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ABSTRACT 
 
For decades the main objective of farmers was to get the highest yields from their 
farmland. Nowadays, quality of agricultural products is becoming more and more 
important for the largest returns. In addition, the effects on our environment are 
also becoming important. These put increasing limitations on modern agriculture. 
So-called site-specific management can optimize the input of, for instance, 
nutrients and pesticides to the need of the plants. In this study, the objective was 
to study whether spectral measurements are suitable for determining optimal 
nitrogen (N) fertilization levels in potatoes. For determining this optimal N level, 
two field trials were designed in a potato field. Both trials had four N levels in 
four replicates. Spectral measurements were performed with a Cropscan™ 8-band 
radiometer during the growing season. In addition to the spectral reflectances, the 
weighted difference vegetation index (WDVI) and the red-edge position (REP) 
were derived. Results show that WDVI and REP were significantly correlated 
with tuber yield and can be used for setting optimal N levels. Biomass maps can 
be created using remote sensing images for mapping relative differences within 
fields. Based on these maps the farmer can take site specific actions to improve 
his overall management within a parcel. 
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INTRODUCTION 
 
     Monitoring agricultural crops during the growing season is important for 
observing growth and development of the crop. This can provide significant 
information in order to be able to adjust the growth of the crops, e.g. for 
applications in the field of precision farming. So-called site-specific management 
can optimize the input of, for instance, nutrients and pesticides to the need of the 
plants. In this way it can minimize negative effects on the environment, provide 
an optimal yield and/or provide an optimal product quality. Secondly, it can 
provide information to obtain yield predictions well before harvest time, which is 
of importance for decision making at various levels, for logistics and for trade 
activities. More and more use is being made of crop growth models for such 
monitoring activities. A serious drawback of crop growth models is the absence of 
an accurate spatial component. If a spatial component is included, the spatial 
information generally is only available at an aggregated level. Examples are 
meteorological and soil-related information. Remote sensing data provide 
information on the crop growth as a result of spatially heterogeneous soil and 
management factors. As a result, remote sensing data can be used for calibrating 
crop growth models for actual field conditions, thus rendering the combination of 
growth models and remote sensing data a valuable tool for growth monitoring 
(Clevers et al., 1994; Delecolle et al., 1992; Maas, 1988). 

The spectral signature of leaves is dominated by chlorophyll in the visible 
(VIS) region of the electromagnetic spectrum, by the cell structure in the near-
infrared (NIR) regions and by water content in the short-wave infrared (SWIR) 
regions. In addition to these variables, at the canopy level the leaf area index 
(LAI), the amount of green biomass and the leaf angle distribution determine the 
spectral signature. From a remote sensing point of view, the illumination and 
observation geometry are also important. Many studies have focused on the use of 
vegetation indices, calculated as combinations of NIR and red reflectance, for 
estimating and monitoring vegetation characteristics. These indices correlate well 
with plant variables such as biomass, LAI and the fraction of absorbed 
photosynthetically active radiation (Baret and Guyot, 1991; Broge and Leblanc, 
2001; Daughtry et al., 2000). 

A second type of indices focuses on the so-called red-edge region. Clevers 
(1999) showed that imaging spectrometry might provide additional information at 
the red-edge region, not covered by the information derived from a combination 
of a NIR and a VIS broad spectral band. It can be concluded that, concerning high 
spectral resolution data, this seems to be the major contribution of imaging 
spectrometry to vegetation studies. The remote sensing of foliar chemical 
concentrations, other than chlorophyll and water, has not been very successful 
due to among other things the presence of water in living leaf tissue. 

Indices based on remote sensing information appear to be very suitable for 
mapping and monitoring growth differences of agricultural crops, but they do not 
provide a direct indication of the causes of these growth differences. This 
information has to be obtained in a different way. Since nitrogen is one of the 
most important fertilizers for agricultural crops, growth differences are often 
corrected by tuning nitrogen fertilization. Growth differences can also be caused 



 

by other elements like potassium or phosphorous. The acidity of the soil or the 
occurrence of diseases can also be a factor. In this study we focus on determining 
the optimal nitrogen (N) fertilization level in potatoes. Main objective is to study 
whether spectral measurements are suitable for determining this optimal N level 
and subsequently which index can best be used. 
 
 
SPECTRAL INDICES 
 

As stated before, estimation of LAI of agricultural crops during the growing 
season can be based on using vegetation indices. Clevers (Clevers, 1988; Clevers, 
1989) derived a simplified, semi-empirical reflectance model for estimating LAI 
(CLAIR model). In this model, first, the WDVI (weighted difference vegetation 
index) is ascertained as a weighted difference between measured near-infrared 
(NIR) and red reflectances, assuming that the ratio of NIR and red reflectances of 
bare soil is constant. In this way a correction for the influence of soil background 
is performed: 
 

)( RCNIRWDVI ×−=       (1) 
 
NIR = measured NIR reflectance;  
R = measured red reflectance;  
C = slope of the (soil-specific) soil line, or ratio between NIR and red reflectance 
of soil. 

Subsequently, this WDVI is used for estimating LAI according to the inverse 
of an exponential function: 
 

)/1(/1 ∞−×−= WDVIWDVILnLAI α     (2) 
 
with α and WDVI∞ as two empirical parameters. 

The CLAIR model was evaluated for various crops (Bouman et al., 1992; 
Clevers, 1991). Ground-based reflectance measurements obtained in The 
Netherlands over different experimental fields during more than 10 years were 
used. For instance, a single regression line was found that was not significantly 
different for cereals like wheat, barley and oats during the vegetative growth 
period (before heading). Such ground-based parameter estimates could be applied 
to airborne (Clevers and Van Leeuwen, 1996) and satellite measurements 
(Clevers et al., 2002). 

 
Horler et al. (1983) were among the first researchers to point out the 

importance of the red-NIR wavelength transition for vegetation studies. At red 
wavelengths, reflectance is low due to absorbance by chlorophyll pigments while 
in NIR wavelengths, reflectance is high due to scattering inside the leaf and 
multiple reflections inside the canopy, resulting in a steep rise in reflectance 
between 670 and 780 nm. Both the position and the slope of this red-edge change 
under stress conditions, resulting in a shift of the slope towards shorter 
wavelengths (Horler et al., 1983; Wessman, 1994). The red-edge position (REP) 



 

is defined as the position of the inflection point of the red-NIR slope. This REP 
shift due to stress conditions can be caused both by a decrease in leaf chlorophyll 
concentration and by a decrease in LAI (Clevers and Jongschaap, 2001). These 
are the main variables determining the REP. The REP can be studied by plotting 
dR/dλ, the first derivative of reflectance (R) with respect to wavelength (λ), as a 
function of λ. Alternatively, in many studies simple functions have been fitted to 
the reflectance spectrum in the red-edge region, and subsequently the wavelength 
belonging to the maximum slope has been extracted from such an analytical 
expression. 

Although an increasing number of airborne and spaceborne imaging 
spectrometers have become available, their spectral resolution is not fine enough 
for an accurate determination of the REP using derivative spectra. Therefore, 
fitting a mathematical function to a few measurements in the red-edge region is 
often applied to estimate the REP. 

Guyot and Baret (1988) applied a simple linear model to the red-infrared slope. 
This method assumes that the reflectance curve at the red-edge can be simplified 
to a straight line between 700 and 740 nm. The reflectance of the REP is then 
estimated as being halfway the reflectance in the NIR at about 780 nm and the 
reflectance minimum of the chlorophyll absorption feature at about 670 nm. 
Subsequently, the REP is estimated by linearly interpolating between 
measurements at 700 and 740 nm, following: 
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where R670, R700, R740 and R780 are the reflectance values at 670, 700, 740 and 780 
nm wavelength, respectively, and the constants 700 and 40 result from 
interpolation in the 700–740 nm interval. 
 
 
METHODOLOGY 
 
Set-up field experiment potatoes 
 

In this study a potato field of 5 ha was used at the experimental farm “’t 
Kompas” in Valthermond (the Netherlands). This experimental farm is part of the 
Institute for Applied Plant Research of Wageningen University and Research 
Centre. The fields are part of the project “Perceel Centraal”. The potatoes were 
planted on 19 April 2007 and harvested on 2 and 10 October 2007. The cultivar 
was Seresta. The farm is situated on a partly peaty and partly sandy soil type. 
Within the field two identical field trials were set up. One trial was put in a less 
humous and dryer part of the field (trial 1) and one trial was put in a more humous 
part (trial 2). Four nitrogen levels were applied in each trial (table 1). 
 
 
Table 1.  Levels of nitrogen fertilization applied in both trials. 



 

N level N application (kg/ha) 
N0 0 
N1 140 
N2 200 
N3 260 

 
 
Table 2.  Specifications of the Cropscan system. 
Spectral band 
position (nm) 

Band width (nm) 

490 6 
550 7 
670 9 
700 10 
740 11 
780 12 
870 13 
1090 11 

 
 

The lowest level (N0) did not receive any N fertilizers. N2 (200 kg/ha) 
matches the recommended fertilizer application based on soil type and N reserves 
in the soil at the beginning of the season. N1 and N2 are representing a deviation 
of 60 kg/ha below and above the recommended level, respectively. Within each 
trial four replicates were created, resulting in 16 plots per trial. Size of each net 
plot was 1.5 × 12 m. The field outside the trial areas received the recommended 
fertilization level too. 
 
Cropscan 
 

The Cropscan™ (Skye Limited Inc.) used in this study is a 8-band radiometer. 
It measures simultaneously the reflected and incoming radiation in narrow 
spectral bands. Reflectance is measured through a 28° field-of-view (FOV) 
aperture and incoming radiation is measured through a cosine-corrected sphere. 
Calibration is performed by pointing the 28° FOV aperture towards the sun using 
an opal glass. Using this calibration, spectral reflectances are derived. 
Specifications are given in table 2. Both field trials were measured a couple of 
times during the middle of the 2007 growing season. Trial 1 was measured on 20 
June, 25 June, 2 July and 17 July. Trial 2 was measured on 14 June, 25 June, 2 
July and 17 July. From the spectral measurements both WDVI and REP were 
calculated. 
 
Statistical analysis 
 

In this study focus is on the treatment effect of different levels of nitrogen 
fertilization. Main crop variable is the net tuber yield at harvest time. To test the 
N effect, a one-way analysis of variance (ANOVA) was performed on the yield 



 

figures. The critical level shows whether there was a significant treatment effect. 
In addition, a pairwise Tukey test was applied to test which treatment effects were 
significant (at the 5% level). 

Subsequently, both ANOVA and Tukey test were also applied to the spectral 
measurements obtained with the Cropscan and to the WDVI and the REP. This 
should yield the best indicator for mapping the N effects and thus to discriminate 
growth differences as a result of differences in nitrogen status. 

Next, a regression analysis was applied to study the relationship between 
spectral indicators and field measured tuber yield. The predictive power of the 
indices was assessed by estimating the root mean square of prediction (RMSEpred) 
using the leave-one-out method. 

As a final step we will investigate whether the results can be used to assess the 
optimal N level for both field trials individually. 
 
 

RESULTS AND DISCUSSION 
 
Potato yield figures 
 

Figures 1 and 2 illustrate the final tuber yield as a function of the N 
fertilization level for trial 1 and 2, respectively. A second order polynomial 
function was fitted. Figure 1 shows for trial 1 that the yield increases with N 
level. Yield is low without N application. Based on these observations, highest 
yield is obtained with the highest N application of 260 kg/ha. Figure 2 shows less 
differences between the N levels for trial 2. The zero level (N0) is not as low as 
for trial 1. Moreover,  
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Figure 1.  Tuber yield as a function of N fertilizer level for trial 1. 
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Figure 2.  Tuber yield as a function of N fertilizer level for trial 2. 
 
 
the N2 level (recommended level) seems to be optimal. Higher yields are obtained 
and less nitrogen fertilization is required for trial 2 as compared to trial 1. This 
may be caused by the more humous soil, keeping a higher moisture and 
mineralisation level during the season and thus giving better growing conditions. 

Table 3 provides the results for the ANOVA. For both trials there is a 
significant N effect. Table 4 gives the results of the Tukey test, showing that there 
is only a significant pairwise difference between N0 and the other three N levels 
for both trials. N1, N2 and N3 are mutually not significantly different (at 5% 
significance level). 
 
 
Table 3.  ANOVA results for tuber yields in testing N fertilization of trial 1 and 2 

(significance at the 5% level is indicated by grey blocks). 
 Critical level 
Trial 1 0.000 
Trial 2 0.003 

 
 
Table 4.  Results of pairwise Tukey test for N levels of trial 1 and 2. 
N level comparison Trial 1 Trial 2 
N0 - N1 0.003 0.039 
N0 - N2 0.000 0.008 
N0 - N3 0.000 0.003 
N1 - N2 0.487 0.688 
N1 - N3 0.117 0.319 
N2 - N3 0.714 0.888 



 

Spectral signatures 
 

Figures 3 and 4 offer the average spectral signatures per N level for the 
measurements on 2 July 2007 as an example. Similar signatures were obtained for 
the other dates. From these the WDVI and REP were also calculated. The WDVI  
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Figure 3.  Example of the spectral signature of the different N fertilizer levels for 

trial 1 on 2 July 2007. 
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Figure 4.  Example of the spectral signature of the different N fertilizer levels for 

trial 2 on 2 July 2007. 



 

(and also the NIR reflectance) for both trials is clearly lower for the N0 level on 
all dates. However, the N0 level is higher for trial 2 than for trial 1. This was also 
shown before in terms of tuber yield. 

Tables 5 and 6 provide the results for the ANOVA for trial 1 and 2, 
respectively, for all spectral bands, WDVI and REP. The N effect appears to be 
most significant for REP on 2 July and 17 July. On the measurement dates in June 
2007, WDVI and NIR reflectances provide the most significant N effect. Tables 7 
and 8 give the results of the Tukey test for WDVI and tables 9 and 10 those for 
the REP. Again there is a significant pairwise difference between N0 and the 
other three N levels for both trials. N1, N2 and N3 mostly are mutually not 
significantly different. In some cases there is a significant difference between N1 
and N3. This is in particular the case for the REP. 
 
 
Table 5.  ANOVA results (F values) with respect to N test for spectral 

measurements of trial 1 (significance at the 5% level is indicated by grey 
blocks; ). 86.3)05.0(3

9 =F
 20 June 25 June 2 July 17 July 
490 nm 2.44 0.86 0.78 1.26 
550 nm 1.92 0.45 9.68 13.84 
670 nm 0.12 0.97 3.05 0.56 
700 nm 1.14 0.64 17.49 12.74 
740 nm 23.19 34.73 15.85 17.42 
780 nm 34.85 54.31 29.97 30.96 
870 nm 37.21 50.52 34.26 36.95 
1090 nm 38.56 44.60 34.07 31.67 
WDVI 35.05 69.34 35.31 29.40 
REP 24.25 5.26 132.67 42.49 

 
 
Table 6.  ANOVA results (F values) with respect to N test for spectral 

measurements of trial 2. 
 14 June 25 June 2 July 17 July 
490 nm 11.91 2.68 3.61 1.57 
550 nm 8.57 9.16 28.83 51.02 
670 nm 4.59 1.42 6.10 6.62 
700 nm 3.63 1.55 19.91 44.15 
740 nm 49.34 7.04 0.99 5.53 
780 nm 70.39 20.04 9.65 15.84 
870 nm 63.25 17.79 8.81 16.83 
1090 nm 62.31 10.89 7.81 18.44 
WDVI 56.10 18.97 11.56 17.90 
REP 33.29 12.68 42.85 56.82 

 
 
Table 7.  Results of pairwise Tukey test for N levels of WDVI of trial 1. 



 

N level 
comparison 

20 June 25 June 2 July 17 July 

N0 - N1 0.000 0.000 0.000 0.000 
N0 - N2 0.000 0.000 0.000 0.000 
N0 - N3 0.000 0.000 0.000 0.000 
N1 - N2 0.738 0.451 0.448 0.418 
N1 - N3 0.145 0.054 0.185 0.588 
N2 - N3 0.624 0.463 0.901 0.988 

 
 
Table 8.  Results of pairwise Tukey test for N levels of WDVI of trial 2. 
N level 
comparison 

14 June 25 June 2 July 17 July 

N0 - N1 0.000 0.002 0.013 0.006 
N0 - N2 0.000 0.000 0.006 0.001 
N0 - N3 0.000 0.001 0.002 0.000 
N1 - N2 0.945 0.590 0.962 0.669 
N1 - N3 0.660 0.754 0.531 0.210 
N2 - N3 0.371 0.991 0.796 0.756 

 
 
Table 9.  Results of pairwise Tukey test for N levels of REP of trial 1. 
N level 
comparison 

20 June 25 June 2 July 17 July 

N0 - N1 0.001 0.276 0.000 0.000 
N0 - N2 0.001 0.058 0.000 0.000 
N0 - N3 0.001 0.020 0.000 0.000 
N1 - N2 1.000 0.713 0.108 0.169 
N1 - N3 0.984 0.344 0.006 0.053 
N2 - N3 0.972 0.894 0.248 0.858 

 
 
Table 10.  Results of pairwise Tukey test for N levels of REP of trial 2. 
N level 
comparison 

14 June 25 June 2 July 17 July 

N0 - N1 0.001 0.014 0.000 0.000 
N0 - N2 0.000 0.005 0.000 0.000 
N0 - N3 0.000 0.001 0.000 0.000 
N1 - N2 0.265 0.895 0.172 0.777 
N1 - N3 0.035 0.315 0.116 0.025 
N2 - N3 0.541 0.677 0.993 0.103 

 
 
 
Relationship spectral indices with final tuber yield 
 



 

Since WDVI and REP both show the differences in nitrogen fertilization as 
shown in the previous section, in this section the relationship of these indicators 
with tuber yield is studied. This analysis is done for both trials individually. Since 
it is expected that results for both trials individually yield similar relationships, 
the analysis is also done for both trials combined. Results in terms of R2 and 
RMSEpred are given in table 11 and 12, respectively. Significant R2 values are 
obtained in all cases. For both trials separately R2 is significant at 5% level if R2 > 
0.29. For both trials combined this R2 is 0.11. Table 12 shows that the WDVI 
yields an error (RMSEpred) between 2.70 and 4.52 ton/ha. This means a range of 
6% - 10% of average tuber yield. The error in yield prediction by the REP is 
between 3.79 and 5.72 ton/ha, which matches a range of 8% - 12% of the average 
tuber yield. Results for 2 July are illustrated in figures 5 and 6 for WDVI and 
REP, respectively. Relationships for both trials individually are similar, thus both 
indicators are also significantly correlated with tuber yield when both trials are 
combined. 
 
Optimal nitrogen fertilization level 
 

Figures 7 and 8 illustrate the WDVI as a function of the N fertilization level 
for trial 1 and 2, respectively. Again a second order polynomial function is fitted. 
Figure 7 shows for trial 1 that the WDVI for the N0 level is lower than for the 
other levels. WDVI keeps on increasing with increasing N level and the optimal 
N level seems to be around 260 kg/ha. This is the same result as for tuber yield. 
Figure 8 shows that for trial 2 differences between fertilization levels are less. 
Again the zero level (N0) is not as low as for trial 1. The optimal N level now is 
around 150 - 200 kg/ha. Results are similar to those obtained with tuber yield. 
 
 
Table 11.  Regression results in terms of R2 (= coefficient of determination). 
 
 

WDVI REP 
Trial 1 Trial 2 Trial 1+2 Trial 1 Trial 2 Trial 1+2 

14/20 June 0.88 0.83 0.87 0.46 0.71 0.57 
25 June 0.81 0.66 0.74 0.63 0.46 0.50 
2 July 0.82 0.84 0.71 0.73 0.63 0.71 
17 July 0.79 0.73 0.61 0.71 0.66 0.66 

 
Table 12.  Regression results in terms of RMSEpred (= root mean square error of 

prediction). 
 WDVI REP 

Trial 1 Trial 2 Trial 1+2 Trial 1 Trial 2 Trial 1+2 
14/20 June 2.74 2.83 2.70 5.72 3.79 4.87 
25 June 3.27 4.08 3.65 4.57 5.24 5.14 
2 July 3.22 2.87 3.89 3.82 4.38 3.88 
17 July 3.39 3.68 4.52 4.04 4.10 4.27 

CONCLUSIONS 
 



 

This study clearly shows that spectral measurements in the visible and near-
infrared part of the spectrum can discriminate growth differences in potatoes as a 
result of differences in nitrogen status. Particularly the WDVI and REP were 
 
 

Trial 1 + 2 - 020707

y = 0.9731x - 8.0294
R2 = 0.712

30

40

50

60

30 35 40 45 50 55 60 65

WDVI

Yi
el

d 
(to

n/
ha

)

 
Figure 5.  Example of the relationship between tuber yield and WDVI for trial 1 

and 2 combined on 2 July 2007. 
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Figure 6.  Example of the relationship between tuber yield and REP for trial 1 

and 2 combined on 2 July 2007. 
significantly correlated with the measured tuber yield at harvest time and can be 
used for determining the optimal N level for getting the highest yield. Further 



 

research should focus on the question whether the resulting quality is also 
optimal. 

At the moment biomass maps (see e.g. figure 9) are already produced from 
NIR digital imagery. Since atmospheric correction is a major complicating factor 
when 
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Figure 7.  Example of the WDVI as a function of N fertilizer level for trial 1 on 2 

July 2007. 
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Figure 8.  Example of the WDVI as a function of N fertilizer level for trial 2 on 2 

July 2007. 



 

 
Figure 9.  Example of a relative yield map derived from a digital image using a 
Canon infrared-enabled camera with internal infrared filter. 

High biomass

Low biomass

 
 
using airborne remote sensing data, currently only relative biomass maps are 
produced. However, these maps can be used for mapping relative differences 
within fields. For estimating REP, however, imaging spectroscopy data are 
required. Further research should provide the best methodology for determining 
optimal management practices. Remote sensing can be a valuable tool in this 
respect. 
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