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ABSTRACT 
 
     Spatial variability of soil physical and chemical properties is a fundamental 
element of site-specific soil and crop management. Since its early implementation 
in agriculture as a method of measuring soil salinity, the acceptance of Apparent 
Electrical Conductivity (ECa) in agriculture has been popular as a method of 
determining the spatial variability of soil physical and chemical properties that 
influence the ECa estimates. It was the objective of this study to examine the 
spatial-temporal stability of ECa estimates in selected Eastern Corn Belt soils. By 
employing spatial statistics to the ECa estimates, this study was able to determine 
that on a field scale, ECa estimates at 0-30 and 0-90cm depths were variable at 
distances that ranged from 25 to 115m. Only one soil mapping unit tested 
significant at 0-30 cm while there were no significant results between individual 
soil mapping units and ECa at 0-90 cm over the five years data that were 
collected. ECa estimates were also collected in west-central Indiana on small plots 
(6x42 m) of prairie and forested soils on a weekly basis over a period of 12 -13 
weeks to assess spatial-temporal ECa estimates at 0-30 cm depth. Spatial 
autocorrelation distance for the ECa at 0-30cm depths for the six sub-fields varied 
from 2 to 10m. Some weeks were significant for soil moisture, organic matter or 
K but the results were not consistent using either the ordinary least squares (OLS) 
or spatial process models, and the causality relationship could not be established 
as they were not consistent.  This study concludes that apparent electrical 
conductivity (ECa) does not provide consistent results for the measurement and/or 
assessment of soil moisture content, organic matter and potassium.  
 
 
Keywords: Apparent Electrical Conductivity, spatial variability, spatial 
autocorrelations, soil moisture, organic matter, potassium. 



SOIL MOISTURE, ORGANIC MATTER AND POTASSIUM 
INFLUENCES ON ECA MEASUREMENTS 

 
INTRODUCTION 

 
Precision agriculture uses technology to manage soils and crops in a site-

specific manner. Precision agriculture began more than 20 years ago in the early 
to mid-eighties. Wiebold et al (1998) stated that along with yield mapping, some 
producers have shown an interest in characterizing the variability of soil. 
However, one must be aware that there is no single measurement that helps 
explain the effect that soil variability has on corn yield (Kitchen et al., 2003).  

The objectives of this study were to (1) verify the spatial and temporal 
stability of apparent electrical conductivity (ECa) at 0-30 and 0-90 cm depths in 
selected Eastern Corn Belt soils and (2) assess the correlation of organic matter, 
potassium (K) and soil moisture (%v/v) to ECa.  
 

LITERATURE REVIEW 
 
Corwin and Lesch (2005) stated the first application of apparent electrical 

conductivity (ECa) in agriculture was for the measurement of soil salinity. 
Research in this area was primarily conducted by Rhoades and his colleagues in 
the 1970’s at the USDA-ARS Salinity Laboratory in Riverside, CA. Soil salinity 
is determined by the quantity of mineral salts found within a soil at different 
depths (Corwin and Lesch, 2005). 

The electrical conductivity of a soil is a measurement of how an electrical 
current is transmitted through the soil (Corwin and Lesch, 2003). Apparent 
electrical conductivity is affected by soil temperature, physical and chemical 
properties of the soil including the concentration of minerals of the soil water, soil 
structure, and clay content (Geonics Limited, 1980). Relationships between ECa 
and soil moisture, salinity and soil properties were tested by Corwin and Lesch 
(2003) demonstrating three soil electrical conductivity pathways. Resh (1991) 
reported that “for every 1◦C temperature change, the conductivity of a nutrient 
solution will increase by around 2%”. More simply, he noted that small changes 
in temperature make a large difference in electrical conductivity. 

Soil ECa estimates have been used for quantifying and monitoring soil salinity 
in irrigated agricultural areas of arid soils (Spies and Woodgate, 2005). Other uses 
of ECa reported in precision agriculture include the improvement of the soil 
mapping units, the design of management zones (Sudduth et al., 2003) and soil 
drainage patterns classification (Kravchenko et al., 2002).   

Apparent electrical conductivity has been used to characterize field variability 
in precision agriculture because of the ease in which large amounts of geo-
referenced data can be collected (Corwin and Lesch, 2003). The relationship 
between ECa and crop yield has been reported to be significant within crop 
treatments and fields but has been inconsistent across years (Jaynes et al., 1993; 
Sudduth et al., 1995; Kitchen et al., 1999). Lund et al. (1999) and Sudduth et al. 
(2001) state “it is important to note that while the magnitude of measured ECa 
fluctuates over time, the spatial patterns of ECa remain constant”.  Kitchen et al. 
(1999) stated that climate, crop type and specific field information are usually 



required to understand the relationships for any given site year. Kachanoski et al. 
(1988) found a linear relationship between ECa and soil moisture up to 25% 
volumetric water content, above which they found little change in soil ECa. 
Heiniger et al. (2003) also found that in general, that the direct relationships 
between ECa and P, K, Ca, Mg, Mn, Zn, and Cu on nine fields studied in 1999 
were either weak or non-significant. Brevik et al. (2006) reported soil moisture 
variations affected ECa estimates at different landscape positions. They also stated 
if ECa is to be used in precision agriculture, measurements should be collected 
when soils are moist.  Corwin and Lesch (2005) state similar results were found 
for the relationship between ECa and soil salinity.  

The cost of intensively soil sampling a field is often greater than the savings 
from the reduction in fertilizer or lime (Swinton and Mubariq, 1996; English et 
al., 1999). Heiniger et al. (2003) stated that it seems logical to believe ECa could 
be used to measure the nutrient content of the soil but concluded that there was 
generally a weak relationship between ECa and soil test results for P, K, Ca, Mg, 
Mn, Zn, and Cu. Omonode and Vyn (2006) also concluded that there is a weak 
correlation between ECa and organic matter, P and K.  

Spatial dependence and spatial heterogeneity are known as the main problems 
in statistical analysis (Smithwick et al., 2005). Spatial dependence can be caused 
by many measurement problems in applied research. Two examples of these are 
the arbitrary definition of spatial units by artificial boundaries and the problems of 
spatial aggregation due to these arbitrary lines (Openshaw, 1984). Rather than use 
arbitrary boundaries for analysis, (Jelinski and Wu, 1996) suggest one possible 
solution is to utilize natural entities. Fotheringham and Rogerson (1993) stated it 
is known that applying statistical results from a large to a small scale will result in 
serious errors. Rather than risk statistical and analytical errors by arbitrarily 
defining boundaries, Anselin and Getis (1992) suggest determining spatial 
autocorrelation or the distance at which a variable is related to one another. 

 
MATERIALS AND METHODS 

 
Description of Study Sites 
 

The first portion of this study was conducted on 4 sub-fields totaling 
approximately 46 ha on Purdue University’s Davis Purdue Agriculture Center 
(DPAC) in Randolph County, Indiana, USA (40°14'38" N   85°8'55" W) on soils 
formed on Wisconsin age glacial till. The field is non-irrigated with most 
significant topographic relief located in the northwest, west central and southeast 
corner of the field. The Order 2 Soil Survey was digitized and cartographic errors 
removed based on a 0.1 m contours derived from a topographic map collected in 
2004. Major soil mapping units for an Order 2 Soil Survey are Blount (fine, illitic, 
mesic Aeric Epiaqualfs), Glynwood (fine, illitic, mesic Aquic Hapludalfs), 
Morley (fine, illitic, mesic Oxyaquic Hapludalfs), Pewamo (fine, mixed, active, 
mesic Typic Argiaquolls), and Saranac (fine, mixed, active, mesic Fluvaquentic 
Endoaquolls). The geomorphology of the soil series are:  Blount, Glynwood and 
Morley – till plain moraine, Pewamo – depression on till plain and Saranac – 
flood plain (Neely, 1987). 



The second portion of this study was conducted on 3 plots of forest-derived 
soils and 3 plots of prairie-derived soils on Purdue University’s Agronomy Center 
for Research and Education (ACRE) in Tippecanoe County, Indiana, USA 
(40°28’45” N 86°59’36” W) on soils formed on Wisconsin age glacial till with 
each plot measuring 6 x 42 m. The forest soils consisted of Rockfield (fine-silty, 
mixed, superactive, mesic Oxyaquic Hapludalfs) and Toronto (fine-silty, mixed, 
superactive, mesic Udollic Epiaqualfs). The prairie soils contain Drummer (fine-
silty, mixed, superactive, mesic Typic Endoaquolls) and Raub (fine-silty, mixed, 
superactive, mesic Aquic Argiudolls). The geomorphology of the soil series are: 
Drummer – depressions on till plain, Raub, Rockfield and Toronto – till plain 
moraine (Ziegler, 1998). 

 
Data Collection 
 
At the DPAC study site, ECa estimates were collected within each sub-field 

using a Veris 3100® sensor cart (Veris Technologies, Salina, KS) that operates on 
a principle of electrical resistivity. Prior to each data collection, the signal output 
and electrical continuity of the Veris 3100 were checked per the manufacturer’s 
instructions and specifications to ensure proper functioning of the tool.  

The measurements were taken on average spatial distance of 3 m between 
points in the direction of travel, with transects of ≤ 10m on 28 May 1999, 2 June 
2000, 6 November 2001, 15 October 2002 and 23 October 2003 following a 
previous crop of soybean [Glycine max (L) Merr]. Transects were also created in 
ArcGIS 8.3 (ESRI, 2003) at a distance of 18m and then buffered to a width of 
2.5m. Any points that fell within this buffer zone were selected and used for 
analysis. The same transects and buffer zones were used for each subsequent ECa 
dataset to ensure that analyses were conducted using ECa points that fell on the 
same transect and the 2.5m buffer. Two sets of ECa estimates were collected at 
depths of 0-30cm and 0-90cm as described by Veris Technologies (2006). ECa 
estimates were georeferenced using a differential global positioning system 
(DGPS) with an accuracy of ± 1 m.  

The Order 2 Soil Survey (Neely, 1987) was digitized and overlain with the 
ECa data. A soil delineation line of 0.5mm at a scale of 1:15,840 can be 
interpreted to an actual ground distance of 8m. In addition to the 8 m soil line, the 
buffer was exaggerated by 7.4m both inside and outside of this line producing an 
approximate 23m-transition zone. The exact width of the transition line at any 
specific location depends on the gradation of one soil to another. This distance is 
actually based on field topography and the distance mechanical applicators 
require when changing application rates. Each soil mapping unit was buffered to a 
distance of ≈ 11m inside the polygon to capture accurate ECa estimates and to 
lessen the influence of transitional soils. ECa estimates were then extracted for 
each individual soil mapping unit.  

At the ACRE study site, georeferenced ECa estimates with accuracy of ± 1m 
were collected using the same Veris 3100 sensor cart as used at the DPAC site. 
Data were collected on a weekly basis on bare soil at an average distance of 1.5m 
with transects of 2.5m on 6 x 42m plots beginning 19 July 2004 and ending 22 
October 2004. On the same day, 100 evenly spaced soil moisture (%, v/v) data 
points were collected in the center of the Veris cart path in the direction of travel 



using a Spectrum TDR 300 ® (time domain reflectometry) soil moisture probe 
(Spectrum Technologies, East - Plainfield, Illinois) to a depth of 20cm. Soil 
temperature was measured at a depth of 10cm on bare soil as were daily rainfall 
amounts by an automated weather station located at ACRE. The plots were tilled 
to a depth of ≈15 cm following the collection of soil moisture on August 2, 
August 23, and September 16 to remove any weeds that were present and to 
remove compacted tire track areas so as not to interfere with the subsequent ECa 
estimates. Upon completion of the study, each sub-field was equally divided into 
6 sub-plots and soil samples collected and sent to Iowa State University’s soil 
testing laboratory for % OM, P Bray-1, and Mehlich-3 extraction for Ca, Mg, and 
K measurements.   

 
Statistical Analysis 
 

Often, precision agriculture researchers take point data and interpolate it using 
equal area grids. Grid size is often arbitrarily determined by the researcher. This 
study considered the implications of arbitrary grid size determination by 
interpolating sub-field M1 ECa point data at 0-90 cm depth for four years into 14 
and 45m equal area grids in ArcView 3.3 (ESRI, 2002). The point data were 
interpolated using inverse distance weighting (IDW) with a power of 2 and 12 
nearest neighbors. Once the interpolation was complete, a 1-standard deviation 
classification scheme was implemented with 1 significant digit.  

Maps created with the 14m grid size were reasonably stable for ECa at 0-90 
cm depth over the 4 years. The minimum ECa estimates varied by only 2 
milliSiemens per meter (mS/M). The maximum ECa estimates varied by 19 mS/M 
and the means by 12 mS/M. The standard deviations ranged from 7.5 in 2000 to 
5.4 in 2001.  

Maps created alternatively with a 45 m grid size were more variable over the 4 
years. The minimum ECa estimates for each year varied by 3 mS/M, similar to the 
14 m grid size. The maximum ECa estimates varied by 30 mS/M, or 11 mS/M 
larger than the 14 m grid size. The mean ECa estimates varied by 12 mS/M, 
identical to the 14 m grid size. The standard deviations ranged from 8.9 in 2000 to 
5.3 in 2001. In 2000, the standard deviation for each grid size was the largest but 
the 45m grid size was 1.4 standard deviations larger than the 14 m grid size. The 
standard deviations for the remaining years were similar.  

The difference in the resulting maps between the 14 and 45m grid size caused 
us to reconsider the use of interpolating point data into arbitrarily sized grids. 
Jelinski and Wu (1996) stated that such differences are due to the modifiable areal 
unit problem (MAUP). The modifiable areal unit problem is made up of two 
elements, scale and aggregation. Openshaw (1984) stated that the scale 
component occurs when the same data are aggregated into larger units. The 
aggregation component occurs when the results are influenced by the manner in 
which the units are arranged. As a result of the suspected MAUP with these data, 
the analysis for ECa at 0-30 and 0-90cm depths and the relationship between ECa 
and soil chemical properties were done using spatial statistics.  

Spatial autocorrelation (SAC) was one of the analyses used to determine the 
primary relationships of ECa to soil properties in this study.  Moran’s I statistic 
(Anselin, 1992) was used to calculate the coefficient at selected lag distances. 



Moran’s I is a measure of autocorrelation similar in interpretation to the Pearson’s 
correlation statistics. Both statistics have a reported range from + 1.0 
demonstrating a strong positive correlation to 0 indicating a random pattern to -
1.0 meaning a strong negative spatial autocorrelation.  The statistic for Moran’s I 
is (Anselin, 1992):  

2
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j

      Eq. [1] 

where μ is the mean of the variable x and wij are the components of the spatial 
weight matrix and S0 is a factor equal to the sum of the components in the weigh 
matrix.  

Anselin (1995) suggested a method to detect the local patterns of spatial 
association (LISA) with adjustment for local instabilities in overall spatial 
association. It can capture the local level of spatial autocorrelation in order to 
identify areas where values of the variable are both extreme and geographically 
homogeneous. This enables one to identify so called hot spot areas where the 
variables are apparent across localities. The local Moran statistic for each 
observation i may be defined (Anselin, 1995) as follows: 
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where the observations Zi and Zj are in standardized form. The weight wij is in 
row-standardized form. A pseudo-significance level of the Ii can be found by 
using a permutation approach. A small p-value such as P <0.05 indicates that 
location i is associated with the relatively high values of the surrounding 
locations. A large p-value such as P > 0.05 indicates that location i is associated 
with relatively low values of the surrounding locations. 

One can determine the maximum positive spatial autocorrelation distance 
using the 95% confidence limit for Moran’s I. This value is based on its Z-
transformation and examines the significance of the values (P < 0.05) with 
distance. The 95% confidence limits for these transformed values are -1.96 to 
+1.96 (Doak and Pollock, 2005). That is to say any Z-transformed autocorrelation 
value that is near the outside range of these two lines is significant, while those 
closer to zero are not significant. The Z scores are a special application of the 
transformation rules. The Z score for an item indicates how far and in what 
direction that item deviates from its distribution's mean and is stated in its 
standard deviation. The mathematics of the Z score transformations is that if 
every item in a distribution is converted to its Z score, the transformed scores will 
have a mean of zero and a standard deviation of one.  

For each class, one then quantifies the correlation between the pairs of points. 
The extent to which the spatial autocorrelation changes with increasing distance 
classes  tells us how far apart measurements must be to be independent of one 
another, as well as the strength and the sign (either positive or negative) and 
correlations at each distance. For most precision agriculture applications the 
strength of SAC will be strongest at very short distances, and then trend 
downward with increasing distance. In this study, it was not uncommon to see 
significant SAC reappear at medium to large distances. This is due to the 



interaction of the area where variables such as ECa are sampled (Doak and Pollok, 
2005). 

The result of spatial dependence and heterogeneity is that the observations 
contain less information than if there had been independence (Anselin, 1992). 
This author also states that using classical statistics, the properties for the 
estimators and hypothesis tests will not be maintained when spatial errors are 
present. When there is spatial dependence and spatial heterogeneity in the spatial 
models, the ordinary least squares (OLS) estimators will be biased as well as 
inconsistent (Greene, 1981). 

The determination of spatial heterogeneity and dependence requires the spatial 
weight matrix w. Each weight element wij in w corresponds to a pair of 
observations at locations i and j. The GeoDA  statistical software package 
(Anselin, 2005b) was used to test for spatial dependence by means of ordinary 
least squares (OLS) using a distance matrix. Determination between an OLS, 
spatial lag or spatial error model was made by examining the Moran’s I statistic, 
z-value and probability. If the Moran’s I statistic, z-value and p-value are 
significant, then spatial autocorrelation is present (Anselin, 1992). The process of 
determining spatial dependency and heterogeneity are discussed by Anselin 
(2005a). Five Lagrange Multiplier (LM) test statistics are reported by Anselin, 
(2005a) and Pryce (2002).  

The individual mapping units are labeled alphabetically beginning with A for 
each soil series found in the whole field. Diagnostics for spatial dependency 
indicated there was no spatial dependency. Therefore, an ordinary least squares 
regression becomes the appropriate model for testing whether there is a 
relationship between ECa and other variables. 

 
RESULTS AND DISCUSSION 

Comparison of ECa Spatial Autocorrelation Distance 
 

The five soils were represented by the following areas with the 4 test 
fields at the DPAC study site: Blount (33%), Pewamo (37%), Glynwood (23%), 
Morley (6%) and Saranac (1%). Visual assessments of surface soil moisture 
conditions at DPAC the day ECa estimates were collected for each year were 1999 
(dry), 2000 (very wet), 2001 (moist, but not muddy), 2002 (moist but not muddy) 
and 2003 (wet areas, moist to muddy). 

Figure 1 shows the distances at which spatial autocorrelation remains 
significant and exhibits variable patterns with a maximum positive spatial 
autocorrelation distance that varies year to year for the ECa estimates taken at 0-
30cm for Fields M1 and P which were representative of the results. The 
autocorrelation at zero SAC is 1 indicating perfect autocorrelation and begins to 
decay as SAC distance increases between ECa estimates to insignificant levels (P 
> 0.05). The most common pattern is to see relatively strong, positive 
autocorrelation at the smallest distance with either a slow or rapid decline in 
correlation as the distance increases. The distance at which Moran’s I is 
considered to be significant is dependent on the year that ECa was collected. This 
poses a problem if one is to use ECa estimates to predict corn yield. Note if the 
distance of spatial autocorrelation of ECa is 100m, this is saying that at this 



distance, there is no significant difference in ECa measured soil properties. For 
this study site, it was determined the distance of spatial autocorrelation is not the 
same for subsequent years and that at a 95% confidence limit for ECa at 0-30cm 
with a transect of ≤ 10m, the distance of spatial autocorrelation for all the sub-
fields ranged from 30 to 110m, the Moran’s I ranged from 0.04 to 0.15, the Z 
values ranged from 2.10 to 5.50 and the P values were significant for all 
measurements at the 0.05 probability level.  

Figure 2 shows the spatial autocorrelation distance for transects ≤ 10 m at 
a depth of 0-90cm for sub-fields M1 and N, which is a similar pattern to that of 0-
30cm. Spatial autocorrelation distance for sub-field M1 ranged from 30 to 90 m. 
Sub-field P is so similar that one could conclude that the 0-30cm depth might be 
influencing the measurements. The distance of spatial autocorrelation for all the 
sub-fields ranged from 25-115m, the Moran’s I ranged from 0.05-0.16, the Z 
vales ranged from 2.07-7.92 and the P values were significant for all 
measurements at the 0.05 probability level. 
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Figure 1. Spatial autocorrelation distances for ECa at a depth of 0-30 cm on ≤10 m 
transects for (a) sub-field M1 and (b) sub-field P. 
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Figure 2. Spatial autocorrelation distances for ECa at a depth of 0-90 cm on ≤ 10 m 
transects for (a) sub-field M1 and (b) sub-field N. 
 
 

It was difficult to draw any conclusions on which transect width (≤ 10 or 
18 m) was meaningful given the variability in SAC distances. The ECa sensor 
manufacturer suggests that 12 to 18 m transects will provide a map that 
adequately identifies the spatial patterns of a field (Veris Technologies, 2006). 
Lund et al. (1999) and Sudduth et al. (2001) stated that while the variability of 
measured ECa values differ over time, the spatial patterns or zones of ECa 
remained constant. If the spatial patterns or zones were constant, the SAC 
distance and slope of the line would be similar each year that data were collected. 
This research shows that the spatial patterns are quite variable from year to year in 
each of the four sub-fields that were tested. As a result, it would be difficult to 
develop management zones using ECa estimates because the size of the 
management zones would vary within a field depending on the year that the data 
were collected. 

 
Spatial Autocorrelation Time Series 
 
Once the SAC distance was determined for each sub-field and year that 

ECa was collected, the 95% confidence limit for SAC distance was used to create 
a distance matrix to establish the local Moran’s I value. Moran’s I statistical 
significance was tested using 10,000 Monte Carlo permutations for each sub-field 
(Figure 3).  
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        a. Sub-field M1 SAC time series. b. Sub-field M2 SAC time series. 
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Figure 3. Spatial autocorrelation (SAC) time series of a) sub-field M1, b) sub-
field M2, c) sub-field N and d) sub-field P showing changes with ECa 0-30 and 
0-90 cm with ECa data collected from 1999-2003.

The results of the ECa time series analyses at DPAC are curious.  One 
would think that at the 0-90 cm depth, soil moisture conditions would be 
somewhat stable and less variable. Brevik et al. (2006) stated that there may be a 
relationship between ECa and soil moisture if it is assumed that changes in soil 
moisture follows the pattern of rainfall. However, Das and Mohanty (2005) stated 
“the saturated hydraulic conductivity, which is highly variable in space, is a 
primary factor affecting infiltration”. Because of the variability in the soil 
physical and chemical properties across the landscape, it is difficult to conclude 
how much soil moisture influenced the variability in ECa estimates.  

 
Agronomy Center for Research and Education 
 
Spatial Autocorrelation Distance 
 
 The SAC distance for ECa on the six plots with four soil series up to 
thirteen weeks appeared to be stable at a maximum distance of 10 m. Figure 4 



shows the representative SAC distances for shallow ECa of sub-field 131-1 and 
subfield 31-3 for the twelve weeks that ECa estimates were collected. The SAC 
distances for ECa at 0-90 cm depth are not reported since the correlations with soil 
moisture, OM and K data were obtained at the 0-30 depth.  
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Figure 4. Spatial autocorrelation distance for ECa @ 0-30 cm for 12 weeks for 
sub-field a) prairie soils in 131-1 and b) forested soils in 31-3 collected at ACRE 
in July, August, September, and October, 2004. 
 

The SAC distances ranged from 2 and 8m with the majority being at 6m 
for the prairie soils and ranged from 6-10m with the majority being at 8m for the 
forested soils. The Moran’s I ranged from 0.07 –0.38 and 0.11-0.52 for the prairie 
and forested soils, respectively. The Z-values ranged from 5.21-13.49 and 6.07-
15.62 for the prairie and forested soils, respectively. The P-values were all 
significant for all measurements at the 0.001 level. 

A time series of the spatial autocorrelations showed that there is local 
variablity in ECa over time.  Spatial cluster maps were also developed for each 
sub-field, but not shown here, using an exploratory analysis technique known as 
local indicators of spatial association (LISA) where a cluster is classified when 
the value at a location , either high or low is more similar to its neighbors than 



would be the case under spatial randomness (Anselin, 2005a) These maps showed 
significant changes from one time of data collection to another. 
 

SUMMARY AND CONCLUSIONS 
 
 Due to the influence of the modifiable areal unit problem (MAUP), we 
chose not to interpolate point data into grids. Researchers must determine the 
optimal grid size for variables such as crop yield, ECa estimates and soil nutrient 
test results before recommending this type of analysis. Therefore, this study made 
use of spatial process models based on spatial dependency and spatial 
heterogeneity. Apparent electrical conductivity was analyzed at two different 
locations in Indiana on nine different soils using three different transects 2.5 m, ≤ 
10 m and 18 m by sub-field to determine the spatial-temporal stability.  

At the DPAC site, spatial autocorrelation distance for the ECa 0-30 and 0-
90 cm depths varied widely depending on the sub-field and year that 
measurements were collected. The cause of this variation was related to 
differences in soil chemical properties not only between years but also among 
sub-fields. A time series showed an inverse relationship for the Moran’s I in sub-
field M1 between ECa depths of 0-30 and 0-90 cm. When tested by individual 
mapping units, there was only one soil (Saranac) that had a significant 
relationship (P ≤ 0.05) with ECa at the 0-30 cm depth. There were no significant 
results between individual soil mapping units and ECa depth of 0-90 cm over the 
five years data that were collected.  

The second part of this study was conducted in west-central Indiana on 
prairie and forest soils from July 19 through October 22, 2004 to assess spatial-
temporal ECa estimates. The results of spatial autocorrelation distance showed the 
sub-fields, which were 6 x 42 m in size, were stable at a distance between 2 and 
10 m. But when one begins to examine the connectivity of the sub-fields in 131 
(prairie soils) through cluster analysis one begins to see patterns shift from north 
to south and east to west. The sub-fields in field 31 (forest soils) were for the most 
part stable for both the spatial autocorrelation distance and cluster analysis. The 
exception was sub-field 31-3 where greater variability in spatial autocorrelation 
distance and cluster analysis was observed. The time series for field 131 showed 
that although spatial autocorrelation is significant for each of the three sub-fields 
Moran’s I varied from week to week with sub-field 131-1 and with 131-3 
Moran’s I began high and had a decreasing trend while sub-field 131-2 beginning 
low and had an increasing trend. Sub-fields 31-1 and 31-2 showed a cyclic pattern 
and remained somewhat constant for the 13 week study. Sub-field field 31-3 
began with a high Moran’s I value and trended downward. 

Diagnostics using OLS regression models determined the presence of 
spatial dependency spatial heterogeneity. Some weeks were significant for soil 
moisture, organic matter or K but the results were not consistent using either the 
OLS or spatial process models, and the causality relationship could not be 
established. Percent organic matter was greater in field 131 vs. field 31 but the 
OLS and spatial regression models showed more weeks with a significant 
relationship in field 31. The same was true for K/ kg ha-1 in that field 31 showed 
more weeks where ECa estimates were significant vs. field 131. The reason for 



this is not known even though the literature often refers to the fact that soil 
moisture has an influence on ECa values.  

By employing spatial process models that test for spatial dependence 
spatial heterogeneity one could observe that the number of weeks with significant 
results was reduced. The reason for this is that if OLS models are employed 
without testing for spatial dependence spatial heterogeneity, one would be miss-
specifying the correct model and thus would be susceptible to making the wrong 
conclusions.   

An assumption was made that the soils in the study were representative of 
the eastern Corn Belt and if they aren’t, measurements were made of these soils in 
such a manner that they accurately represented the soils within the study sites.  
Based on the analysis and the interpretation of the results, ECa estimates using 
electrical conductivity instruments do not appear to be spatially or temporally 
stable or reflect the differences in soil moisture, organic matter, K or corn yield.  

In order for farmers or researchers to utilize ECa for soil moisture 
estimates, soil mapping, or fertility more work must be done to understand what 
ECa is measuring and what is influencing the ECa values under different 
controlled conditions. Based upon the results of our research, we conclude that 
apparent electrical conductivity (ECa) does not provide consistent results for the 
measurement and/or assessment of soil moisture content, organic matter and 
potassium. 
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