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ABSTRACT 
 
     Soil organic carbon (Cs) levels in the soil profile reflect the transient state or 
equilibrium conditions determined by organic carbon inputs and outputs. In areas 
with strong topography, erosion, transport and deposition control de soil carbon 
balance and determine strong within-field differences in soil carbon. Carbon gains 
or losses are therefore difficult to predict for the average field. Total Cs ranged 
from 54 to 272 Mg C ha-1, with 42% (range 25 to 78%) of Cs in the top 0.3-m of 
the soil profile. Globally, the Cs in the topsoil (0.3-m) and subsoil (0.3 – 1.5-m) at 
the CAF shows overall an expected pattern of soil erosion of convex and upland 
landscape locations, and accumulation of Cs in concave and lowland locations. 
Locally, however, describing a point as upland or lowland landscape position 
provides limited information to predict total Cs or its distribution with depth. The 
topsoil Cs content is coupled with the local aboveground productivity, indicating 
that carbon inputs play a role at maintaining the current Cs across the landscape. 
No such relationship was found for subsoil Cs. Based on simulations of soil 
carbon accretion and cycling, much of the topsoil Cs can be at equilibrium with 
inputs, but the subsoil could be losing carbon at a slow but steady rate for much of 
the farm.  
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INTRODUCTION 
     Designing management strategies that can reduce emissions or increase the 
storage of soil organic carbon (Cs) in farmland are critical for agriculture to 
contribute to the mitigation of greenhouse gas emissions. The dryland cropping 
Palouse region of eastern Washington has spatially variable soil and topographic 
conditions that determine a complex temporal pattern of microclimate, water 



storage and movement, erosion, and nitrogen dynamics (Busacca and 
Montgomery, 1992) that reflect in large spatial variation of Cs. This variation 
reflects the C balance (inputs minus outputs) spatial variation in the landscape. 

     Site-specific carbon inputs consist of residues and roots and deposition of 
residues and Cs from eroded areas. Losses are controlled by microbial (and micro-
faunal) respiration that use residues and soil organic matter as substrate, and by 
soil erosion losses. Once erosion is controlled or minimized, the carbon balance of 
a single layer is determined by the input rate (Ci, Mg C ha-1 yr-1), the humification 
rate (h, yr-1), and by the soil apparent decomposition rate (k, yr-1) as follows: 

dCs/dt = hCi - kCs.       [1] 

     This equation was first proposed by Hénin and Dupuis (1945) and while 
mathematically simple, is adequate for hypothesis development and testing, and 
for field-level data interpretation (Huggins et al., 1998a,b). Mixing among layers 
is not considered in this equation but can be easily added in a numerical 
implementation.  

     The application of this equation in a distributed manner across the landscape is 
not without challenges for (1) all component of Ci are spatially variable and 
difficult to predict (aboveground and root production) or poorly understood 
(rhizodeposition), (2) it requires knowing Cs distribution, (3) it requires knowing 
accurately h and k, and (4) soil properties needed to simulate soil processes have 
marked spatial variation (e.g. Pachepsky et al., 2001). Despite these difficulties, 
Clay et al. (2005) strongly suggested that in corn-soybean rotation in east south 
central South Dakota, the residue input rate to maintain Cs levels varies with 
elevation, being larger in low elevation or depositional areas.  

     Our proposition is that different sections of the landscape can be sources or 
sinks of carbon and that managing the Cs balance is therefore a prime target for 
the application of precision conservation. Our objectives in this research were to 
investigate the Cs spatial distribution in the Cook Agronomy Farm of Washington 
State University, and to estimate the C balance as determined by inputs and 
decomposition rates across the landscape using the model C-Farm (Kemanian and 
Stockle, 2010). The model C-Farm has algorithms to compute the terms of Eq. [1] 
Ci, h, and k at daily time step in different soils layers.  

 

MATERIAL AND METHODS 
     Soil carbon data from an intensively monitored farm in eastern Washington 
were analyzed to try to understand the main controls of the current levels of Cs in 
this typical field-section of the Palouse. The analysis was performed as to 
generate contrasting groups of observation regarding Cs content and distribution 
with depth. Within each group, simulations with the model C-Farm of continuous 
cereal cropping were executed to estimate the carbon inputs, inputs distribution 
with depth, turnover rates, and the overall Cs balance across the landscape.  

     The research site was the Cook Agronomy Farm (46° 47' N, 117° 5' W, 773-
815 m elevation range) is located five km NE of Pullman, WA. The farm average 
slope is 11%, with maximum slopes of 33% with a topography representative of 



the rolling hills of the Palouse region, albeit with a dominant west-facing aspect. 
Precipitation averages 520 mm per annum; summers are dry. Soils are silt loams 
developed in loessial deposits with intricately associated Palouse (Fine-silty, 
mixed, superactive, mesic Pachic Ultic Haploxerolls), Naff (Fine-silty, mixed, 
superactive, mesic Typic Argixerolls), Thatuna (Fine-silty, mixed, superactive, 
mesic Oxyaquic Argixerolls), Latah (Fine, mixed, superactive, mesic Xeric 
Argialbolls), and Staley (Fine-silty, mixed, superactive, mesic Calcic 
Haploxerolls) soils. The differences among soils reflect the hydrological regime 
(upland, dry: Staley; alluvial lowland: Latah) and presence (Naff, Thatuna) or 
absence of an argillic horizon. 

     A nonaligned, randomized grid sampling design with 369 geo-referenced 
points was overlaid in the southern 37-ha portion of the farm. Soil profiles were 
taken in 177 point within the grid and used to estimate soil carbon in the top 0.3 m 
and in the rest of profile (up to 1.5 m). Each sample was described and assigned a 
soil type. In addition depth of the A and argillic horizon (when present) were 
recorded. Grain yield from most of the 369 geo-referenced points and for multiple 
crops growing in six different rotations have been collected annually since 1999. 
Topographic data were derived from a 10x10-m grid DEM. Slope was calculated 
as the rate of change in elevation in the direction of the steepest descent. Aspect 
was converted from degrees rotating clockwise with the N as 0°, to a new scale (1 
- cos[aspect - 30°])/2. The new scale ranges from 0 at aspect = 30° (N-NE aspect) 
to 1 at aspect = 210° (S-SW aspect) and is representative of the change in 
irradiance due to aspect. Plan curvature was calculated as the rate of change in 
aspect along a contour (radians m-1) with convex (concave) topography having 
positive (negative) values (Gallant and Wilson, 2000). Profile curvature is the rate 
of change in slope down a flow line (Gallant and Wilson, 2000), with concave 
(convex) topography having positive (negative) values. The wetness index was 
calculated as the ratio between the slope and the corresponding upslope 
contributing area for a given point. Gentle slopes and greater upslope contributing 
areas give the minimum wetness index and indicate areas prone to water 
accumulation; conversely, high values indicate divergent convex ridges. Annual, 
clear sky irradiance was estimated based on latitude, slope, aspect, and shading 
from surrounding terrain and scaled to a maximum of 1. 

     The variables best explaining Cs variation were analyzed using Random 
Forests or RF (Breiman, 2001) and the data set classified using classification and 
regression trees or CART (Breiman et al., 1984). CART is a divisive 
classification method that uses binary partitioning to create increasingly 
homogeneous clusters of observations based on the association of the response 
variable and descriptor variables. The binary division generates branches with 
terminal nodes containing groups of observations. The method is extremely 
flexibly as it is not affected by co-linearity, has no-requirement of normality in 
data distribution, and digests categorical and continuous data. Random Forests is 
a variation of CART that, instead of using all information to build a single tree, 
uses about 2/3 of the data to build many trees (a forest) and the remaining 1/3 or 
out-of-bag sample to compute classification errors. At each node a sample of 
predictors is used to generate a split; CART uses all predictors at each node. For 
regression, each tree predicts an average expected value for each out-of-bag 



observation. The average of all predictions is the RF regression estimate and is 
used to calculate the prediction error and the fraction of the variance explained by 
the model. The model has only two parameters, the number of trees to be 
constructed, and the number of predictors to be sampled at each node which is 
about 1/3 of the total number of predictors for regression (Liaw and Wiener, 
2002), but the optimum number varies with the data set and number under 
analysis. A measure of the importance of each predictor variable is obtained by 
calculating how the prediction error increases when out-of-bag data for a given 
variable is permutated while all others are left unchanged, making RF extremely 
useful as an exploratory tool. To our knowledge, Random Forest has been seldom 
used, if ever, to analyze complex agricultural datasets comprising multiple 
variables with widely different statistical properties and exhibiting colinearity. 
When used in ecological studies it proved to be better or as good as any other 
multivariate method (e.g. Prasad et al., 2006; Rehfeldt et al., 2006).  

     The model C-Farm is a daily-time step cropping systems model that allows 
calculating the Cs balance using a one-pool Cs. The model has been described in 
detail in Kemanian and Stockle (2010). In C-Farm the Cs turnover rate and Ci 
humification rate depend non-linearly on Cs; the turnover rate is also affected by 
environmental and management controls. The environmental controls are soil 
moisture, temperature and air filled porosity. All components of the water balance 
are computed at a daily time-step except infiltration and redistribution of water 
within the soil profile which use a variable and sub-daily time step. Soil 
temperature is calculated for each layer using a simplified energy balance. Tillage 
mixes all state variables in the affected layers and increases the Cs turnover rate k 
but does not alter the humification rate h. The crop module of C-Farm is a 
simplification with a few variations of that of CropSyst (Stockle and Nelson, 
2003). Organic N cycling is closely linked with that of C and the C/N ratio of the 
decomposing pool (residues, roots, root exudates and manure) as well as the 
availability of mineral nitrogen control the pool decomposition rate and resulting 
C/N ratio. C-Farm proved to be particularly suited to simulate Cs evolution in the 
long-term experiment, winter wheat – summer fallow sequence, at Pendleton, 
Oregon (Kemanian and Stockle, 2010).  

 

RESULTS AND DISCUSSION 
Regression and classification 

     For the 177 observations, the average (standard deviation) Cs for the profile, 
top 0.3-m and the subsoil was 131 (36), 56 (10), and 75 (30) Mg C ha-1. At 
Pendleton, Oregon, the winter-wheat summer fallow plots have topsoil Cs levels 
of approximately 40 Mg C ha-1 (Rasmussen and Albretch, 1998; Kemanian and 
Stockle, 2010) while the average in the CAF is 57 Mg C ha-1, 40% larger, due, in 
part, to the negative impact of summer fallow on soil Cs.  

    The relatively larger variation in subsoil Cs (Figure 1) reflects the differences in 
soil depth across the landscape, with lower Cs in eroded knobs and large 
accumulations in a few depositional locations (Figure 2). Parallel to the eastern 
and northern boundaries of this section of the farm runs a seasonal creek that 



drains the larger watershed. The flat terrain bordering the creek is a floodplain 
that shows intermittently large accumulations of sub-soil Cs (Figure 2). The 
irregular accumulation of Cs suggests that erosion and deposition, and perhaps 
past transport to soil by tillage, determine a non-uniform accumulation of Cs.  

 

 

 
Figure 1. Frequency distribution of soil organic carbon in the profile (top panel), the top 
0.3-m of the profile (middle panel) and between 0.3 and 1.5 m in Cook Agronomy Farm 
in eastern Washington. The total number of observation is 177. 
 
     While Cs shows spatial clustering (Fig. 2) the overall pattern of Cs distribution 
is not easy to predict except for a few cases. North-facing steep slopes can have 
high or medium Cs accumulation in the top soil depending on which north-slope 
and which specific location in the north-slope is selected. Equally steep southern 
or east facing slope are obviously eroded.  

     Regression analysis with RF that includes average relative yield of a location, 
a biological indicator of productivity, topographic, and soil attributes was able to 
explain, at best, 37% and 43% of the observed variation in Cs in the top soil and 
subsoil, respectively. While this is a preliminary analysis, a few noteworthy 
features are highlighted. In the topsoil, site productivity or carbon inputs are 
related to Cs levels, while in the subsoil other variables are more relevant. This 
indicates control of Cs in soil by current or short-term inputs and historic factors 
explaining subsoil Cs. The inclusion of variables such as depth of the A horizon or 
depth to the Bt horizon can give relatively obvious results, as thicker A horizons 
or deeper Bt horizons will usually be associated with high Cs content in 



agricultural soils. When depth to A horizon is removed, depth to Bt horizon 
increases in importance at explaining the variation as shown for the subsoil. The 
soil EMC measurements in spring seem to provide a valuable integrated measure 
of soil properties. Somewhat surprisingly, presence or absence of the Bt horizon, 
prevalent in about ½ of the farm, was weakly related to Cs. It is interesting that 
when the variable site productivity is removed, topographic attributes such plan 
and tangential curvatures, which discriminate between convex, divergent portions 
of the landscape, and concave positions, become important at explaining the 
observed variation. Further analysis should explore a systematic removal / 
inclusion of topographic and soil attributes from freely accessible soil databases, 
soil attributes obtained from soil sampling, and yield monitoring data. 

     To facilitate the selection of simulation points, we ran CART on the topsoil 
and the subsoil. Ideally, variables that have local importance but have no relation 
with actual processes such as easting and northing (the point coordinates) should 
not be included in this analysis, but we did so to generate groups as homogeneous 
as possible for the simulation. Running the analysis for the topsoil and the subsoil 
separately will not generate the same classes.  

     For the topsoil, depth of A horizon, plan curvature, flow accumulation, EMC 
and depth of the Bw horizon were the main drivers to shape the tree (Fig. 3). 
Relatively thin A horizons (< 0.6 m) in convex positions with shallow Bw horizon 
have the lowest average Cs (43 Mg C ha-1), while deep A horizons in depositional 
areas have the highest Cs (64 Mg C ha-1). Summary information for each group is 
presented in Table 2. Removing the A horizon places the site productivity as the 
first split. Interestingly, for the subsoil the plan curvature, irradiance (a measure 
of aspect and slope) and slope controlled the tree growth (Fig. 4). The points with 
lowest subsoil Cs were at convex or south facing (high irradiance) and high slope 
locations (average Cs of 47 Mg C ha-1), and conversely, the points with highest Cs 
were at depositional convex areas or in areas with moderate curvature with lower 
irradiance load. This can be an indirect indication of the effect of the prevailing 
SW winds that cause snow drift and accelerated drying of south facing slopes. 
These observations are in broad agreement with what can be gleaned from Fig. 2 
and Table 1. Both RF and CART provide strong evidence that a relationship 
exists between the response variable with a given predictor, but unraveling the 
mechanisms behind the relationship requires interpretations that are not 
straightforward. 

 
Figure 2. Soil carbon in the topsoil (0.3-m) of the soil profile (top panel), and in the 
subsurface (0.5 and 1.5 m) of the soil profile (bottom panel) in the Cook Agronomy 
Farm. 



Table 1. Results of the regression with Radom Forests where soil organic carbon is the 
response variable and the list to the left of the table are predictor variable (crop, soil, and 
topographic attributes). The table shows the importance of each variable, and the bottom 
of the table the variation in Cs explained by the regression forest.  
Predictor1 Topsoil organic carbon Subsoil organic carbon 
easting  9.61 6.99  4.47 3.07  5.02 
northing  3.33 7.12  4.15 3.46  5.38 
soil 2.07 1.55 0.79 4.49 6.26 6.45 5.73 
soil.sur 3.10 3.49 3.16 6.27 4.96 4.72 7.17 
sub.horizon 3.55 1.52 1.29 4.89 5.06 6.62 4.81 
site.productivity  18.75   5.29   6.67 
Bt.ik  2.51 1.52 2.04 4.68 5.27 3.31 4.69 
Bt 0.27 1.04 -0.51 2.07 2.54 2.98 4.06 
Bk 1.63 -0.53 1.27 4.32 4.59 1.37 4.97 
E  2.19 3.76 2.06 3.04 1.51 2.53 3.54 
Bw 0.53 0.82 -0.97 1.80 1.82 1.39 2.76 
A.depth 13.18 15.65 14.55 16.99 17.76 18.44  
Bt.depth 3.37 4.40 1.96 9.19 10.47 10.26 12.99 
Bw.depth 6.16 7.97 7.87 5.50 4.23 3.46 6.53 
irradiance 7.91 11.59 10.26 3.80 3.66 4.19 3.31 
slope  5.32 5.53 5.64 2.12 0.46 1.09 1.90 
aspect 6.35 6.19 3.94 5.02 3.22 2.56 3.81 
curv.tan 5.82 8.08 6.73 7.30 8.09 7.29 7.88 
curv.pln 7.73 9.69 7.72 7.10 6.99 6.43 7.89 
cur.pro 3.49 5.04 1.88 19.32 19.34 19.35 21.23 
flod 6.94 9.37 8.46 5.60 2.24 3.51 3.00 
floa 2.97 1.26 2.19 -1.41 -0.29 -1.80 0.86 
wet.index  4.83 6.61 5.74 0.03 1.51 -0.57 2.28 
elevation  6.40 4.54 2.90 4.63 5.56 4.67 5.07 
EMC spring 2000  10.05 10.49 11.75 8.36 7.61 8.55 9.97 
EMC fall 2000  6.07 7.79 9.88 4.09 5.35 6.22 4.65 
        
RMSE, Mg C ha-1 8.1 8.5 8.4 22.4 22.5 22.5 23.3 
Var explained, % 37.1 30.9 31.3 43.5 43.1 43.1 39.0 
1 easting and northing = coordinates of the points; soil = soil classification, soil.sur = SURGO soil 
classification; sub.horizon = subsoil horizon below A horizon (Bt, Bw, Bk, E); site.productivy = 
relative yield of the point as an average of 6 years of hand-samples; Bt.ik is the interpolated 
probability of finding an argilic horizon at the location; Bt, Bk, E, and Bw describe B horizons; A, 
B, and Bw.depth are the thickness (A) or top of the horizon (B); irradiance = relative irradiance of 
the site which depends on topography; slope, aspect, planar, tangential and profile curvature, and 
flow accumulation and wetness index are explained in Materials and Methods; EMC = 
electromagnetic conductivity measured in spring or fall of 2000.  
 

      The points for the simulation were selected based on the classes obtained with 
classification of the Cs topsoil (Fig. 3, Table 2). In this preliminary analysis we 
decided to use a rather astringent criterion to stop the tree growth using a high 
threshold in the MSE reduction required for a split to be valid and we obtained 
only 6 groups (Fig. 3) that are large and contain variation. Further refinement of 
the analysis will allow splitting into more homogenous groups.  

Soil carbon dynamics simulation 
     Some characteristics of the simulation points are shown in Table 3. Points for 
groups 1, 2, and 3 are in south facing slopes, mostly convex, upslope positions 
with south facing slope. Point in group 5 is a concave south facing slope (Palouse 



/ Naff). The points in groups 4 and 6 are in north facing slopes, and the Thatuna 
soil (group 6) in particular is a depositional area. Only simulations for the three 
most contrasting points are shown: groups 2, 4, and 6, with low, medium, and 
high total Cs. Point 6 has as much subsoil Cs as point 2 in the entire profile.  

 
Figure 3. CART for soil organic carbon in the topsoil (A.depth = thickness of the A 
horizon, curv.pln = plan curvature, ems00 = electromagnetic conductivity in spring of 
2000, Bw.depth = depth of the Bw horizon, flod = flow direction). 
 

     In this environment water availability is the main driver of productivity. The 
simulated water balance for the three points was similar (Table 4). Soil 
evaporation and runoff may have been underestimated. Return flow down the 
slope, particular where Bt horizons are present, was not simulated. On flat, 
homogeneous terrains this water balance is likely correct, because these soils have 
large water storage capacity (2.5 m of soil could store the average annual rainfall 
without drainage). The effect of wind direction in the water balance at each 
location was not included and can have a large local effect for (1) snow 
redistribution from south to north-slopes is obvious in the winter time; that 
produces drier south slopes and wetter north slopes, and (2) the effect of the 
prevailing SW winds on soil evaporation and crop transpiration in south slopes is 
not represented, and conversely, the lesser water demand in north slopes is not 
represented. If these factors were included, evaporation would increase in south 
slopes compared with that simulated, and runoff and drainage increase in the 
north slopes as is usually observed in the field in early spring. Despite these 
limitations, the simulations of the carbon balance are insightful.   



 
Figure 4. CART for soil organic carbon in the subsoil (curv.pln = plan curvature).  
 

      The topsoil at the different locations is near equilibrium conditions. A 
regression of the annual Cs balance against the initial Cs in that layer indicates that 
with inputs of 3 Mg C ha-1 yr-1 the topsoil Cs equilibrium content is 60 Mg C ha-1. 
It also indicates that it is difficult to sustain that Cs level with less C inputs and 
that residue removal may lead to C losses unless replenished with other C inputs. 
Locations with topsoil Cs < 60 Mg C ha are prime targets for C storage if 
productivity and C inputs are increased. This is in agreement with the relationship 
found between top soil Cs and site productivity in the RF analysis. 

 
Table 2. Summary characteristics of the grouping of observations based on CART as 
shown in Figure 3 (topsoil = 0.3 m, subsoil = 0.3 – 1.5 m, Cs = soil organic carbon). The 
Cs levels where qualitatively characterized as Low, Medium and High (L, M, H). The 
order of soil listing indicates which soil series is prevalent in the group.  
Group 
(n) 

Cs level Topsoil Cs Subsoil Cs Profile Cs A depth Soil series 

  --------------- Mg ha-1 --------------- m  
1 (33) ML 47 53 100 0.36 Naff/Palouse/Staley 
2 (7) L 43 52 95 0.19 Palouse/Naff 
3 (64) M 55 71 126 0.40 Palouse/Thatuna/Naff 
4 (15) MH 63 81 144 0.35 Palouse 
5 (13) M 53 74 127 0.67 Palouse/Naff 
6 (45) H 64 100 164 0.73 Thatuna/Palouse 



Table 3. Characteristics of the points selected for the simulations. The soil organic carbon 
(Cs) as in Table 2. Site productivity (SP) averaged 0.63 for the entire farm, with 
minimum and maximum  of 0.39 and 0.80, respectively.  
Group Soil 

series 
SP A depth Slope Landfor

m 
Topsoil 

Cs 
Subsoil 

Cs 
Profile 

Cs 
    %  --------------- Mg ha-1 ---------------- 
1 Palouse 0.65 0.46 1.3 Convex 46 56 102 
2 Palouse 0.67 0.15 1.9 Convex 47 53 100 
3 Palouse 0.63 0.44 3.9 Flat 54 72 126 
4 Palouse 0.73 0.36 7.6 Convex 62 74 137 
5 Palouse 0.58 0.62 4.7 Concave 53 76 128 
6 Thatuna 0.59 0.66 5.4 Concave 64 125 189 
 
     Despite the attention that the topsoil has received regarding C cycling and 
storage, the largest impact on the long-term Cs balance can be in managing the 
subsoil. The simulation results suggest that soils from group 6 with large amounts 
of C in the subsoil might be losing C at a significant rate (Table 5). In fact, these 
were the conclusions reached by Kemanian and Stockle (2010) when simulating 
the Cs balance of the long-term experiment at Pendleton: no matter how much the 
inputs and mixing of the topsoil were manipulated, the subsoil seemed to lose 
carbon in those profiles. Here, and based on the simulations, a regression of initial 
subsoil Cs against the C rate of change indicates that the subsoil reaches steady-
state regime at about 44 Mg C ha-1, much less than the average of 75 Mg C ha-1 
found throughout the farm. Only 10% of the farm area has subsoil Cs < 44 Mg C 
ha-1. 

     The annual Cs balance compared with the annual C flux is relatively minor and 
therefore subject to errors. The humification rates estimated with the model are 
numerically lower than other reports but include rhizodeposition which was 
assumed to have a lower humification rate. The estimated turnover rates for Cs are 
low, less than 1% yr-1 for topsoil, and less than 0.3% yr-1 for the subsoil (Table 5). 
For the Cs in the subsoil to be stable, the carbon input rates from roots should be 
significantly higher than that simulated (unlikely), or the turnover rate of the soil 
much lower (feasible, but we found no evidence to sustain that assertion), or the 
humification rates much higher than those estimated (that would imply high 
microbial respiration efficiency or a rather limited microbial cycling), or 
significant mixing of soil layers that can transfer Cs form the topsoil to the 
subsoil. The latter is difficult to justify, and in addition, will cause C “loses” in the 
topsoil. It seems that lack of understanding Cs cycling in the subsoil is a major 
limitation to assess the overall Cs balance of soils in the Palouse and perhaps 
elsewhere. Cycling of Cs in the subsoil needs to be considered when discussing 
the impact of the conversion of these systems to no-till, or a sequence of no-till 
with period inversion tillage (Purakayastha et al., 2008). 
Table 4. Simulated water balance as an average of 50-yr in the Cook Agronomy Farm in 
eastern Washington. The rotation was winter wheat – spring barley – spring wheat.The 
soil was tilled with one soil inversion operation with moldboard plow every 2 years.  
Group Runoff Infiltration Drainage Evap. 

soil 
Evap. 
Snow 

Evap. 
residue 

Transpiration 

 --------------------------------------------- mm yr-1 --------------------------------------------- 
2 10 476 21 230 42 15 224 
4 10 475 22 231 43 15 222 



6 17 472 27 235 38 16 210 
Table 5. Simulated soil organic carbon (Cs) balance as an average of 50-yr in the Cook 
Agronomy Farm in eastern Washington. The rotation was winter wheat – spring barley – 
spring wheat. Ci, h, and k as in Eq. [1]; C humified is the product hCi on average for the 
50 years. The Cs balance was obtained by regression and may differ slightly from 
calculations based on Ci, h, k, and Cs in Table 3. The C respired from residues is (1 – 
h)Ci, and is not presented in the table. 
Group Depth Ci C humified h Cs respired k Cs balance 

 m Mg ha-1 yr-1 yr-1 Mg ha-1 yr-1 yr-1 Mg ha-1 yr-1 
2 0 – 0.3 3.12 0.444 0.14 0.352 0.007 0.099 
 0.3 – 1.5 0.22 0.026 0.12 0.052 0.001 -0.022 
4 0 – 0.3 3.10 0.415 0.13 0.426 0.007 -0.003 
 0.3 – 1.5 0.22 0.026 0.12 0.149 0.002 -0.117 
6 0 – 0.3 3.00 0.400 0.13 0.449 0.007 -0.043 
 0.3 – 1.5 0.22 0.028 0.13 0.310 0.003 -0.275 
 

CONCLUDING REMARKS 
      The soil carbon distribution in the topsoil and subsoil at the CAF shows 
overall an expected pattern of erosion of convex and upland locations in the 
landscape, and accumulation of soil organic carbon in concave and lowland 
locations. Locally, however, describing a point as upland or lowland landscape 
position provides limited information to predict total Cs or its distribution with 
depth The topsoil Cs content is coupled with the local aboveground productivity, 
indicating that carbon inputs play a role at maintaining the current Cs across the 
landscape. No such relationship was found for subsoil Cs. Based on simulations of 
soil carbon accretion and cycling, much of the topsoil Cs can be at equilibrium 
with inputs, but the subsoil could be losing carbon a slow but steady rate for much 
of the farm. This is clearly an area that needs more research. 
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