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ABSTRACT 
 
     Sensor based variable rate application of crop inputs provides unique 
challenges for traditional rate controllers when compared to map based 
applications. The controller set point is typically changing every second whereas 
with a map based systems the set point changes much less frequently. As applied 
data files for a sensor based variable rate nitrogen applicator were obtained from a 
wheat field in north central Oklahoma. These data were analyzed to determine the 
magnitude and frequency of rate changes. A model based a commercially 
available rate controller was developed. Results from this model predicted a mean 
absolute application error of 12.9 L ha-1. This error could likely be reduced by 
half if the controller delay was reduced by 1 second. 
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INTRODUCTION 
 
 The application of precision agriculture technologies has generally followed 
one of two paths. One based entirely on map based information and the other 
based on real time sensors. The map based approach allows use of historical 
information, while sensors allow us to assess in season conditions. Map based 
information is typically gathered with yield monitors, through soil testing, and/or 
with remotely sensing. The primary difference between map and sensor based 
strategies is data analysis and interpretation. With map based variable rate 
application, the practitioner must collect and analyze data for input to an expected 
crop response algorithm and then transfer the prescription to a variable rate 
applicator.  



 The sensor based approach to precision agriculture uses sensors to measure 
crop and/or soil properties in real time as the applicator moves across the field. 
Data from the sensor is collected, processed, and interpreted by the on-board 
computer and sends a signal to a rate controller. One of the advantages of this 
approach is automating the data analysis and interpretation step of the map based 
strategy. A predetermined algorithm is used to convert the sensor information to 
an application rate. This algorithm is typically constant at a field scale and often 
at the regional scale. 
 Due to its potential environmental risk, spatial nitrogen management has been 
one of the primary goals of the precision agriculture movement. Management 
strategies have ranged from applying traditional nitrogen recommendation 
methods to sub-field units to using sensors to measure in-season nitrogen needs. 
Employing a traditional recommendation will usually rely on a yield goal and 
knowledge of nitrogen credits, primarily soil organic matter and soil nitrate test. 
Applying a traditional function spatially will require spatial yield goals and 
credits.  Schmidt et al. (2002) conducted nitrogen rate trials for irrigated corn at 
multiple locations within three fields to evaluate the affect of soil organic matter 
on yield response. The yield maximizing nitrogen rate ranged from 52 to 182 kg 
ha-1. However, yield response to nitrogen was not consistently related to soil 
organic matter as they had hypothesized leading them to conclude that using soil 
organic matter to determine nitrogen management zones would likely be 
ineffective. However, Mamo et al. (2003) concluded that soil type and elevation 
(likely proxies for yield potential) were valuable in predicting the magnitude of 
site specific nitrogen response. They found that variable rate nitrogen application 
was more profitable than uniform application by reducing the total amount of 
nitrogen applied.  
 Koch et al. (2004) concluded that variable yield goal based zones for nitrogen 
management were more profitable than uniform nitrogen management. Scharf et 
al. (2005) evaluated nitrogen needs in production corn fields to determine 
economically optimum nitrogen rates. They concluded that a few coarse 
management zones would likely improve nitrogen management, but the ability to 
manage nitrogen at a smaller scale would likely be more beneficial. With minimal 
coarse management zones the number of rate changes that a controller would 
receive would be minimal, but likely have some magnitude.  Managing nitrogen 
at a smaller scale would require more frequent rate changes from the sprayer 
controller. 
 Raun et al. (2002) found that using optical sensors to determine nitrogen 
needs at the 1 m2 area was more profitable and efficient than multiple uniform 
application strategies. This management strategy incorporates a non-nitrogen 
limiting strip to determine the potential response to additional nitrogen fertilizer. 
Sensors are used to estimate yield potential in both the nitrogen reference strip 
and an adjacent area which are used to determine the optimum in season nitrogen 
rate (Raun et al., 2001). The variable rate technology to accomplish application at 
the submeter scale is currently unavailable. However, sensor systems that provide 
a single nitrogen application rate to a traditional rate controller are gaining 
popularity. While there have been efforts to improve variable rate application for 
typical map based approaches, very little work has been directed at sensor based 
variable rate application. The process for the rate controller is similar in that the it 



receives an updated rate and must operate a control valve to achieve the desired 
flow rate. However, with a sensor based system the controller typically receives 
an updated rate every second and does not have the opportunity to stabilize. Thus 
the objective of this research was to model a typical rate controller and predict the 
response to a sensor-based variable rate prescription. 
 

METHODS 
 
 A Raven 440 SCS (Raven Industries, Sioux Falls, ND) rate controller was 
evaluated on a static test stand to determine performance with two different 
control valves. A fast close (FC) valve (Raven Industries, Sioux Falls, ND - P/N 
1-063-0172-170) was tested with the manufacturer recommended VALVE CAL 
setting of 0743.  
 The static test stand consisted of a electric powered centrifugal pump and 
associated tanks and plumbing. The Raven controller was plumbed into the 
system along with an independent flow meter and two pressure transducers (Fig. 
1). The flow meter and pressure transducer signals were recorded using LabVIEW 
software and a USB-6210 data acquisition device (National Instruments Corp, 
Austin, Texas). Data were recorded at 10 Hz. Rate changes were triggered from 
LabVIEW via the serial port on the Raven controller. 
 
 

 
 
Figure 1. Plumbing and data acquisition diagram for the static test stand. 
 
 Various step rate changes were sent to the rate controller and the response was 
measured. Rate changes were chosen based on expected rate changes observed in 
data files. The open loop response of the fast close valve was measured. The valve 
was approximated by a first order plus time delay (FOPTD) transfer function after 



determining the open loop response of the valve. The standard transfer function of 
a FOPTD process is shown in equation 1. From the open loop response, the gain, 
time constant, and time delay of the system were determined to be 1.0, 1.0, and 
0.4 respectively. 
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where  K is gain 
  T is time constant 
  τd is time delay            
 
The controller was modeled as a proportional integral controller similar to that 
described by Shoukat Choudhury et al. (2005). A proportional gain of 1.28 and 
integral gain of 1.16 were chosen to match response data from the entire control 
system. The control system was modeled in MATLAB Simulink (version R2007a, 
The MathWorks, Inc.) as show in figure 2.  
 
 

 
Figure 2. MATLAB model of sprayer control system including integral and 
proportional controller coefficients and a first order response valve. 
 
 
 Data were collected from field operation of a GreenSeeker® RT200 (N-Tech 
Industries, Ukiah, CA) sensor system. These data were from variable rate 
application of nitrogen to wheat in early 2005. The sprayer had a 27.4 m wide 
boom and operated at an average ground speed of 15.4 km h-1. The file was 
separated into individual passes and used as inputs to the model.  There were 
eight passes across this field and descriptive statistics for these passes are shown 
in Table 1. 
 



Table 1.  Summary statistics for the controller input signal by pass recorded 
during nitrogen application to wheat in 2005.  

pass Obs Mean Minimum Maximum Std dev 
Max rate 
increase 

Max rate 
decrease 

  -  L ha-1  - 
1 162 168.4 121.4 205.8 19.6 42.8 -50.6 
2 162 162.1 121.4 205.8 18.2 58.1 -27.5 
3 149 179.6 134.5 205.8 17.4 50.3 -58.6 
4 150 175.7 120.1 205.8 19.6 44.0 -47.2 
5 175 168.2 118.3 205.8 24.4 34.9 -44.8 
6 183 165.0 118.3 205.8 22.3 44.8 -36.8 
7 88 175.8 118.3 205.8 19.5 58.6 -83.6 
8 85 167.8 102.9 205.8 23.8 80.1 -53.3 

 
 

RESULTS AND DISCUSSION 
 
 The data in table 1 show that the maximum rate was set at 205.8 L ha-1.  The 
mean application rate for all passes was similar.  The maximum rate change for 
any 1 s period within a pass ranged from -83.6 to 80.1 L ha-1. The prescribed rate 
as a function of time is shown in figure 3 for pass 1. A new rate is being sent to 
the rate controller every second.  While there are some spikes and rapid rate 
changes, there is also an underlying trend with areas of similar rates.  
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Figure 3. Prescribed nitrogen application rate sent to the controller for pass 1. 
 



 In general, the model output followed the controller input fairly well.  Figure 
4 shows the model output rate for pass 1 graphed as a function of the prescribed 
rate with a linear regression. Simply lagging the model output by 1 second 
improves the regression results (Figure 5).   
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Figure 4.  Predicted application rate from the model output plotted as a function 
of the prescription rate for pass 1. 
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Figure 5.  Predicted application rate from the model output with a 1 second lag 
plotted as a function of the prescription rate for pass 1. 
 



 Table 2 shows the r-squared vales from linear regression of model output 
application rate as a function of prescription rate as well as the equation slope and 
the mean absolute application error. These results are shown for the actual model 
output and the model output lagged by 1 second.  Ideally the slope would be 1.0, 
but it is less than 1.0 for all passes when data are not lagged. However, lagging 
the data by 1 second improves the r-squared value and results in slopes closer to 
1.0. The mean absolute error was determined by taking the absolute difference of 
the prescribed application rate and the predicted application rate from the model.  
These values are less than 10 percent of the mean rates shown in table 1.  
However, the mean absolute errors from the 1 second lag data are generally half 
of those without a time lag.  The data in table 1 indicate that reducing the delay in 
the sprayer control system by 1 second would improve the ability to achieve the 
desired application rate. 
  
Table 2. Coefficient of determination and slope results from regressing model 

output as a function of prescribed rate with 0 and 1 second lags along 
with the mean absolute application errors.  
pass 0 sec lag 1 sec lag 

 r2 slope
Mean abs 
error, L ha-1 r2 slope 

Mean abs 
error, L ha-1 

1 0.45 0.78 11.6 0.74 1.00 6.0 
2 0.45 0.76 11.5 0.87 1.04 4.8 
3 0.35 0.67 12.8 0.84 1.03 6.1 
4 0.35 0.67 14.7 0.84 1.04 7.0 
5 0.67 0.87 11.6 0.93 1.02 5.1 
6 0.62 0.85 11.5 0.93 1.04 5.1 
7 0.26 0.61 14.7 0.85 1.11 6.9 
8 0.24 0.58 18.6 0.83 1.08 11.2 

 
 

CONCLUSIONS 
 
 A Raven SCS 440 controller was modeled as a simple proportional integral 
controller. A fast close valve was approximated by a first order plus time delay 
transfer function. This system was simulated and used to predict the response of a 
sensor based fertilizer applicator. The modeled results showed a mean absolute 
application error of 12.9 L ha-1. These results further indicate that the predicted 
response lagged the prescribed rate by approximately 1 second. This resulting 
misapplication could be reduced by half if the controller delay was reduced by 1 
second. 
 

REFERENCES 
 
Koch, B., R. Khosla, W.M. Frasier, D.G. Westfall, and D. Inman. 2004. 

Economic feasibility of variable-rate nitrogen application using site-specific 
management zones. Agron. J. 95:1572-1580. 



Mamo, M., G.L. Malzer, D.J. Mulla, D.R. Huggins, and J. Strock. 2004. Spatial 
and temporal variation in economically optimum nitrogen rate for corn. Agron. 
J. 95:958-964. 

Raun, W.R., G.V. Johnson, M.L. Stone, J.B. Solie, E.V. Lukina, W.E. Thomason 
and J.S. Schepers. 2001. In-season prediction of potential grain yield in winter 
wheat using canopy reflectance. Agron. J. 93:131-138. 

Raun, W.R., J.B. Solie, G.V. Johnson, M.L. Stone, R.W. Mullen, K.W. Freeman, 
W.E. Thomason and E.V. Lukina. 2002. Improving nitrogen use efficiency in 
cereal grain production with optical sensing and variable rate application. 
Agron. J. 94:815-820. 

Scharf, P.C., N.R. Kitchen, K.A. Sudduth, J.G. Davis, V.C. Hubbard, and J.A. 
Lory. 2005. Field-scale variability in optimal nitrogen fertilizer rate for corn. 
Agron. J. 97:452–461. 

Schmidt, J.P., A.J. DeJoia, R.B. Ferguson, R.K. Taylor, R.K. Young, and J.L. 
Havlin. 2002. Corn yield response to nitrogen at multiple in-field locations. 
Agron. J. 94:798-806  

Shoukat Choudhury, M.A.A., N.F. Thornhill, and S.L. Shah. 2005. Modelling 
valve stiction.  Control Engineering Practice 13(2005):641-658. 

 


	CONCLUSIONS
	REFERENCES

