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ABSTRACT 

 
     Variable-rate treatment prescriptions for use on commercial farms can be 
developed from embedded field trials on those farms. Such embedded trials 
typically involve non-random, high-density sampling schemes that result in large 
datasets and response variables exhibiting spatial correlation. In order to 
accurately evaluate the significance of the effects of the applied treatments and 
the measured field characteristics on the response of interest, this spatial 
correlation must be accounted for in the statistical analysis of the data. One 
approach is to use a fully parametric model that accounts for the treatment and 
design structures of the experiment as well as any residual spatial correlation. For 
example, the MIXED procedure in SAS® includes a variety of parametric spatial 
covariance structures that can presumably be used for this purpose. However, we 
have found that because of the large size of the datasets that result from precision 
agriculture experiments, MIXED is often unable to fit models that include one of 
these parametric spatial structures. Another approach is to use a model that 
incorporates a non-parametric smoother to account for any residual spatial 
correlation, in addition to a parametric component that accounts for the treatment 
and design structures of the experiment  Such semi-parametric models utilize 
fewer computing resources and can be used with large datasets. The GLIMMIX 
procedure in version 9.2 of SAS® includes a radial smoother that can be used for 
this purpose. We demonstrate the use of radial smoothers in GLIMMIX to fit 
semi-parametric models that account for spatial correlation. We compare 
inferences from models that account for spatial correlation using radial smoothers 
to those from models that do not account for spatial correlation. In addition, we 
discuss several important issues that arise when fitting models utilizing radial 
smoothers, such as selecting the number of knots to use in the radial smoother. 
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INTRODUCTION 
 
     The purpose of this article is to demonstrate the use of nonparametric 
smoothers in mitigating spatial correlation in precision agriculture data in order to 
improve the inferential validity of the statistical analysis of that type of data. 
     Spatial correlation can have any of several causes. It can result from the effects 
of unmeasured or otherwise unaccounted-for field characteristics that vary 
spatially across a field. Failure to adequately account for trend in a particular 
dimension can induce spatial correlation among the residuals in that dimension. 
Such correlation would tend to be positive, with residuals having a greater 
likelihood of being similar when they are close together than when they are far 
apart. Spatial correlation can also result from problems involving the 
measurement process itself. For example, in measuring cotton yield the cotton 
passes by a yield monitor as it travels through the chute on its way to the hopper.  
If the cotton becomes temporarily jammed near the yield monitor, measured yield 
values can either increase or decrease substantially, depending on which side of 
the monitor the jam occurs. Once the jam clears, yield measurements would move 
substantially in the opposite direction until normal flow was restored. If they 
occur frequently enough, such jams could induce a negative spatial correlation in 
the yield measurements over short distances. 
     In some cases spatial correlation can be modeled directly using a parametric 
error covariance structure. Several types of spatial covariance structures have 
been investigated in the spatial statistics literature, and modern statistical software 
typically provides such modeling capability. For example, both the MIXED and 
GLIMMIX procedures in SAS® provide the ability to fit parametric error 
covariance structures. This approach can be problematic, however, if the software 
is not implemented using algorithms designed for use with large datasets. It has 
been our experience that with datasets as large as those typically generated by 
precision agriculture applications, general purpose statistical software is often 
unable to fit parametric covariance structures. The software runs out of memory 
while trying to fit the covariance structure. 
     If residual spatial correlation is the result of unaccounted-for trend in a 
particular dimension, then it stands to reason that accounting for that trend should 
reduce or eliminate the spatial correlation in that dimension. In order to account 
for trend parametrically using common statistical software, the trend must be 
well-approximated by a function possessing a relatively simple mathematical 
representation (e.q., polynomial). Even when this is the case, incorporating a 
parametric trend function in a statistical model requires knowing what that trend 
function is. How can this trend function be determined? When the space over 
which trend exists is one-dimensional, residual plots can be helpful in detecting 
unaccounted-for trend and understanding its nature. In two dimensions, residual 
plots may still be somewhat useful for detecting the existence of trend. However, 
in two dimensions residual plots are harder to assess and are therefore less useful 
in determining a suitable parametric form for that trend. As a result, for the kinds 
of two-dimensional, geo-referenced data generated by precision agriculture 
applications, it can be very difficult to develop fully parametric models that 
eliminate unaccounted-for trend as a source of residual spatial correlation. 



     Instead of accounting for residual trend parametrically, an alternative is to 
model the trend nonparametrically. There is a vast literature in nonparametric 
smoothing we can draw upon for this purpose, and it is not our purpose to go into 
this literature in detail. Suffice it to say that in one dimension there are many 
kinds of smoothers available. While they are fewer in number, smoothers are also 
available for two and higher dimensions. One of the advantages of nonparametric 
smoothing splines is there ability to follow quite complicated trend curves (in one 
dimension) or surfaces (in two dimensions) without having to specify a particular 
parametric functional form. 
     Nonparametric smoothers can be combined with parametric model 
components that account for the treatment and design structures of an experiment.  
The resulting model is called a semi-parametric model. Semi-parametric models 
utilize fewer computing resources than those that model the spatial covariance 
structure parametrically. They can therefore be used with the large datasets 
common to precision agriculture research. Certain types of semi-parametric 
models containing penalized splines have representations as mixed models, and 
can therefore be fit with mixed-model software. The GLIMMIX procedure in 
version 9.2 of SAS® includes several nonparametric smoothers. Some of these 
smoothers are included in a model as fixed effects, while others are included as 
random effects. The penalized radial smoothing spline, the nonparametric 
smoother of primary interest in this paper, is incorporated in a model as a random 
effect. Our goal in using semi-parametric models is to improve the validity of 
inferences involving the treatments in a precision agriculture experiment. This is 
accomplished by using nonparametric smoothers to account for residual spatial 
trend, which in turn can reduce or eliminate residual spatial correlation. 
     In semi-parametric models where a smoothing spline is implemented as a 
random effect, it may seem somewhat mysterious as to what the smoother is 
actually doing. On the other hand, semi-parametric models implemented using 
fixed effect splines are generally easier to understand. The thing to keep in mind 
is that the mixed-model implementation of a semi-parametric model is just a 
particular representation of an underlying model that has a fixed-effect 
representation as well, and these two representations are equivalent. If we can 
understand the fixed-effects representation of the model, then we understand what 
the random effects representation is doing also. 
     To get a better understanding of semi-parametric models, we first demonstrate 
their use in a very simplified, one-dimensional analysis of covariance (ANCOVA) 
situation (Milliken and Johnson, 2002). In this context we fit a semi-parametric 
model in which the nonparametric component is implemented as a fixed effect.  
We show that this model is essentially an ANCOVA model where the 
nonparametric spline plays the role of the covariate. We then fit a semi-parametric 
model that incorporates a radial smoother. When implemented as a random effect, 
a radial smoother is essentially a penalized nonparametric smoothing spline. The 
advantage of radial smoothers is that they easily extend to two or more 
dimensions, and hence can be used in precision agriculture settings. We then 
show that these two models give essentially the same results. This provides a 
basis for understanding what mixed-model semi-parametric models, and in 
particular models incorporating radial smoothers, are doing. 



     We then consider a case study using data from an actual precision agriculture 
experiment. The data from the experiment are analyzed two ways. The data are 
first analyzed using a model that makes no attempt to account for residual spatial 
correlation. We then analyze the data using a semi-parametric model that 
incorporates a two-dimensional penalized radial smoothing spline. The radial 
smoothing spline accounts for enough of the residual trend that the residual spatial 
correlation is essentially eliminated. We compare the inferences regarding the 
treatments for the two models, and demonstrate that the inferences that are made 
depend on whether or not the presence of spatial correlation is addressed. 
 

ONE-DIMENSIONAL EXAMPLE USING SIMULATED DATA 
 
     In this first example we analyze a simulated dataset constructed to illustrate 
several of the assertions made in the introduction. The data are generated from an 
ANCOVA model utilizing a one-way treatment structure and a completely 
randomized design structure (Milliken and Johnson, 2009). The single treatment 
has two levels. The affect of the covariate on the response includes linear and 
quadratic terms, as well as an additional component to create oscillation around 
their sum. The generated error terms are independent and identically distributed 
(iid) zero mean Normal variates with constant variance.   
     The covariate is restricted to one dimension in order to more easily compute 
correlations between residuals. So that these correlations can be interpreted 
properly, the covariate values are equally spaced. For our purposes it suffices to 
focus on the correlation between adjacent (i.e., lag-one) residuals along the 
dimension of the covariate.   
     Five models are fit to the data to help illustrate the points being made: (1) an 
ANOVA model that ignores the covariate, (2) a linear ANCOVA model, (3) a 
quadratic ANCOVA model, (4) a semi-parametric model using a second-order 
truncated power function (TPF) spline with five knots, and (5) a semi-parametric 
model with a penalized radial smoothing spline using 10 knots. The first three are 
no doubt familiar to the reader, so they will not be described in detail. The last 
two involving splines may be less familiar, and so we will describe them briefly.   
     The semi-parametric model using a second-order TPF spline with five knots is 
given by ij ij ijy eµ= + , where  
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so that the difference between the treatment means is the same across the entire 
range of the covariate. The parameters 0iβ , 1β , 2β , mγ , 1,...,5m =  are all fixed 
effects. This model is fit with the following SAS® statements. 



proc glimmix data=ex01; 
class TRT ; 
effect SPL = spline(T / basis=TPF() degree=2 
                        knotmethod=equal(5)); 
model Y = TRT SPL; 
run; 
 
The “effect” statement creates the linear, quadratic, and truncated power spline 
variables and stores them all together under the name SPL. All are included in the 
model as fixed effects by including the SPL identifier in the model statement as 
shown. 
     The semi-parametric model incorporating a penalized radial smoothing spline 
is more complicated. Because of space limitations in this paper we refer the 
interested reader to Ruppert et al. (2003) or the SAS® documentation for details.  
The following SAS® statements fit this model. 
 
proc glimmix data= ex01; 
class TRT; 
model Y = TRT T; 
random T / type=rsmooth knotmethod=equal(10); 
run; 
 
     Boxplots of the observed data and fitted values from the ANOVA model are 
given in Figure 1. Plots of the observed and fitted values for the ANCOVA and 
semi-parametric models are given in Figure 2. Selected results for all five models 
are given in Table 1 and Table 2. 
     The boxplots in the left panel of Figure 1 reveal only a slight difference 
between the two samples. The ANOVA comparing treatment means is not 
significant, with a p-value of 0.4019. The point estimate of the difference between 
the means of treatments one and two is -15.38, and a 95% confidence interval 
estimate of this difference is [-51.63, 20.89]. Clearly the problem with this 
analysis is that we have completely ignored the affect that the covariate has on the 
response, which can be seen in the plot in the right panel. 
     Figure 2 shows attempts to account for this trend using the ANCOVA models 
and the semi-parametric models. The linear ANCOVA model picks up the general 
increasing linear trend in the data, but ignores the curvilinear trend that exists.  
The quadratic ANCOVA model accounts for both the linear and the quadratic 
trends, but it is not equipped to handle the oscillation that exists about the 
quadratic trend. On the other hand, both of the semi-parametric spline models are 
able to detect and model this oscillation, resulting in better fits to the data. Note 
that because the semi-parametric model with the radial smoother is penalized 
whereas the model using the TPF spline is not, the model using the five-knot TPF 
spline is able to follow the data more closely than the model using the ten-knot 
radial smoother. It is clear that both of the semi-parametric models give a much 
better fit to the data than either of the parametric ANCOVA models.   
     Table 1 gives estimates of the error variance as well as inferences for the fixed 
effects for all five models. As stated previously, because it completely ignores the  
information provided by the covariate the ANOVA model is unable to detect the 



Boxplots ANOVA 

  
 
Figure 1.  Box-plots of observed values, and observed and fitted values from 
the ANOVA. 
 
 
difference between the treatment means. On the other hand, both of the ANCOVA 
models and both of the semi-parametric models are able to detect the difference 
between the treatment means, although the linear ANCOVA model is just barely 
significant at the 5% level. From the table we see that the more we account for the 
effect of the covariate on the response, several things happen. The estimate of the 
error variance decreases, the p-value for the comparison of treatment means 
decreases, and the confidence interval for the difference between treatment means 
become more precise. In short, we are able to make sharper, more accurate 
inferences the more accurately we model the relationship between the response 
and the covariate. This is what we expect from using an ANCOVA, and it should 
be clear that the splines are serving the role of covariates. There is more that can 
be said, though, and this involves the residual correlation. 
     Table 2 gives the lag-one residual correlation, by treatment, for each of the five 
models. From the plots of the observed and fitted values for the ANOVA model 
and the two ANCOVA models in Figures 1 and 2, it is clear that residuals that are 
close with respect to their covariate values will tend to be more similar than 
residuals that are far apart. This induces a correlation among the residuals in that 
dimension. However, this relationship among the residuals is not an accurate 
reflection of the probabilistic relationship between the true error terms that they 
are estimating. Recall that the data were generated using stochastically 
independent errors. In the ANOVA model, where the trend along the covariate 
dimension has been completely ignored, the lag-one residuals are the most-highly 
correlated. In the linear ANCOVA model we account for some of the trend in that 
direction, and as a result the residual correlation has decreased for that model. 
However, we haven’t accounted for the trend completely, and because of this the 
lag-one residual correlation is still statistically significant. The quadratic 
ANCOVA model accounts for even more of the trend, and hence the lag-one 
residual correlation decreases further, although it is still significant for the 
residuals under treatment 1. On the other hand, the residual correlations for each 
of the semi-parametric models are not significantly different from zero. The 
inclusion of the smoothing splines allows the fitted model to follow the 
complicated trend associated with the covariate. As a result the residuals are not 
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Figure 2.  Observed and fitted values for the ANCOVA models and the semi- 
   parametric spline models. 
 
 
polluted by unaccounted-for trend and therefore exhibit the uncorrelated nature of 
the underlying error terms they are estimating. 
     These results demonstrate two statements made in the introduction. First, that 
failure to adequately account for trend in a particular dimension can induce spatial 
correlation among the residuals in that dimension. Second, to the extent that 
residual spatial correlation is due to unaccounted-for trend, by accounting for that 
trend we can reduce, and possibly eliminate, that residual spatial correlation. 
 
Table 1.  Estimates of error variance and inferences regarding treatment effects 
   for each model. 
 

Model Estimate of 
Error Variance 

Treatment 
p-value 

TRT 1 – TRT 2 
95% CI 

ANOVA 8,342.85 0.4019 [-51.63, 20.89] 

Linear ANCOVA 1,470.21 0.0477 [-30.60, -0.16] 

Quadratic ANCOVA 957.82 0.0147 [-27.67, -3.09] 

Semi-parametric w/TPF 777.37 0.0070 [-26.46, -4.30] 
Semi-parametric w/radial 
smoother 792.55 0.0076 [-26.57, -4.19] 



Table 2.  Lag 1 residual correlation, by treatment, for each model. 
 

Model Correlation (p-value) 
Treatment 1 Treatment 2 

ANOVA 0.944 
(<0.0001) 

0.874 
(<0.0001)) 

Linear ANCOVA 0.533 
(<0.0001) 

0.506 
(0.0002) 

Quadratic ANCOVA 0.298 
(0.0374) 

0.257 
(0.0752) 

Semi-parametric w/TPF 0.080 
(0.583) 

0.071 
(0.626) 

Semi-parametric w/radial smoother 0.088 
(0.550) 

0.089 
(0.544) 

 
     These results also provide a way of interpreting what semi-parametric models 
like these are doing. In the way we are using them here they are essentially semi-
parametric ANCOVA models that can be used to account for complicated trend 
that is left unaccounted for by the parametric part of the model. 
 

Precision Agriculture Case Study 
 
     We now apply the techniques discussed above to the analysis of a precision 
agriculture dataset. The data for this case study were obtained from an on-farm 
field trial conducted on a commercial cotton farm in northeast Louisiana. The 
purpose of the study was to evaluate the effects of a nematicide and three nitrogen 
rates on cotton lint yield in order to develop a treatment prescription for future use 
on that field. Burris et al. (2009) used this data in developing a treatment 
prescription for that field. Their prescription incorporated producer preferences 
and was created using automated procedures, both of which were defined and 
described in McCarter et al. (2007). The statistical methodology they used was 
also described in McCarter et al. (2007) and is in the same vein as that detailed by 
Willers et al. (2008). In this case study we extend that methodology by the 
addition of a radial smoothing spline to the model, and illustrate how such semi-
parametric models can be used to reduce or eliminate spatial correlation, thereby 
increasing the validity of the statistical results, and hence improving the resulting 
treatment prescription.   
 
Description of the field trial 
 
     From prior research the field was known to vary spatially with respect to soil 
type. Apparent soil electroconductivity (ECa) measurements were taken across the 
entire field and used as a proxy for soil type. From the raw ECa values researchers 



created an ordinal variable defining three soil-type categories representing low, 
medium, and high quantities of soil clay content. 
     There were two applied treatments used in the experiment, a nematicide and 
nitrogen fertilizer. The nematicide treatment consisted of two levels: applied at a 
fixed rate or not applied at all. Three nitrogen rates were used, which we will call 
levels 1, 2, and 3 in this paper. 
     The experiment was laid out in three replicates, with the six nitrogen-
nematicide treatment combinations assigned at random to plots within each 
replicate. Plots extended the length of the field and were each 24 rows wide. 
Nitrogen application equipment spanned 12 rows. Nitrogen application passes 
were nested within the 24-row wide treatment plots, requiring 2 application passes 
within each treatment plot. Nematicide application passes were nested within 
Nitrogen application pass. The nematicide application equipment spanned 4 rows, 
requiring 3 nematicide application passes per nitrogen application pass.   
     At harvest, a yield monitor on the cotton picker measured cotton lint yield 
every two seconds as it traversed the field. Yield data were spatially referenced 
using a gps receiver mounted on the picker. The cotton picker spanned 6 rows.  
Harvest passes were nested within application pass, and hence there were 2 
harvest passes per nitrogen application pass. Note that the two harvest passes 
within a Nitrogen application pass each covered half of the middle nematicide 
application pass within that Nitrogen application pass. This increases the potential 
for correlation among yield measurements within the two harvest passes within a 
Nitrogen application pass.   
     The dataset contained 6008 yield measurements. Precision agriculture 
experiments can produce large datasets, and this is actually a relatively small 
dataset for this type of application. 
 
Statistical analysis 
 
     The measured response variable, cotton lint yield, contains several sources of 
variability that can be divided into the following categories: the applied 
treatments, the observed field characteristic, and the variability induced by the 
conduct of the experiment. In addition, because yield measurements are taken 
repeatedly as the cotton picker traverses the field, the yield measurements may 
exhibit spatial correlation. 
     The applied treatments consist of nitrogen rate (NRATE) and nematicide 
(NMTCD). The observed field characteristic that we consider in this analysis is 
the ECa zone (EC_ZONE), which as described previously serves as a proxy for 
soil type. A mixed model analysis of variance is used to model cotton lint yield 
(YLD) as a function of the applied treatments and the measured field 
characteristic (McCarter et. al, 2007; Willers et al., 2008). The variables NRATE, 
NMTCD, and EC_ZONE are fixed effects. These variables are included in the 
model as main effects. All two- and three-way interactions between these 
variables are included in the model as well. 
     There are several possible sources of variation resulting from the conduct of 
the experiment that should be considered for inclusion in the model as random 
effects. There is potential random variation among REPs, and the 24-row PLOTs 
to which the treatments were randomized. Other potential sources of variation 



include nitrogen application pass (APASS) and harvest pass (HPASS). All were 
included in the initial model in order to assess their significance and to determine 
the random effects part of the model. Once the random effects part of the model 
has been determined, the model can then be used to evaluate the effects of 
NRATE and NMTCD within each EC_ZONE. 
     We first fit a model that assumes an independent error structure for the R-side 
random effects (i.e., model residuals). The first step in developing the model 
involves determining the random-effects part of the model. Random effects that 
were initially included include REP, PLOT, APASS, and HPASS. Even though 
REP was initially conceived of as a blocking factor when the researchers designed 
the study, the field locations corresponding to the REPs were very large and did 
not represent natural blocks. Estimates of the variance components for REP and 
PLOT were zero, and hence REP and PLOT were removed from the model. The 
random effects due to application pass (APASS) and harvest pass within 
application pass (APASS*HPASS) were significant, and were retained in the 
model. The resulting model was fit using the following GLIMMIX code. 
 
proc glimmix data=yield; 
class EC_ZONE NRATE NMTCD APASS HPASS ; 
model YLD = EC_ZONE | NRATE | NMTCD 
            LOC_X LOC_Y 
            / ddfm=satterth; 
random APASS; 
random APASS*HPASS; 
run; 
 
     Table 3 shows the dimensions of the X and Z design matrices and the number 
of covariance parameters in the model. There are 36 application passes in the 
dataset. Of these, one contains a single harvest pass, while the rest contain two. 
Hence there are 36 + 35 × 2 + 1 = 107 random effects in the model, as reflected in 
the “Columns in Z” row of the table. There are two G-side covariance parameters, 
corresponding to the variances associated with the APP_PASS and  
APP_PASS*HPASS random effects, respectively. The single R-side covariance 
parameter is the variance of the residual term. 
     The covariance parameter estimates are given in Table 4. There is significant 
variability among nitrogen application passes, as well as between harvest passes 
within each nitrogen application pass. 
     Table 5 gives tests of the fixed effects. The three-way interaction between 
EC_ZONE, NRATE, and NMTCD is not quite significant. On the other hand, the 
two-way interaction between EC_ZONE and NRATE and the two-way 
interaction between EC_ZONE and NMTCD, are both significant. This implies 
that the effects of NRATE and NMTCD depend on EC_ZONE, and hence a 
variable rate treatment prescription involving NRATE and NMCTD would be 
appropriate for the field. 
     Figure 3 contains graphics produced by GLIMMIX that are useful for checking 
distribution assumptions about the random effects. The empirical distribution of 
the Studentized conditional residuals is fairly symmetric. The tails of the 
distribution do appear to be heavier than that of a Normal distribution, but other 



Table 3.  Model dimensions table 
 

Description Model without radial 
smoother 

Model with radial 
smoother 

G-side covariance 
parameters 2 3 

R-side covariance 
parameters 1 1 

Columns in X 50 50 

Columns in Z 107 702 

Subjects (Blocks in V) 1 1 

Max Observations per 
Subject 6008 6008 

 
than that the normality assumption does not appear to be violated to a great 
extent. 
     Figure 4 shows an empirical semivariogram of the conditional residuals from 
this model. It clearly shows that observations close together are more similar than 
observations farther apart. In particular, residuals for observations closer than 
about 30 distance units are correlated, with residuals for observations closer 
together being more highly correlated. Residuals for observations that are more 
than 30 distance units apart are essentially uncorrelated. Note that adjacent 
observations within a harvest pass are approximately 4 distance units apart, and 
observations in adjacent harvest passes  
 
Table 4.  Covariance parameter estimates. 
 

Model Covariance 
Parameter 

Point 
Estimate 

Standard 
Error 

Without radial smoother 

APASS 693.37 400.55 

APASS*HPASS 1173.55 324.12 

Residual 15649 287.53 

With radial smoother 

APASS 113.81 307.04 

APASS*HPASS 1242.82 330.23 

Variance of radial 
smoother 5.95 0.74 

Residual 11129 215.52 



Table 5.  Type-III tests of fixed effects. 
 

Effect* Without radial smoother 
p-value 

With radial smoother 
p-value 

E <0.0001 0.8535 
N 0.4932 0.3657 

E*N 0.0010 0.2425 
M 0.0197 0.0118 

E*M 0.0001 0.0273 
N*M 0.9174 0.3803 

E*C*M 0.0643 0.2271 
LOC_X 0.0003 0.8995 
LOC_Y <0.0001 0.8232 

* E=EC_ZONE, N=NRATE, M=NMTCD 
 
can be as close as 6 distance units. Hence residuals for several observations within  
a given harvest pass and between several harvest passes may be correlated. From 
this it is clear that the data violate the assumption of residual independence this 
model imposes, and therefore any inferences drawn from this model regarding 
fixed effects are suspect. 
     We next fit a semi-parametric model that includes a two-dimensional radial 
smoothing spline. The purpose of the radial smoother is to account for trend 
across the field so that the residual spatial correlation is significantly reduced or 
eliminated. The GLIMMIX statements below fit this model. 
 
proc glimmix data=yield; 
class EC_ZONE NRATE NMTCD APASS HPASS ; 
model YLD = EC_ZONE | NRATE | NMTCD  
            LOC_X LOC_Y  
            / ddfm=satterth; 
random APASS; 
random APASS*HPASS; 
random LOC_X LOC_Y  
   / type=rsmooth knotmethod=data(knotinfo) knotinfo; 
run; 
 
     For this analysis 625 equally spaced knots were laid out across a lattice 
spanning the field. Thirty knots were removed because they occurred in an area 
where no yield measurements were obtained (i.e., the location of the farm house). 
This left 595 knots for the analysis, which were stored in a dataset named 
“knotinfo.” In the code above the knots were then read into GLIMMIX using the 
“data(knotinfo)” option of the “random” statement. The dimensions of the X and 
Z design matrices for this model are found in Table 3. Recall that in the original 



model without the radial smoother, there were 107 columns in the Z matrix, 
corresponding to the 107 random effects in the model. By using a radial  

Model without radial smoother Model with radial smoother 

  
 
Figure 3.  Summary of Studentized conditional residuals. 
 
 
smoother with 595 knots, we have added 595 random effects to the original 
model. There are therefore 702 random effects in this model, and hence 702 
columns in the Z matrix, as shown in the table. The model without the radial 
smoother has 2 G-side covariance parameters. The model with the radial smoother 
has one additional G-side covariance parameter, the variance of the radial 
smoother, for a total of 3 G-side covariance parameters. 
     The covariance parameter estimates for this model are given in Table 4. The 
variation from one nitrogen application pass to another is not significant in this 
model. On the other hand the variation between harvest passes within nitrogen 
application passes is still significant. Note also that the estimate of the residual 
variance in this model is almost 30% less than what it was in the model without 
the radial smoother. 
     From Figure 3 we see that, as with the previous model, the empirical  
 

 
 



Figure 4.  Empirical semivariogram of the conditional residuals for the 
model without the radial smoother. 

 
 
Figure 5.  Empirical semivariogram of the conditional residuals for the 
model with the radial smoother. 
 
 
distribution of the Studentized conditional residuals has somewhat heavier tails 
than that of the Normal distribution, but other than that the normality assumption 
does not appear to be violated to a great extent. 
     Figure 5 shows an empirical semivariogram for the conditional residuals from 
this model. At distances greater than about 4 distance units, the value of the 
semivariogram is very close to the estimated residual variance of 11129 (see 
Table 4). This implies that residuals separated by more than 4 distance units are 
uncorrelated, or nearly so. Since adjacent yield points within a harvest pass are 
separated by about 4 units, on average, and yield points in adjacent harvest passes 
are separated by at least 6 distance units, we conclude that the conditional 
residuals are uncorrelated and that the tests involving the fixed effects are reliable. 
     Table 5 summarizes the tests of the fixed effects in the model. The three-way 
interaction between EC_ZONE, NRATE, and NMTCD is not significant. The 
two-way interaction between EC_ZONE and NRATE, which was significant in 
the model without the radial smoother, is not significant in this model. In fact, 
none of the effects involving NRATE are significant. Hence NRATE does not 
appear to be having much of an impact on cotton lint yield on this particular field. 
On the other hand, the two-way interaction between EC_ZONE and NMTCD and 
the main effect of NMTCD, both of which were significant in the model without 
the radial smoother, remain significant in this model. The results of these tests 
indicate that the prescription involving the nematicide treatment will vary 
depending on the EC_ZONE, while the prescription for the nitrogen treatment can 
be a blanket treatment. 



SUMMARY AND CONCLUSIONS 
 

     Unaccounted-for spatial trend is a source of spatial correlation. To the extent 
that spatial correlation is due to unaccounted-for trend, it may be possible to 
reduce or eliminate it by adequately accounting for that trend. These assertions 
were demonstrated using a simulated one-dimensional dataset. In that example we 
showed that semi-parametric models incorporating smoothing splines can be quite 
effective at removing complicated spatial trend, resulting in greatly reduced 
spatial correlation. The radial smoother in the GLIMMIX procedure of version 
9.2 of SAS® is a penalized smoothing spline implemented as a random effect and 
can be used for this purpose. We applied this methodology to an actual precision 
agriculture dataset. The data were modeled two ways: first, without accounting 
for residual spatial correlation, and second, using a radial smoother. The residuals 
from the model without the radial smoother exhibited significant spatial 
correlation. In contrast, the residuals from the model with the radial smoother 
were essentially free of spatial correlation. Inferences involving fixed effects were 
different for the two models, illustrating the fact that the results of statistical 
analyses, and hence treatment prescriptions that are based on those results, are 
affected by whether spatial correlation has been accounted for. 
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