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ABSTRACT 
 
     The need for sustainable agriculture requires the adoption of low input, long-
term and cost-effective strategies to overcome the adverse impact of disease and 
nutritional deficiencies on citrus groves. In this context, early detection of 
diseased trees has become an important topic in the citrus industry. Multiple 
factors make field assessment of disease conditions a challenging task: the non-
specific nature of many symptoms, the possibility of having localized affections 
in only certain areas of the tree or the correlation with other factors such as tree 
age. In this paper we investigate hyperspectral sensing as an effective approach to 
detect the Huanglongbing disease in citrus trees. We analyze the visible and near 
infrared spectral responses from the leaves to discriminate infected trees from 
healthy samples. The accuracy of the diagnosis is improved by means of feature 
selection techniques that prevent overfitting problems due to the high 
dimensionality and collinearities in the data. We provide experimental results 
illustrating the performance of the proposed techniques using data collected in the 
field. 
 
Keywords:     Disease detection, Huanglongbing, citrus greening, hyperspectral 
sensing, feature selection 
 
 

INTRODUCTION 
 
     Detecting plant health conditions plays a key role in crop protection and farm 
pest management. Large amounts of resources are used every year to control 
various diseases common to citrus crops. This involves the extensive use of 
fungicides and pesticides, which evokes serious concerns over deteriorating 
groundwater quality and over the high costs involved and the consequent profit 
loss. Furthermore, for some diseases the early detection of the disease is even 
more important to avoid the extension of the pathogen.  



 

 
Fig. 1.   Orange tree branch containing visible symptoms of Huanglongbing 

 
     Although there are several disorders that affect citrus crops, Huanglongbing 
(HLB), also known as citrus greening, is considered one of the most devastating 
diseases (Floyd and Krass, 2006). It is a severe disease that threatens the citrus 
industry due to the non-specific nature of its symptoms and the fact that there is 
no treatment or prevention at this time that can completely eradicate the disease in 
the infected areas. The disease is caused by several species of the genus 
Candidatus Liberibacter [Zhao, 1981; Da Graca and Korsten, 2004]. The bacteria 
have not been cultured in the laboratory and do not survive outside the host cells, 
making them difficult to study. 
 
     Visually, the most characteristic symptom in leaves is vein yellowing or a 
blotchy mottling of all or part of the leaf, resulting in an overall yellow 
appearance (see Fig. 1). However, field assessment based on these characteristics 
is difficult since they resemble other diseases (such as stubborn disease and 
tristeza) and nutritional deficiencies (i.e. zinc-like deficiency). Early symptoms of 
HLB include a yellowing of only one limb or sector of the tree canopy. The 
disease is more difficult to detect in older trees that lack vigor or are under stress 
due to other problems. Chronically infected trees display extensive limb dieback, 
tend to drop fruit prematurely and are sparsely foliated with small leaves that 
point upward. HLB-infected fruit are frequently small, underdeveloped, and 
misshapen, with curved columella and aborted seeds. They tend to remain green 
at least in part, and, unlike healthy fruit that color up from the stylar end, coloring 
starts at the stem (peduncle) end. The juice is high in acid, and abnormally bitter, 
rendering the fruit inedible. 
 
     Diseased trees can be identified as suspect in the field by their foliar and fruit 
symptoms but a Polymer Chain Reaction (PCR) test is required to verify HLB in 
the laboratory (Floyd and Krass, 2006). Since its first introduction in 1983 by the 
two Nobel prize winners M. Smith and K.B. Bullis, PCR has become a powerful 
technique for detection and identification of plant pathogens. Although PCR 
methods are sensitive and specific, consistent detection of HLB pathogens in 
infected plants is generally thought to be problematic, presumably because of the 
low concentration and the uneven distribution of the pathogens in host plants 



(McClean 1970). Consequently, molecular detection protocols have generally 
been limited to the confirmation of visible infections.  
 
     The current emphasis is on avoiding further infections, which makes detection 
of the disease in early stages critical. Technologies assisting in early HLB 
identification could have a significant positive impact in managing the disease. 
Optical sensing technologies (e.g. machine vision and spectroscopy) have shown 
great potential for food safety, quality evaluation and disease detection in crops. 
One of the core technologies that have proven to be effective is hyperspectral 
radiometry. 
 
     Spectral reflectance properties of leaves in the visible and near-infrared 
(VNIR) bands have been shown to be highly correlated with their chemical 
composition. Researchers have reported connections between spectral signatures 
and chlorophyll concentration, plant stress or crops diseases (Lu and Chen, 1998; 
Carter and Knapp, 2001; Keulemans et al., 2007; Liu et al., 2007; Mishra et al., 
2007).  

Methods for processing and analyzing hyperspectral reflectance spectrometry 
have to accommodate data that are high-dimensional, with a number of 
wavelengths that typically exceeds by far the number of available samples, and 
exhibit a high degree of interband correlation leading to excessive data 
redundancy and poor generalization of the results. One way to mitigate this 
problem is to use nonparametric methods such as neural networks, because they 
are able to learn complex decision boundaries that are difficult to capture with 
parametric methods in the classification of high-dimensional data. An alternative 
is to seek lower dimensional representations of the data by selecting only those 
spectral bands useful for the specific problem being considered. Preprocessing the 
spectral data so the number of bands is less than the number of samples is a 
commonly adopted approach for many methods (Jain and Zongker, 1997; Doak, 
1992; Schmidth et al., 2004). To this end, we analyze different feature selection 
techniques to handle the ill-posed nature of the reflectance spectrometry. 
     In this paper we describe a procedure for collecting hyperspectral data in field 
conditions using a VNIR radiometer. Several problems which occurred during the 
data capture are discussed, along with the methods used to tackle them. We 
estimate the performance of a logistic regression classifier for HLB classification 
at the leaf level and finally, we evaluate different feature selection algorithms to 
detect the most discriminative wavelengths for disease detection. 
     The outline of the paper is as follows. First, we describe previous work in the 
areas of hyperspectral radiometry and disease detection. Second, we present the 
methodology used for data collection and the dataset analyzed in our experiments. 
We then introduce our analysis on VNIR spectra classification and feature 
selection for HLB detection. Finally, we compile some conclusions and future 
work. 
 

PREVIOUS WORK 
 
     The structure and physiological status of a plant is expressed in its reflectance 
pattern. Incident light is partly reflected by the plant and the amount of reflected 



light depends on different factors, such as pigment concentration and internal 
organization of biochemical elements, the external leaf morphology or its internal 
structure. The reflectance spectra of leaves and fruits undergo remarkable changes 
under deficiency of mineral nutrition, different stress conditions or pollution, 
during adaptation to variable solar irradiation, and in the course of senescence. 
     Traditional techniques for plant analysis in physiological and biochemical 
studies usually involve wet chemical methods requiring the destruction of the 
tissue. They are time consuming and can be affected by different artifacts due to 
impurities in the tissue extracts, incomplete pigment extraction or instability of 
the components. The application of nondestructive optical methods is becoming a 
popular alternative since they allow rapid measurements on a large number of 
samples, which thereafter remain intact and could be used for further analysis. 
Recently, commercially available reflectometers suitable for field measurements 
from plants are designed, providing reliable spectral data. 
     A plant leaf represents a complex optical system. It consists of several 
structures with different refraction indices that contain high amounts of pigments. 
The development of nondestructive techniques for plant analysis requires the 
understanding of their in vivo spectroscopy, localization of pigments in leaves and 
the structure and patterns of their changes during physiological processes in 
plants. Although detailed investigations of leaf optical properties have appeared in 
the literature (Vogelmann, 1993), many extended approaches for quantitative 
pigment analysis in situ consider the leaf as a “black box”. These techniques 
conduct a supervised analysis correlating sensed properties of the leaf (i.e. 
spectra) with some categorization of its properties (i.e. pigment level or health 
status).  
     The reflectance spectrum of a leaf is determined to a great extend by 
absorptions due to water and pigments. Different authors have shown how visible 
and near infrared (VNIR) spectrum of a leaf contains information on leaf moisture 
content, plant pigment concentration and leaf cellular structure.  
     Carter, 1991 analyzed different effects of leaf water content on reflectance. 
The primary effect reported is a decrease of the reflectance from approximately 
1300 to 2500 nm due to the strong water absorption at these wavelengths. 
Between approximately 700 and 1300 nm, absorption by water is relatively weak 
and, in general, leaves do not contain other substances with elevated absorption in 
this range producing a higher reflectance in this area of the spectrum. Throughout 
the visible spectrum, the  water absorption is much weaker than in the infrared, 
but chlorophyll and accessory pigments absorb strongly between 400 and 700 nm 
resulting in a typical low diffuse reflectance in this range. When water is lost from 
a leaf, absorption decreases and consequently reflectance tends to increase in the 
1300-2500 nm range. However, Carter observed that reflectance also increases in 
the 400-1300 nm range. This secondary effect was explained as an influence of 
water content on absorption by other substances in the leaf, such as pigments and 
on wavelength-independent processes, particularly multiple reflections inside the 
leaf.  
     The absolute concentrations of pigments as well as their ratios are also 
important properties of the leaf, whole plants and plant communities. There are 
changes in the pigment content in the course of plant growth, during adaptation to 
unfavorable environmental conditions and under various stress conditions, 



damages and diseases. Both qualitative and quantitative changes in pigment 
content of plants are reflected in the tissue optical properties. Merzlyak et al., 
2003 presented different algorithms for pigment analysis using visible and near 
infrared remote sensing. The content of chlorophylls, the dominant pigment of 
green leaves, determines to a great extent the amount of Photosynthetically Active 
Radiation (PAR) absorbed by the leaf, the photosynthetic rate and plant 
productivity. Carotenoids are involved in light harvesting and other 
physiologically important functions, preventing, via several mechanisms, the 
damages to plants caused by excessive fluxes of visible radiation. Experimental 
results show that the 550 and 700 nm wavelengths are highly sensitive to 
Chlorophyll content. Carter and Knapp, 2001 correlated physiological stress 
conditions with the optical response in plants finding consistent changes in the 
reflectance patterns in the green-yellow spectrum and near the 700 nm. This 
common optical response was connected with the reduction of the chlorophyll 
concentration in leaves. 
     The shift of the red edge in the reflection spectra of vegetation (reflectance 
between 680-760 nm) is a known phenomenon indicating changes in the 
biological status of plants. Boochs et al., 1990 analyzed the variability of the 
reflectance in this area of the spectrum concluding that the red edge is not fully 
described by the shift of the main inflection point. Alternatively they proposed a 
collection of several different features obtained from high resolution spectra 
which jointly considered can describe small differences in the chemical and 
morphological status of plants. One of the requirements for reliable algorithms of 
pigment analysis is their low sensibility to morphological-anatomical traits of 
plant tissues. Remarkably, many approaches for nondestructive pigment 
assessment are based on invariant spectral signatures that require knowledge of 
reflectance only at few certain wavelengths. This has been the basis for the 
development of spectral indices using reflectances corresponding to wavelengths 
with maximum and minimum sensitivity to variation in pigment concentration 
(Gitelson and Merzlyak, 1996). These indices can serve as indicators of stress, 
disease and senescence in different plants and crops. 
     Stress-induced changes (including dehydration, flooding, freezing, ozone, 
herbicides, competition, disease, insects, deficiencies and fertilization) affect the 
reflectance spectra of plants. Multiple non-intrusive remote sensing techniques at 
plant leaf-level have been described in the bibliography for detecting stress 
factors (Smith et al., 2004; Vogelmann, 1993; Carter, 1991; Gitelson and 
Merzlyak, 1996; Zarco-Tejada et al., 2004). They describe how changes on 
physiological properties of the leaf can alter the interaction of light with the foliar 
medium. The most common and widespread change occurs in the proportion of 
light absorbing pigments mentioned, most notably in the green peak (525-605nm) 
and along the red edge (750nm) . 
     Non-intrusive techniques are essential for capturing data in the continuous 
manner necessary for monitoring vegetative production systems. A number of 
hyperspectral sensing techniques have been studied to monitor contamination (Lu 
and Chen, 1998; Kim et al., 2001; Kim et al., 2002; Mahl et al., 2004), detect 
defects (Nagata et al., 2006; Ariana et al., 2006) and nutritional stress or diseases 
(Keulemans et al., 2007; Liu et al., 2007; Lee et al., 2008; Qin et al. 2009; Mishra 
et al., 2007). A key question to consider in these remote sensing applications is the 



analysis of how leaf spectra signatures are preserved at the canopy level or when 
the plant reflected spectra is sensed distorted with other background radiance 
(Borel and Gerstl, 1994; Zarco-Tejada, 2004).  
     In the particular case of citrus crops and HLB disease, Mishra et al., 2007 
performed an analysis of the spectral characteristics of citrus greening showing 
the potential of hyperspectral spectroscopy to detect this disease.  

Numerous studies demonstrate that hyperspectral reflectance and its 
correlation with the plant biochemical and biological status were affected by the 
autocorrelation and multicollinearity of the data due to the continuous wavebands. 
Many authors have reported the use of feature selection techniques to reduce the 
dimensionality of the dataset and tackle these problems. Liu et al., 2007 used 
different techniques involving model dimensionality reduction (stepwise 
regression, principal component regression and partial least squares regression) to 
the analysis of rice brown spot disease using hyperspectral reflectance. Renzullo 
et al., 2006 applied recent advances in regularized regression techniques to 
improve the results of discriminant analysis applied to hyperspectral data. In their 
article, they describe the use of Penalized Discriminant Analysis and a technique 
based on the Lasso regularization (OSLASSO) reporting better results than 
previous approaches. 

 
 

DATA COLLECTION 
 

This section describes the dataset used in the experiments presented in this 
paper and the data collection procedure.  

The leaf samples were captured in a citrus grove in south-west Florida which 
contained trees infected with HLB. Visual surveys of the grove were conducted by 
field scouting crews with experience in recognizing HLB symptoms. Trees 
suspected of HLB infection were flagged with marking tape and were later re-
examined by a highly qualified head scout who could confirm or reject the 
diagnosis.  

The samples were chosen according to the following procedure: 
• We selected 100 trees that were considered healthy during the inspections 

and collected a sample from each one of them. 
• Similarly, we selected another 100 trees labeled as diseased by the human 

scouts and acquired 2 samples from each of them. One sample was picked 
from a spot where the HLB symptoms were visually identifiable. This spot 
was previously selected and flagged by the scouts since their diagnosis 
was based on the visual detection of these particular leaves in the canopy. 
The other sample was collected from a spot where the tree was 
asymptomatic. 

Consequently, the data collection involved the selection of 300 samples in 
total. For each of these samples we captured the VNIR spectra and collected 
multiple leaves. 

The spectral reflectance curves of the samples were captured using a SVC 
HR-1024 portable spectroradiometer (Spectra Vista Corporation, Poughkeepsie, 
New York). The spectral range of the SVC is 350-2500 nm with spectral 
resolution of 3.5 nm (350-1000nm), 9.5 nm (1000-1850nm) and 6.5 nm (1850-



2500nm). The field of view of the instrument is 4o covering a rectangular area and 
it has a minimum integration time of 1ms. Five different spectra were captured 
per sample. The instrument was calibrated for dark current at the beginning of the 
session and for white reference normalization before capturing each sample. 

 

 
Fig. 2.  Data capturing system including hyperspectral radiometer and artificial 
illumination 

 
The SVC data was captured in the field under natural illumination. We 

intended to have a realistic “in-field” configuration with varying angles in the 
incident light and different relative orientation between the leaves and the sensor. 
In many cases the most representative symptomatic leaves were located on 
inaccessible branches, and in those situations the samples were removed and 
temporally placed in more accessible locations in the canopy. The data was 
collected during the day, at different times ranging from 8am to 5pm. The distance 
between the sensor and the leaves was set to approximately 0.75m. Different 
noise factors were involved in the data capturing process: changing ambient 
lighting conditions, background reflectance that is collected in the sensor FOV 
due to the irregular contour of the leaves and movement of the branches leading to 
misalignments between the sensor and the target leaves. 

To minimize some of the noise factors, we tried to increment the signal to 
noise ratio (SNR) in the captured reflectance by complementing the natural 
illumination with artificial light sources (two 500W halogen flood lights). We 
attempted to prevent misalignments during the spectra acquisition by using a rigid 
support for the radiometer which was attached to a vehicle for easy transportation 
between different trees (see Fig. 2). 

The 300 samples were later analyzed for HLB infection in the laboratory 
using real-time PCR (Li et al., 2006), and the results are presented in Table 1. A 
sample was considered to test positive for HLB if it produced a FAM CT value of 
30 or less (Irey et al., 2006). It is important to indicate that due to scheduling 
constraints the data was collected in late February, a time of the year which is 
known to be suboptimal for PCR analysis for citrus greening. As a result, the 



chances of obtaining false negative results from PCR are much higher than during 
more favorable months (starting in August).  
 
 Symptomatic Asymptomatic Healthy 
Total count 100 100 100 
Count with PCR <30 
(HLB positive) 

89 24 0 

Count with PCR >30 
(HLB negative) 

11 76 100 

Table 1: The three columns correspond to leaves that presented visual greening 
symptoms and were in an HLB-tagged tree (symptomatic), leaves that were 
asymptomatic but were in an HLB-tagged tree (asymptomatic), and leaves that 
looked healthy and were not in an HLB-tagged tree (healthy). For each column 
we indicate how many examples were identified as HLB-positive by PCR. 
This bias towards negative PCR HLB results is noticeable in the symptomatic 
column (where 11% of the leaves are not confirmed as infected although several 
scouts confirmed the diagnosis).  Unfortunately, this limits the conclusions what 
could be drawn from any analysis of the asymptomatic samples, as we will see in 
our experimental results section. 
 

 
SPECTRA CLASSIFICATION AND WAVELENGTH SELECTION 

 
In this section we analyze different classification and feature selection 

techniques for the identification of leaves from HLB infected trees using 
hyperspectral radiometry captures. 

We first consider Logistic Regression classification as an initial approach for 
the analysis of the discriminative capabilities of hyperspectral reflectance when 
discerning healthy and diseased leaves. This is a simple classification algorithm 
based on a generalized linear model that is frequently used to provide a 
benchmark for more sophisticated methods. Because of its simplicity, it rarely 
overfits the training data (assuming that the training dataset has enough samples) 
and it has the advantage of being fast to train.  

If we consider that reflectance samples x are distributed in the “healthy” and 
“diseased” classes denoted by Ch and Cd respectively, the posterior probability for 
the “disease class” Cd can be written as:  

 

 
 

where we have defined 

 
 
and  is the logistic sigmoid function defined by 
 



 
 

When the class conditional probabilities  and  are Gaussian 
with common covariance matrix Σ and means µd and µh, we have  

 
 
where w and w0 are the coefficients and the bias of the linear model and are 

defined as 
 

 
 
Although the real distribution for the reflectance spectra will not obey this 

Gaussian form, we can consider it a good simplified model from where to start 
drawing preliminary conclusions. In the general case, defining the optimal 
classifier will involve determining a maximum likelihood estimate for the 
parameters w and w0 by minimizing the following cost function: 

 
where tn are the disease labels (i.e. tn={0,1}, 0 denoting healthy and 1 

diseased) associated to each of the reflectance samples xn for n=1…N.  
  
If we use all the spectral information available for the reflectance samples 

(i.e. 989 values for the different wavelength bands between 350 and 2500 nm) the 
resulting classifier trained from this dataset offers poor generalization. This is a 
consequence of the small ratio between number of samples and number of 
features (the “curse of dimensionality”) that has been mentioned in previous 
sections (Baum and Haussler, 1989). Numerous studies have shown that 
hyperspectral reflectance and its accuracy in the detection of plant biochemicals 
were affected by the multicollinearity and autocorrelation of the data due to the 
continuous wavebands (Liu et al., 2007). Since collecting a large number of 
training samples is difficult in practice, a commonly used approach is to reduce 
the number of features used for classifying each sample. Two possible approaches 
can be used: 

• Feature extraction algorithms perform either a linear or a nonlinear 
mapping of the original features into a space with lower dimensionality. 
The new features can each be a function of all the original features. 

• Feature selection algorithms select a subset of the original features that 
can be used to discriminate between the classes of interest. 

      
     In our disease detection application, feature selection algorithms have special 
relevance. A fast and inexpensive multispectral inspection system can be 
fabricated using optical filters if our algorithm uses only a reduced number of 
spectral bands. Although several reviews of feature selection methods have been 
published, no algorithm is clearly superior for high dimensional data (Doak, 1992; 



Jain and Zongker, 1997). 
     The problem of obtaining the optimal features for a linear classifier is a NP 
complete problem and is computationally unsolvable in most large applications 
(Cover and Campenhout, 1977; Wenton et al., 2003). A popular strategy is to use 
a continuous, convex relaxation of the non-convex feature selection problem 
using a regularizer that encourages the sparsity in the model. In particular, in this 
paper we make use of a L1 regularization term in a Logistic Regression model to 
incorporate feature selection in the parameters estimation process (Weston et al., 
2003; Schmidt et al., 2007). Incorporating the regularization term, the cost 
function is transformed into: 

 
     This loss function minimization with a L1-penalty term yields a sparse solution 
with most of the coefficients in w being zero. The remaining non-null coefficients 
will correspond to the selected features. 

 
EXPERIMENTAL RESULTS 

  
     This section presents experimental results obtained with the described 
techniques for HLB detection in citrus. The primary goals of our experiments 
were the following: 

• Compare the accuracy of hyperspectral based methods to the labels 
produced by human scouts 

• Compare the accuracy of hyperspectral based methods to the labels 
produced by PCR analysis.  

 
The first experiment was performed using visually distinguishable health 

conditions, as identified by human scouts. This should normally be the most 
favorable detection scenario, since visual symptoms appear at later stages of the 
disease. Figure 3(a) presents the accuracy obtained by using a logistic regression 
classifier when using different numbers of hyperspectral bands. We use the 
feature selection method based on regularization logistic regression presented in 
the previous section to choose between 1 and 100 wavelengths. For comparison 
purposes we also show the classification accuracies obtained when the 
wavelengths are selected using the Sequential Floating Forward Selection (SFFS) 
method measuring the Mahalanobis distance (Jain and Zongker, 1997). We use n-
fold cross validation (n=50) to determine the classification accuracy in mutually 
exclusive training and testing sets. The figure illustrates how the classifier 
accuracy for the testing set is similar in both feature selection methods. This is a 
useful sanity check since the two techniques are based on the supposition of 
having a Gaussian distribution for the considered classes. Figure 3(a) indicates 
that the number of bands can be reduced to approximately 10 while maintaining a 
classification accuracy rate of approximately 90%.  

   



 
(a) 

 
(b) 

Fig. 3. Classification using symptomatic vs. healthy leaves (labeling based on 
scouting decisions). (a) Classifier accuracy as a function of the number of selected 
wavelengths. (b) ROC curves corresponding to classifiers trained with 6, 10 and 
100 different bands. 
 
   By varying the threshold used on the outputs of a logistic regression classifier 
one can choose the true positive/false negative ratio according to the desired 
performance of the system. The Receiver Operating Characteristic (ROC) curves 
(Fawcett, 2004) represented in Figure 3(b) illustrate this mechanism: it is possible 
to detect a high number of diseased samples if we are willing to accept an 
increase in the number of healthy leaves that are incorrectly recognized as 
diseased. We can see how in the case of using 100 wavelengths the classifier 
performance approximates an ideal curve in which it appears to be possible to 
detect nearly all of the diseased cases with a very low false positive rate. 
Although this might look like a very positive result, we believe that this behavior 
is likely to indicate an overfitting problem: we are modeling a high dimensional 
space (100 wavelengths) using a reduced number of samples (100 per class). In 
order to achieve good generalization performance, a commonly accepted rule of 
thumb is that the number of training sample should be at least around 10 times the 
number of the feature dimensions. Notice that overfitting seems to occur although 
we are using cross-validation to estimate the generalization performance. 
     Figure 4 illustrates the classification performance obtained when we consider 
the PCR labels to be the ground truth value for the health status of a leaf. In this 
case we use all the leaf samples available (healthy, symptomatic and non-
symptomatic leaves, as described in Table 1) to evaluate the classification results 
considering a limited number of spectral bands. The classification accuracy is 
lower than in the previous experiment. In this case the ROC curve for 100 
wavelengths seems to point to a more realistic scenario in which a tradeoff 
between the rate of true positives (correct detections) and the false positive rate is 
required. The two possible explanations for this result are that the classification 
problem is intrinsically more challenging (since non-symptomatic leaves are 
harder to classify correctly), and the additional number of samples considered (the 
100 non-symptomatic leaves) make overfitting slightly less likely.  
 



  
Fig. 4. Classification using PCR labels. Samples with CT values lower than 30 
were considered HLB-positives while values higher than 30 were considered 
negative. (a) Classifier accuracy as a function of the number of selected 
wavelengths. (b) ROC curves corresponding to classifiers trained with 6, 10 and 
100 different bands. 

 
     

 
CONCLUSSIONS AND FUTURE WORK 

 
In this paper we have presented preliminary results of using hyperspectral 

radiometry for the detection of HLB. We evaluate the logistic regression 
performance in determining the health condition of leaf samples. We have 
proposed the use of feature selection methods that can be translated into simple 
implementations based on multispectral technologies. We have illustrated how the 
use of L1-norm regularization makes it possible to formulate the feature selection 
process in terms of a criterion of sparseness that can be easily incorporated into 
the cost function, and we have observed that its performance is similar to the 
SFFS algorithm.   

We have attempted to use data captured in somewhat realistic field conditions. 
Although the leaves had to be removed from their original locations in the tree so 
that they can be brought in the field of view of the sensor, the data was still 
affected by the different levels and directions of illumination encountered during a 
day. Our ROC curves indicate that a significant amount of discriminative power 
resides in the hyperspectral signatures we collected, even when using only 10 out 
of the 989 wavelengths produced by the SVC.  

The most severe limitation of our results comes from the unfavorable timing 
of our hyperspectral data collection and PCR tests. Although our current results 
validate the feature selection approaches we considered and some of the 
classification results are promising, only very limited claims can be made given 
that the PCR results which are considered our ground-truth were obtain outside 
the time frame when PCR testing is considered reliable. The data set of three 
hundred samples we have collected is a bare minimum for the type of problem 
under consideration. In order to make strong claims about performance 
generalization potential across different data collection days, across different 
ways to sample leaves from the tree and the different stages of the disease a much 
larger data set needs to be collected. We intend to collect this additional data 



starting in August 2010, when both scouting and PCR methods will be able to 
produce much more reliable ground truth data.  

With respect to the envisioned final application for the disease detection 
technologies we described –having an autonomous system that can scan trees--, it 
is important to notice that two challenges remain: accessing leaves with detectable 
traces of the disease, and bringing the classification performance to a level where 
the false-positive rates are at a manageable level despite the repeated testing that 
takes place. The current procedure of removing symptomatic leaves from the tree 
for placing them in front of the sensor simply bypasses the question of how one 
can devise a practical system for scanning a large enough percentage of the tree 
canopy. We believe that obtaining good classification results on asymptomatic 
leaves would confirm that our approach could work even if the leaves that we 
scan in an HLB infected tree are not the ones presenting visual symptoms. 
Designing a system concept that is focused on identifying a subset of high-risk 
trees that need to be inspected by human experts as opposed to generating a 
definitive diagnosis about which trees are infected is an approach that can lead to 
a useful application even if the false positive rates are too high for leaving the 
entire diagnosis up to an automated system. 

On the positive side, the results we presented here were only based on a linear 
classifier (logistic regression) and on relatively simple raw hyperspectral features 
corrected for the ambient illumination by the SVC device. Having a larger dataset 
will allow us to consider more powerful classification algorithms. 

One of the key lessons learned from our efforts in the area of hyperspectral 
sensing for disease detection was that obtaining good datasets that include both 
good sensor data and correct ground truth labels is time consuming and 
expensive. We believe research in this important area of precision agriculture is 
hampered by the lack of large publicly available datasets that can be shared 
among researchers for both comparing and reproducing technical results and for 
allowing research on data processing algorithms without the requirement of 
collecting large amounts of data in the field. Our modest contribution to the field 
in this area consists of making all the hyperspectral data we have collected freely 
available on our project’s website1

 
.  
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