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ABSTRACT 

 
     Remote sensing for nitrogen management in cereal crops has been an intensive 
research area due to environmental concerns and economic realities of today’s 
agronomic system.  In the search for improved nitrogen rate decisions, what 
approach is most often taken and are those approaches justified through scientific 
investigation?  The objective of this presentation is to educate decision makers on 
how these algorithms are developed and evaluate how well they work in the field 
on a small-plot basis.  A single approach for algorithm development will be 
discussed to allow individuals to experience what a researcher considers when 
constructing an algorithm.  This particular presentation will ignore the spatial 
variability aspect of nitrogen management and focus primarily on temporal 
variability and the management of nitrogen from year to year and location to 
location.  Several key algorithm components will be discussed including yield 
prediction, identifying in-season responsiveness, and ultimately deciding on a 
fertilizer rate.  Finally, research results will be shared to show how well a single 
algorithm performs across a wide array of production environments.   
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INTRODUCTION 
 

     Improving the nitrogen use efficiency (NUE) of agricultural production 
systems has been an intense area or research in recent years.  Current NUE of 
cereal crop production is estimated to be near 33% worldwide (Raun and Johnson, 
1999).  This implies that 67% of the N applied for cereal crop production is not in 
the harvested grain and may be susceptible to loss which can negatively affect the 
environment.  With the development of advanced optical sensing technologies 
and improvements in fluid delivery systems (specifically variable rate 
applications), sensor based N algorithms have been developed.  To utilize in-
season optical sensing tools, sidedress application of N is necessary which can 
potentially expand application of liquid N products. 
     A reference strip has been proposed as an appropriate way to identify crop 
response to N and provide a calibration point to determine N response (Peterson 
et al., 1993; Johnson and Raun, 2003; Schepers and Meisinger, 1994) on a field 
basis.  Many studies have documented that N response is spatially and temporally 
variable and that yield response to added N changes dramatically (Bundy et al., 
1999; Johnson and Raun, 2003).  Mineralization of the N fraction of the soil 
organic matter is identified as the primary cause of variable N response (Johnson 
and Raun, 2003).  Unfortunately, predicting mineralization rates of organic matter 
has proven to be difficult because mineralization is controlled by unpredictable 
environmental conditions.  The N reference strip allows the opportunity to 
identify if response to additional N is likely.  Previous work in winter wheat 
(Triticum aestivum, L.) has shown that in-season estimates of the response index 
(RINDVI) using optical sensors is highly correlated with the response index 
measured at harvest (RIHarvest) (Mullen et al., 2003).  Similarly, work in corn (Zea 
mays, L.) has shown that N response measured at various stages of growth (V6-
R3) (Ritchie et al., 1997) with a SPAD meter is indicative of N response observed 
at harvest (Varvel et al., 1997).   
     Active optical sensors have also been used to develop N algorithms in corn 
(Raun et al., 2003).  The use of the reference strip remains, but instead of using 
the sufficiency index (SI) to compute responsiveness, RI is calculated (RI is 
simply the reciprocal of SI).  The RI determined for a specific environment, from 
sensor readings (NDVI), is used as a multiplier to adjust N recommendations 
based on variations in yield potential (Raun et al., 2002).  As sensor readings are 
collected, at a defined resolution which is correlated to yield potential, N 
recommendations are changed based on yield potential and site responsiveness.   
     The objective of this article and subsequent presentation is to delineate a 
single, yield-goal based algorithm and discuss the components included to make a 
N rate decision. 
 

 
YIELD PREDICTION 
  
     The first component of a yield-goal based algorithm is a yield prediction 
model based upon in-season optical sensor measurements.  There are many 
different vegetative indices that can be utilized including normalized difference 
vegetative index (NDVI – including red, green, amber, etc), visible vegetative 



index (red, green, amber, etc.), and simple ratio (SR – visible divided by near-
infrared).  Active sensors (sensors that utilize their own light source independent 
of sunlight) are currently available to measure NDVI, SR, or individual 
reflectance values from individual wavebands.  Oklahoma State and Virginia 
Tech utilize NDVI in their yield prediction model for winter wheat and corn.  In 
addition to the vegetative index, Oklahoma State proposed an environmental 
factor be included to allow multiple locations to be placed on the same graph for 
predicting grain yield.  Originally, days after planting (DAP) was utilized to 
calculate an in-season estimate of yield (INSEY) value by dividing NDVI by 
DAP (reference).  Including corn data from Ohio with the Oklahoma State yield 
prediction model (using DAP as the environmental component) reveals that 
despite the different geographic regions, the yield prediction curves are similar 
(Figure 1).   
     Despite the relatively good correlation between INSEY and final grain yield, 
there are a considerable number of data points that reside below the exponential 
line that defines the relationship.  This should not be a surprising phenomenon 
considering anything can occur after in-season measurements are made around V8 
to V10 growth stage corn (Ritchie et al., 1997) that can reduce corn grain yield.  
More importantly, very few data points are above and to the right (for SR INSEY 
model – Figure 2) of the exponential equation revealing that the yield prediction 
model can identify the upper end of yield potential if optimum conditions 
continue throughout the growing season.  Therefore an additional line was fit to 
the model to represent this upper bound (Raun et al., 2005).  This upper bound is 
one standard deviation above the trend line, and this is the line used for yield 
prediction in the algorithm.    
 
 
IN-SEASON PREDICTION OF NITROGEN RESPONSE 
 
     Yield prediction is a key component of a yield-goal based algorithm, but it is 
meaningless in the absence of some measurement of the likelihood of nitrogen 
response.  Multiple publications have recently revealed that yield prediction alone 
(whether in-season or prior to planting that has historically been used) is a very 
poor predictor of the amount of nitrogen that needs to be supplied by fertilization 
(Sawyer et al., 2006).   
     Originally, the work in winter wheat showed that NDVI measurements taken 
from a target plot (plot that received a relatively low amount of nitrogen fertilizer) 
and a reference plot (plot that had received more than adequate nitrogen fertilizer) 
could be used to calculate an in-season response index.  This response index 
measured in-season was then correlated with post-harvest response using grain 
yield (Mullen et al., 2003).  For winter wheat NDVI based response index worked 
well, but for corn the NDVI methodology may not be the most appropriate 
especially if starter N is used.   
     In-season estimates (NDVI based) of response using plots that have received 
starter or planter nitrogen are not as well correlated with post-harvest response 
when compared to plots that did not receive any nitrogen (Figure 3).  One 
possible explanation for this poorer correlation between in-season and post-
harvest response when starter nitrogen is supplied could be that the 



responsiveness of the crop is masked at the time of sensing due to the timing of 
the measurement.  In-season optical sensor measurements are proposed to occur 
near V8 growth stage.  This is a time when the crop has not necessarily taken up 
much nitrogen (Mengel, 1995).  Thus supplementation with a small amount of 
nitrogen may be masking the true responsiveness of the crop. 
     Instead of using NDVI to measure crop responsiveness, SR could be used to 
measure response index (Figure 4).  Utilizing SR to determine response index 
results in a slightly better correlation than NDVI, but interestingly, using SR 
shows little difference between RI measured using a check plot or a plot that 
received some nitrogen fertilizer early (the linear relationships are similar). 
     In-season response can be measured using optical sensors, but a reference or 
non-limiting nitrogen strip must be established to calculate this estimate.  It could 
be argued that a check strip should also be used with a reference strip to 
determine in-season responsiveness. 
 
 
COMBINING COMPONENTS TO MAKE A FUNCTIONAL 
ALGORITHM 
      
     The two major components for building an optical sensor based nitrogen 
algorithm are in place, now the components must be assembled.  Starting with the 
yield prediction model, based upon sensor readings from the reference plot, an 
estimate of yield can be calculated.  Assuming a SR value of 0.23 and 60 days 
after planting, the estimated yield of the target (area that will receive fertilization) 
would be: 
 
   haMg /21.8exp13.20 )52*23.0(*065.0 =−

 
This estimated yield is the yield potential without any additional nitrogen 
fertilizer.  Now the response index is calculated to determine how responsive a 
particular site is.  Response index SR is calculated using the following equation: 
 
 RI-SR = reference SR / target (or check) SR 
 
For this example assume the target SR is 0.23 and the reference SR is 0.20.  The 
RI-SR is 0.87.  This value needs to be corrected since the linear relationship 
between RI-SR and RI-harvest has a slope different than one and an intercept 
greater than zero.  The actual RI-SR used in the algorithm utilizing the non-check 
(target-40) adjustment would be: 
  
 RI-SR = -(1.97 * (SR-reference/SR-target) + 3.1744) = 1.43 
 
with an upper limit set such that the ratio SR-reference/SR-target is not larger 
than 1.  Now a new value can be computed to determine, the potential yield based 
upon the initial estimated yield of the target and the responsiveness of the site to 
additional fertilizer.  This value is known as the potential with additional nitrogen 
fertilization (YPN).  It is calculated using the following equation: 



 
 YPN = 8.21 Mg/ha * 1.43 = 11.74 Mg/ha 
 
Now a determination must be made as to how much nitrogen fertilizer to 
supplement.  This is calculated by determining the difference in nitrogen uptake 
between YPN and the original estimated yield.  Assuming that grain nitrogen 
concentration (1.3%) is a constant we can determine the uptake amount of both 
yield estimates.  The difference in nitrogen uptake would be: 
 
 N-difference (kg/ha) = (11.74 Mg/ha*0.013*1000) - (8.21 
Mg/ha*0.013*1000) = 46 
 
Another component is still needed, since one hundred percent utilization 
efficiency of supplied nitrogen is improbable another adjustment must be made to 
determine the actual nitrogen recommendation.  At present an assumption of 60% 
utilization efficiency is used.  So the actual nitrogen recommendation would be: 
 
 Nitrogen recommendation (kg/ha) = 46/0.60 = 77 
 
 
EVALUATING THE ALGORITHM 
      
     The algorithm should then be evaluated to determine how well it does at 
actually recommending nitrogen using empirical data.  For this analysis, three 
locations will be utilized.  The locations were all nitrogen rate studies conducted 
in Ohio where sidedress applied nitrogen was supplied the day of or after sensor 
measurements were made from the target, check, and reference areas.  A nitrogen 
response curve was determined for each experimental location, and the algorithm 
derived nitrogen recommendation was compared to the empirical optimum 
nitrogen rate.  At all three locations, the algorithm performed relatively well with 
some expected deviation from the empirical optimum nitrogen rate based upon 
the nitrogen response curve (Table 1).  At the Northwest location, both algorithms 
performed similarly because the difference in SR between the target and check 
plots were similar.  Using the RI-SR (40) algorithm at the Western locations 
resulted in a large over-recommendation of nitrogen, but the RI-SR (0) did make 
as large an error.  Finally, at the Wooster the RI-SR (40) algorithm recommended 
close to the agronomic optimum nitrogen rate, but the RI-SR (0) algorithm over 
recommended nitrogen. 
     While an algorithm has been developed, work continues on how to adjust the 
final two components (grain nitrogen concentration and nitrogen utilization 
efficiency) to improve the performance of the algorithm. 
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Table 1.  Empirical agronomic optimum nitrogen rate based on nitrogen response 
data, SR-based algorithm using 40 for calculation of response index, and SR-
based algorithm using the check for calculation of response index at three 
locations in Ohio, 2007. 
 
Location Agronomic 

optimum nitrogen 
rate 

RI-SR (40) 
recommended rate 

RI-SR (0) 
recommended rate 

 -----------------------------kg/ha-------------------------------- 
Northwest  81 84 71 
Western 0 104 41 
Wooster 137 142 173 



Figure 1.  Relationship between INSEY using NDVI and final corn grain yield 
from four locations in Ohio and the Oklahoma State University yield prediction 
model. 
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Figure 2.  Relationship between INSEY using SR and final corn grain yield from 
four locations in Ohio and the Oklahoma State University yield prediction model. 
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Figure 3.  Correlation between in-season NDVI response index and post-harvest 
response index at 17 locations. 
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Figure 4.  Correlation between in-season SR response index and post-harvest 
response index at 17 locations. 
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