data and spatial statistical methods, more reliable 
comparisons can be made with limited replication designs. This study has shown 
that spatial econometric methods such as Anselin’s discrete and Cressie’s 
continuous approach provide unbiased and efficient parameter estimates 
regardless of variability or number of replicates. These results indicate that 
replication reduces variance and MSE, but reducing MSE via limited replication 
experimental designs is not as useful as modeling spatial autocorrelation at the 
levels found in field-scale precision agriculture datasets. Hence, farmers using 
split-field large-block comparisons of categorical inputs obtain reliable results 
with spatial analysis and precision agriculture data.   
     This study has shown that farmers who prefer not to replicate can obtain useful 
results by performing spatial statistical analysis on limited replication data rather 
than adding a replicate and using traditional analysis under the levels of spatial 
autocorrelation expected at field-scales.  In essence, the farmer has the choice of 
trading management time and effort during on-farm trial implementation with 
advanced spatial analysis of the resulting data, which can often be conducted at 
non-intensive times or outsourced.  
     These results indicate that spatial models dominate the addition of another 
replicate when considering starting at one and two block designs.  When the DGP 
was unknown, geostatistical models dominated the spatial error process models 



using empirically determined specification of the spatial weights matrices. There 
are many factors that plague analysis of field-scale data, and this study examined 
only spatially autocorrelated errors. The large sample sizes of precision 
agriculture datasets may be examined to determine the ramification of using 
differing models and estimators.  Other econometric failures and assumption 
violations may give indication of which spatial models dominate on-farm trial 
analysis.  At the farm level, many factors affecting crop growth and treatment 
effects are unmeasured and subsequently omitted from the dataset inducing an 
omitted variable problem.  Precision agriculture data are often measured with 
systematic and random errors in both the dependent and independent variables.  
Yield monitor data has both erroneously measured observations that lead to errors 
in variables and improper locational attributes leading to spatial effects.  The 
spatial effects not evaluated in this study may include spatial heteroskedasticity 
that may be induced by experimental design.   
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