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Abstract.  
Crop coefficient (Kc)-based estimation of crop water consumption is one of the most commonly 
used methods for irrigation management.  Spectral modeling of Kc is possible due to the high 
correlations between Kc and the crop phenologic development and spectral reflectance.  In this 
study, cotton evapotranspiration was measured in the field using several methods, including eddy 
covariance, surface renewal, and heat pulse.  Kc was estimated as the ratio between reference 
evapotranspiration and the measured cotton evapotranspiration.  In addition, a time series of 
Sentinel-2 imagery was processed to produce 22 vegetation indices (VIs) based on the sensor’s 
unique spectral bands.  Empirical Kc – VI models were derived and ranked according to their 
prediction error.  In accordance with previous studies, we found a strong correlation between the 
normalized difference vegetation index (NDVI) and Kc (R2 = 0.94), and yet, we also identified 
other spectral indices that are more strongly correlated to Kc.  The indices that were found to be 
the most suitable for Kc prediction were based on the red and red-edge bands (MTCI, REP, and 
S2REP).  This progress in estimating cotton water consumption using satellite imagery that are 
available at no cost is a leap forward towards the development of crop irrigation requirements 
models.  Consequently, this work sets the scene for near-real-time irrigation decision support 
systems. 
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1 Introduction  
Monitoring the changes of soil and crops status in agricultural fields throughout the growing 
season is key in increasing the production efficiency.  As the crop develops from seedling to a 
fully mature plant, its transpiration changes accordingly, and so do the crop water requirements.  
In the early stages of the growing season, the majority of the evapotranspiration is attributed to 
evaporation from the soil surface. Yet, as the crop develops, the relative contribution of 
transpiration to the evapotranspiration increases as the vegetation cover increases, and 
eventually declines with maturity and senescence (Allen et al., 1998).  Therefore, information 
about the crop evapotranspiration (ETc), which represents the combined water loss due to 
evaporation from the soil surface and transpiration from the crop, can facilitate better irrigation 
planning, and ultimately, water use efficiency. 
The crop coefficient (Kc) approach for estimating ETc relies on the estimation of reference 
evapotranspiration from a hypothetical crop (ET0) such that ETc=Kc x ET0 (Allen et al., 1998).  
While ET0 is either calculated based on standard meteorological measurements using the 
Penman-Monteith Method, or based on pan evaporation measurements, Kc is derived 
experimentally per crop and soil type and thus separates the climatic demand from the plant 
response (Duchemin et al., 2006; Kumar et al., 2012).   
The United Nations’ Food and Agricultural Organization (FAO) has provided details on the 
development and use of Kc values for different crops in different parts of the world (Allen et al., 
1998).  However, Kc has been shown to vary between sites and between seasons (Kumar et al., 
2015).  Additionally, in cases of atypical crop development and water-use patterns caused by 
weather anomalies, adopting the FAO-recommended Kc values often results with imprecise ETc 
estimations (Hunsaker et al., 2003).  As a result, local adaptations to the FAO-recommended Kc 
values are implemented to form local Kc tables, but even these sometimes fail to capture 
deviations from standard conditions due to specific fertilization, variations in crop planting density, 
and stress factors such as pests (Kumar et al., 2015).  In addition, the spatial variation in ETc due 
to spatial heterogeneity in soil characteristics such as water holding capacity and nutrients 
availability is not reflected in standard Kc tables.  Accordingly, in the absence of reliable, real-time 
information about ETc, there is a need for better Kc estimates. 
One approach to address this need is by using satellite remote sensing imagery.  This technology 
is attractive for modeling Kc since it provides a synoptic coverage at fixed time intervals, and can 
therefore monitor changes over time (Rozenstein & Adamowski, 2017a; Rozenstein & 
Adamowski, 2017b).  Moreover, spectral vegetation indices (VIs) derived from remote sensing 
imagery are highly correlated with crop characteristics including biomass, Leaf Area Index (LAI), 
plant height, and yield (Thenkabail et al., 2000; Duchemin et al., 2006; Park et al., 2017).  
Similarly, VIs can serve as near-real-time surrogates for Kc since they depict a similar temporal 
pattern (Jackson et al., 1980; Kamble et al., 2013).  Although the commonly used Normalized 
Difference Vegetation Index (NDVI) is known to saturate at LAI>3 (Asner et al., 2004), there is a 
similarity between the NDVI–LAI and Kc–LAI curves, suggesting that both plant transpiration and 
light absorption increase roughly at the same rate at the beginning of the season, and then 
saturates (Duchemin et al., 2006).  Since both Kc and NDVI saturate at about the same time, the 
loss of accuracy in the estimate of high LAI due to NDVI saturation will have little impact on the 
accuracy of transpiration estimates, and in addition, the relationship between NDVI and Kc is 
linear (Duchemin et al., 2006). 
In order to model Kc using VIs, most previous studies employed ETc field measurements using 
lysimeters or eddy covariance systems (Kamble et al., 2013; Er-Raki et al., 2013; Park et al., 
2017; Jin et al., 2017).  In other studies, field measurements were not conducted to estimate Kc, 
but some adaptations from FAO recommendations were made for the local meteorological 
conditions (e.g. Ray & Dadhwal, 2001; Farg et al., 2012).  Hence, ground truth (i.e. 
evapotranspiration measurements in the field) can be used as training data for Kc prediction 
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models based on remote sensing VIs.  
The basic limitation of satellite remote sensing application for irrigation management is the 
compromise between the sensor’s revisit time and spatial resolution.  Sensors with a short revisit 
time such as the moderate-resolution imaging spectroradiometer (MODIS) that provides daily 
coverage are characterized by a coarse spatial resolution (>250 m), while sensors with medium 
spatial resolution such as the Landsat series are characterized by longer revisit times (16 days).  
Cloudy conditions further reduce the temporal resolution for all optical sensors, thus posing 
another limitation on operational applications.  Irrigation management decisions for field crop 
should ideally be based on a dense time series of imagery that are fine grained enough to 
distinguish between field plots.  Commercial high spatial resolution satellite sensors such as the 
Worldview series, RapidEye, GeoEye, QuickBird, and Ikonos, are not routinely employed for crop 
monitoring because their imagery are not public domain and come at a significant cost, rendering 
them too expensive for most operational agricultural applications.  Therefore, in spite of 
established Kc – VIs models, the limited availability of imagery with suitable temporal and spatial 
resolutions at no or low cost hindered the development of worldwide operational systems to 
estimate Kc from VIs, and prevented wide remote sensing application for near-real-time irrigation 
decisions.  
The successful recent deployment of the two Sentinel-2 satellites creates a unique opportunity 
for operational Kc estimates. Sentinel-2 multispectral spaceborne imagery with a 5-day revisit 
time (obtained by the combination of Sentinel-2A and Sentinel-2B data)  can potentially create a 
dense Kc time series at 10 m spatial resolution, which would allow the application of this technique 
even for small fields (Frampton et al., 2013).  It was recently demonstrated that a combination of 
Landsat-8 (30 m, 16-day revisit), Deimos-1 (22 m, 3-day revisit) and the SPOT4-Take5 
experiment (20 m, 5-day revisit) can produce an observation frequency similar to Sentinel-2A and 
Sentinel-2B, albeit at a lower spatial resolution (Battude et al., 2017).  Additionally, most of the 
VIs that have been previously employed for this task were based on bands covering the visible 
and near infrared (NIR) spectral regions, since these bands were traditionally available for 
sensors like Landsat and SPOT (Thenkabail et al., 2000; Battude et al., 2017).  Sentinel-2 also 
features those traditional bands, alongside additional bands in the red-edge region that is very 
sensitive to crop characteristics such as leaf area index (Viña et al., 2011; Frampton et al., 2013; 
Nguy-Robertson et al., 2014).   
The above literature review suggests that Sentinel-2 imagery offers an acceptable compromise 
between the revisit time and spatial resolution, with increased spectral abilities for vegetation 
monitoring compared to previous public domain spaceborne imagery. Hence, the overarching aim 
of this research was to develop methodology to estimate cotton water consumption based on 
Sentinel-2 imagery.  The key objectives of this study were to (1) estimate daily ETc experimentally 
in the field, and (2) develop empirical models that link ETc with remotely sensed spectral indices 
from Sentinel-2.  

2 Material and Methods 
 
2.1 Study Site 

The measurements took place during the summer of 2016 in a cotton field near Gedera, in the 
Shfela region in Israel (Fig. 1).  This field was chosen because it was relatively flat, and large 
enough to contain most of the flux footprint measured by the eddy-covariance system (described 
in section 2.2.1). Field had a trapeze shape, with a mean length of 780 m and mean width of 540 
m (the long dimension was oriented east-west, see Fig. 1 right). Cotton, cv. Pima, was sowed in 
the soil in east-west rows on March 10, 2016, and was drip-fertigated.  Precipitation and irrigation 
during the growing season are plotted in Fig. 2.  The irrigation was stopped on September 5, 
2016, and the cotton was harvested on October 5, 2016. 
Field measurements were conducted during July and August 2016. The local summer climate is 
rainless, with little variation from day to day.  According to data supplied by the Agro-Meteorology 
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unit of the Israel Ministery of Agriculture and Rural Development from the Revadim meteorological 
station, about 4 km south of the experiment location, between January 2008 and December 2016 
the annual average number of rainy days, i.e., rainfall ≥ 1 mm, was 51, with an annual average 
rainfall of 469 mm.  There was no rainfall during the summer months – June through August.  The 
annual average and the growing season average (March-September) of meteorological data from 
2008 – 2016 were: relative humidity 64.6 and 64.4%, respectively; relative humidity at 12:00 GMT 
– 49.9 and 47.7%, respectively; mean daily air temperature – 20.2 and 22.8°C, respectively; mean 
daily minimum air temperature – 15.4 and 17.5°C, respectively; and corresponding mean daily 
maximum temperature – 25.5 and 28.3°C, respectively. 

3  

Fig. 1. Left: Sentinel-2A false color regional image (RGB = bands 8,4,3) acquired on 25 July 2016. The black square 
represents the footprint of the image on the right, showing a blow-up of the area around the study site. 

4  

Fig 2. Precipitaion (measured at the Revadim meteorological station, operated by the Agro-Meteorology unit of the Israel 
Ministery of Agriculture and Rural Development, 4 km south of the field) and irrigation during the cotton growing season 

(irrigation data provided by the grower).  

 
4.1 Agro-Meteorological Measurements 

4.1.1 Reference Evapotranspiration – ET0 

The Agro-Meteorology unit of the Israel Ministery of Agriculture and Rural Development regularly 
estimates the reference evapotranspiration (ET0) at selected locations across Israel.  In this 
study, ET0 was calculated according to the Penman-Monteith method (Allen et al., 1998) based 
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on meteorological measurements of temperature, relative humidity, wind speed and solar 
irradiance at the Revadim meteorological station located about 4 km south of the study site.  This 
public-domain data is available for download from: http://www.meteo.co.il/.  
 

4.1.2 Eddy Covariance (EC) 

Direct measurements of ETc (actual crop evapotranspiration) were done by an eddy covariance 
system that measured latent and sensible heat fluxes.  An eddy covariance (EC) system was 
deployed at a height of 3.65 m on a tower located within the field (Fig. 1b) at a position that allowed 
a fetch of about 400 m for the prevailing northwesterly wind.  The system consisted of a three-
axis ultrasonic anemometer (Model CSAT3; Campbell Scientific, Logan, UT, USA) that measured 
the wind speed vector and sonic temperature, and an Infra-Red Gas Analyzer, IRGA (Model LI-
7500; LI-COR, Lincoln, NE, USA) that measured water-vapor concentration.  To minimize wind 
distortion effects, the CSAT3 anemometer head was oriented towards the approximate direction 
of the predominant wind.  Raw signals from the EC system were sampled at 20 Hz.  Signals were 
recorded on a CR3000 data logger (Campbell Scientific, Logan, UT, USA) and later processed 
by the EddyPro software (LI-COR, Lincoln, NE, USA) to generate the flux data.  The EddyPro 
software estimated the distance of the 90% flux footprint of each 30-min data point, later used to 
select the analysis polygon (see section 2.3.1).  EC evapotranspiration data were used for DOYs 
180-189, 195-206, 211-213, 215-217, 221-228, 243-244, 249-251, 256-257. 
 

4.1.3 Surface Energy Balance 

Additional measurements facilitated energy-balance closure analysis.  Net radiation (Rn) was 
measured with a net radiometer (Q*7.1; REBS, Seattle, WA, USA) installed at 3.65 m height, on 
the same pole of the EC system.  Air temperature and relative humidity were measured by a 
sensor (HMP45, Campbell Sci., Logan, UT, USA) positioned at a height of 3.5 m within a 
ventilated radiation shield.  Soil heat flux (G) was measured with four soil heat flux plates (HFT-
3.1; REBS, Seattle, WA, USA) installed at a depth of 0.08 m within the soil and two thermocouples 
type T (copper-constantan) that were installed in the soil layer above each plate at depths of 0.02 
and 0.06 m (total of 8 thermocouples).  The calculation of soil heat flux and storage was done 
similarly to the procedure described by Rosa et al. (2013) and Tanny et al. (2006).  Thirty-minute 
averages of measured variables (net radiation, soil heat flux, and soil temperatures) were 
recorded on a CR23X data logger (Campbell Scientific, Logan, UT, USA). All the equipment was 
powered by car batteries that were charged during the day by solar panels. 

4.1.4 Surface Renewal (SR) 

The surface renewal method estimates H, the sensible heat flux, from high frequency, single point 
temperature measurement, and then extracts the evapotranspiration as a residual of the energy 
balance closure (Paw U et al., 1995).  The method proved reliable for cotton evapotranspiration 
measurements (Rosa & Tanny, 2015).  In the present field experiment, a miniature thermocouple 
type T, 50 µm in diameter (COCO-002, Omega Eng., UK), was installed at 1.5 m height on the 
same mast of the EC system.  The sensor measured air temperature at 10 Hz and raw data was 
recorded on a CR3000 data logger (Campbell Scientific, Logan, UT, USA).  Sensible heat flux 
calculated by SR data analysis (Spano et al., 1997) was calibrated against direct EC 
measurements and the calibration coefficient was utilized during periods when EC data were 
unavailable. SR evapotranspiration data were used for DOYs 207-210, and 218-220. 

4.1.5 Heat Pulse 

Sap flow measurements were conducted using the heat-pulse technique.  Sensors were installed 
in 12 cotton plants about 200 m west of the position of the EC mast.  In the present analysis, we 
assume that for the high-density cotton field, soil evaporation is negligible; hence, 
evapotranspiration and transpiration are equal.  SF transpiration data were used for DOYs 235-
242, 245-248, 252-255, 258-261.  
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4.1.6 Derivation of the crop-coefficient (Kc) 

The crop coefficient was derived according to Allen et al. (1998): 

      𝑲𝒄 =
𝑬𝑻𝒄
𝑬𝑻𝒐

     (1) 

where 𝐸𝑇) is the crop evapotraspiration as measured by eddy covariance, surface renewal or sap 
flow method. Our gold standard was the eddy covariance measurement, however, at times the 
eddy covariance system failed, creating a gap in the time series.  During the days that the eddy 
covariance system did not provide data, 𝐸𝑇) was estimated using either the surface renewal or 
the sap flow measurements.  
 

4.2 Satellite Measurements 
4.2.1 Pre-Processing 

A total of seven relatively cloud free Sentinel-2A images acquired during the cotton-growing 
season were analyzed in this study, including five images that coincide with our agro-
meteorological measurements.  The images were atmospherically corrected using sen2cor (Louis 
et al., 2016) and processed using the Sentinel-2 Toolbox, an extension of SeNtinel Application 
Platform (SNAP) (Gascon & Ramoino, 2017).   
In order to select the pixels for analysis, a polygon defining the borders of the cotton field was 
demarked. Furthermore, the point density of the 90% flux footprint of eddy-covariance 
measurements taken between 7 am and 6 pm was calculated.  A threshold of 0.018 points per 
m2 was selected to create a second polygon representing the area from which most of the flux 
measured by the eddy-covariance system was originated.  Cloud and cloud shadow masks were 
generated for the five Sentinel-2A images that coincide with the agro-meteorological 
measurements.  The intersection between the field borders, the area that represents the flux 
footprint, and the cloud masks defined the polygon of the analysis area (Fig. 3). 
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Fig. 3: The process of determining the analysis area by thresholding the density map of eddy covariance footprint 

distribution and intersecting with areas masked by clouds on some images, and by the field boundaries.  

 
4.2.2 Spectral Indices 

We applied the 22 vegetation indices included in SNAP to all of the images throughout the growing 
season (Table 1).  

Table 1:  Vegetation indices and their application using Sentinel-2 bands. 
Index Name  Formula Sentinel-2 Band Assignments Reference 

MERIS terrestrial 
chlorophyll index 

(MTCI) 
 

(𝑵𝑰𝑹 − 𝑹𝑬)
(𝑹𝑬 − 𝑹𝑬𝑫)

 
(𝑩𝟔 − 𝑩𝟓)
(𝑩𝟓	 − 	𝑩𝟒)

 (Dash & Curran, 2007) 

Red Edge In-flection 
Point (REIP) 

 
𝟕𝟎𝟎 + 𝟒𝟎 ∗

𝑹𝟔𝟕𝟎:𝑹𝟕𝟖𝟎
𝟐 =𝑹𝟕𝟎𝟎

𝑹𝟕𝟒𝟎=𝑹𝟕𝟎𝟎
  𝟕𝟎𝟎 + 𝟒𝟎 ∗

𝑩𝟒	:	𝑩𝟕
𝟐 =𝑩𝟓

𝑩𝟔	=	𝑩𝟓
  (Guyot et al., 1988) 

Atmospherically 
Resistant Vegetation 

Index (ARVI) 
 

(𝑵𝑰𝑹	 − 	𝟐 ∗ 𝑹𝑬𝑫	 − 	𝑩𝑳𝑼𝑬)
(𝑵𝑰𝑹 + 	𝟐 ∗ 𝑹𝑬𝑫	 − 	𝑩𝑳𝑼𝑬)

 
(𝑩𝟎𝟖	 − 	𝟐 ∗ 𝑩𝟎𝟒	 − 	𝑩𝟎𝟐)
(𝑩𝟎𝟖 + 	𝟐 ∗ 𝑩𝟎𝟒	 − 	𝑩𝟎𝟐)

 (Kaufman & Tanre, 1992) 

Soil Adjusted 
Vegetation Index 

(𝑵𝑰𝑹 − 𝑹𝑬𝑫)
(𝑵𝑰𝑹 + 𝑹𝑬𝑫 + 𝑳)

∗ (𝟏 + 𝑳) 
(𝑩𝟎𝟖	 − 	𝑩𝟎𝟒)

(𝑩𝟎𝟖	 + 	𝑩𝟎𝟒	 + 	𝟎. 𝟓)
∗ (𝟏. 𝟓) (Huete, 1988) 
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(SAVI) 
 

Modified Soil Adjusted 
Vegetation Index 2 

(MSAVI2) 
 

([𝟐 ∗ 𝑵𝑰𝑹	 + 	𝟏	 − 	𝑺𝑸𝑹𝑻(	(𝟐 ∗ 𝑵𝑰𝑹 + 𝟏)^𝟐 −
	𝟖 ∗ (𝑵𝑰𝑹	 − 	𝑹𝑬𝑫))]		)/𝟐  

([𝟐 ∗ 𝑩𝟎𝟖	 + 	𝟏	 − 	𝑺𝑸𝑹𝑻(	(𝟐 ∗ 𝑩𝟎𝟖 +
𝟏)²	 − 	𝟖 ∗ (𝑩𝟎𝟖 − 	𝑩𝟎𝟒))]		)/𝟐  (Qi et al., 1994) 

Infrared Percentage 
Vegetation Index (IPVI) 

 

𝑵𝑰𝑹
(𝑵𝑰𝑹	 + 	𝑹𝑬𝑫)	

 

 

𝑩𝟖
(𝑩𝟖 + 𝑩𝟒)		

 (Crippen, 1990) 

Normalized Difference 
Vegetation Index 

(NDVI) 
 

(𝑵𝑰𝑹	 − 	𝑹𝑬𝑫)	
(𝑵𝑰𝑹	 + 	𝑹𝑬𝑫)

 
(𝑩𝟖 − 𝑩𝟒)	
(𝑩𝟖 + 𝑩𝟒)

 (Tucker, 1979) 

Modified Soil Adjusted 
Vegetation Index 

(MSAVI)  
 

(𝑵𝑰𝑹 − 𝑹𝑬𝑫) ∗ (𝟏 + 𝑳)	
(𝑵𝑰𝑹 + 𝑹𝑬𝑫 + 𝑳)	

 

where: L = 𝟏 − 𝟐∗𝒔∗(𝑵𝑰𝑹=𝑹𝑬𝑫)∗(𝑵𝑰𝑹=𝒔∗𝑹𝑬𝑫)
(𝑵𝑰𝑹J𝑹𝑬𝑫)

 
 

(𝑩𝟖 − 	𝑩𝟒) ∗ (𝟏	 + 	𝑳)
(𝑩𝟖	 + 	𝑩𝟒	 + 	𝑳)	

 

where: L = 1 - 2 * s * NDVI * WDVI and 
s =0.5 

 

(Qi et al., 1994) 

Transformed 
Normalized Difference 

Vegetation Index 
(TNDVI) 

 

KL
(𝑵𝑰𝑹 − 𝑹𝑬𝑫)
(𝑵𝑰𝑹 + 𝑹𝑬𝑫)

+ 𝟎. 𝟓M KN
(𝑩𝟖 − 	𝑩𝟒)
(𝑩𝟖	 + 	𝑩𝟒)

+ 𝟎. 𝟓O (Deering, 1975) 

Green Normalized 
Difference Vegetation 

Index (GNDVI) 
 

(𝑵𝑰𝑹 − 𝑮𝑹𝑬𝑬𝑵)
(𝑵𝑰𝑹 + 𝑮𝑹𝑬𝑬𝑵)

 
(𝑩𝟕	 − 	𝑩𝟑)
(𝑩𝟕	 + 	𝑩𝟑)

 (Gitelson & Merzlyak, 
1998) 

Inverted Red-Edge 
Chlorophyll Index 

(IRECI) 
 

(𝑵𝑰𝑹	 − 	𝑹𝑬𝑫)
(𝑹𝑬𝟏/𝑹𝑬𝟐)

 
(𝑩𝟕	 − 	𝑩𝟒)
(𝑩𝟓	/	𝑩𝟔)

 (Frampton et al., 2013) 

Global Environmental 
Monitoring Index 

(GEMI) 
 

ή*(1 – 0.25*ή) – [(𝑹𝑬𝑫	–	𝟎.𝟏𝟐𝟓)	
	(𝟏=𝑹𝑬𝑫)

 

where ή = [𝟐∗(𝑵𝑰𝑹²	=	𝑹𝑬𝑫²)	J	𝟏.𝟓∗𝑵𝑰𝑹	J	𝟎.𝟓∗𝑹𝑬𝑫]
(𝑵𝑰𝑹	J	𝑹𝑬𝑫	J	𝟎.𝟓)

 

ή*(1 – 0.25*ή) – (𝑩𝟒	–	𝟎.𝟏𝟐𝟓)	
	(𝟏	–	𝑩𝟒)

 

where ή = [𝟐∗(𝑩𝟖𝑨²	=	𝑩𝟒²)	J	𝟏.𝟓∗𝑩𝟖𝑨	J	𝟎.𝟓∗𝑩𝟒]
(𝑩𝟖𝑨	J	𝑩𝟒	J	𝟎.𝟓)

 
(Pinty & Verstraete, 

1992) 

Normalized Difference 
Index 45 (NDI45)  

 
 

(𝑵𝑰𝑹	 − 	𝑹𝑬𝑫)
(𝑵𝑰𝑹	 + 	𝑹𝑬𝑫)

 

 

(𝑩𝟓	 − 	𝑩𝟒)
(𝑩𝟓	 + 	𝑩𝟒)

 

 
(Delegido et al., 2011) 

Perpendicular 
Vegetation Index (PVI) 

 
TUr𝑮𝒊𝒓,𝒔 − 𝑷𝒊𝒓Z

𝟐 + Ur𝑮𝒓,𝒔 − 𝑷𝒓Z
𝟐 

sin(a) *B8 - cos(a) * B4 
where a = 45° 

 
(Richardson & Wiegand, 

1977) 
Difference Vegetation 

Index (DVI) 
 

NIR – RED B8 – B4 (Tucker, 1979) 

Pigment Specific 
Simple Ratio (PSSRa) 

 

𝑹𝑬	
𝑹𝑬𝑫

 
𝑩𝟕	
𝑩𝟒

 (Blackburn, 1998) 

Ratio Vegetation Index 
(RVI) 

 

𝑵𝑰𝑹
𝑹𝑬𝑫

 
𝑩𝟖
𝑩𝟒

 (Pearson & Miller, 1972) 

Weighted Difference 
Vegetation Index 

(WDVI) 
 

NIR - S * RED 
 

B8 - S * B4 
Where S = 0.5 (Clevers, 1989) 

Transformed Soil 
Adjusted Vegetation 

Index 
(TSAVI) 

 

([𝑨	(𝑵𝑰𝑹	– 	𝑨 ∗ 𝑹𝑬𝑫	– 	𝑩)]	)/(	[𝑨 ∗ 𝑵𝑰𝑹	 +
	𝑹𝑬𝑫	–	(𝑨 ∗ 𝑩) 	+ 	𝑿(𝟏 + 𝑨²)])  

𝒔 ∗ ((𝑩𝟖	 − 	𝒔	 ∗ 	𝑩𝟒	 − 	𝒂)	)/((𝒂	 ∗ 	𝑩𝟖	 +
	𝑩𝟒	 − 	𝒂	 ∗ 	𝒔	 + 	𝑿	 ∗ (	𝟏	 + 	𝒔	 ∗ 	𝒔	)))  

Where 𝒂 = 0.5; s = 0.5;  
X = 0.08 

(Baret et al., 1989) 

Sentinel-2 Red-Edge 
Position (S2REP) 

 𝟕𝟎𝟓 + 𝟑𝟓 ∗
N𝒑𝟕𝟖𝟑 + 𝒑𝟔𝟔𝟓𝟐 O − 𝒑𝟕𝟎𝟓

𝒑𝟕𝟒𝟎 − 𝒑𝟕𝟎𝟓
 𝟕𝟎𝟓 + 𝟑𝟓 ∗

^𝑩𝟒	 + 	𝑩𝟕
𝟐 _ − 𝑩𝟓

(𝑩𝟔	 − 	𝑩𝟓)
 (Frampton et al., 2013) 

Modified Chlorophyll 
Absorption Ratio Index 

(MCARI) 
 

	`
(𝑹𝑬	 − 	𝑹𝑬𝑫)	 − 	
𝟎. 𝟐(𝑹𝑬	 − 	𝑮𝑹𝑬𝑬𝑵)a 	 ∗ 𝑹𝑬/𝑹𝑬𝑫  

	[(𝑩𝟓	 − 	𝑩𝟒) 	− 	𝟎. 𝟐	 ∗	 (𝑩𝟓	 − 	𝑩𝟑)]	 ∗ 𝑩𝟓
𝑩𝟒

  
(Daughtry et al., 2000) 

Enhanced Vegetation 
Index (EVI) 

(𝟐. 𝟓	 ∗ 	 (𝑵𝑰𝑹	 − 	𝑹𝑬𝑫)	)/((𝑵𝑰𝑹	 + 	𝟔 ∗ 𝑹𝑬𝑫	 −
	𝟕. 𝟓 ∗ 𝑩𝑳𝑼𝑬	 + 	𝟏))  

(𝟐. 𝟓	 ∗ 	 (𝑩𝟖 − 𝑩𝟒)	)/((𝑩𝟖 + 𝟔 ∗ 𝑩𝟒 −
𝟕. 𝟓 ∗ 𝑩𝟐 + 𝟏))  (Huete et al., 2002) 

 
Linear regression models were developed for the time series of field measured Kc and the time 
series of each spectral index. R2 and Root Mean Square Error (RMSE) values were calculated 
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for every model.  The Kc –NDVI model developed in this study was compared to other similar 
models from the literature that were developed for cotton (Montgomery et al., 2015) and with a 
general field crop model (Kamble et al., 2013).  In addition, the field measured Kc values, and the 
estimates of Kc -NDVI models were compared with the recommended Kc for cotton in this region 
that is provided by the Israeli Extension Service. 
 

5 Results  
Energy balance closure was analyzed in order to verify the eddy covariance flux measurements 
(Fig. 4).  The 0.99 slope, which represents a nearly perfect closure, and high coefficient of 
determination (R2 = 0.92) between LE+H and Rn-G demonstrate that the eddy covariance fluxes  
were reliable in determining the crop evapotranspiration.  
 

 
Fig. 4. Energy balance closure: the relation between the energy consumed by the canopy (LE+H) and the available energy 

(Rn -G), where LE and H are latent and sensible heat fluxes respectively, Rn is net radiation, and G is soil heat flux.  

 
The mid-late season Kc demonstrates a very similar temporal pattern to NDVI (Fig. 5).  Linear 
regression models between each of the 22 VIs and Kc were derived, and most of these models 
show high correlation between Kc and the Sentinel-2 VIs (Table 2).  These results strengthen the 
case for using VIs as surrogates for Kc.  The three best models (ranked according to RMSE) are 
based on VI composed of bands covering the red and red-edge spectral bands (MTCI, REP, 
S2REP).  Models based on five more indices (ARVI, SAVI, MSAVI2, IPVI, MSAVI) performed 
better in predicting Kc than the popularly used NDVI.  However, despite its hinge on red and red-
edge bands, IRECI, PSSRa, and MCARI did not perform better than NDVI for predicting Kc.  
Comparison of the NDVI model developed in this study with models from the literature (Kamble 
et al., 2013; Montgomery et al., 2015) shows an increase of about one order of magnitude in 
RMSE in the other models (Fig. 6). Even though the Kamble et al. model is a general model 
developed for multiple field crops, and the Montgomery et al. model was developed for cotton, 
both have similar prediction errors and they both over estimate Kc by about 0.2 compared to our 
field measurements, and by 0.04 to 0.36 compared to the standard recommendation by the Israeli 
Extension Service (Fig. 7).  The Israeli Extension Service recommendation was higher than the 
measured Kc for most of the time, except for one point at the end of the season (Fig. 7).  
Therefore, following the standard Israeli Extension Service Kc table recommendations, the 
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Montgomery et al. (2015) model or the Kamble et al. (2013) model would lead to excess irrigation. 
 

 
Fig. 5: The temporal trajectory of NDVI from seven Sentinel-2 images and Kc based on Eddy Covariance (EC), EC and 

Surface Renewal (EC, SR), and EC, SR and Heat-Pulse (EC, SR, HP) methods.  The combination of all three methods (EC, 
SR, HP) produced the most continuous time series, and therefore it was used to model Kc.  

 
Table 2:  The R2 and RMSE of  Linear Kc – Vegetation Index regression models, ranked according to RMSE. 

Index R² RMSE 
MTCI 0.9915 0.0079 
REIP 0.9942 0.0125 

S2REP 0.9942 0.0134 

ARVI 0.9582 0.0175 

SAVI 0.9576 0.0176 

MSAVI2 0.952 0.0188 

IPVI 0.9493 0.0193 

MSAVI 0.9492 0.0193 

NDVI 0.9491 0.0193 

TNDVI 0.949 0.0193 

GNDVI 0.9484 0.0194 

IRECI 0.9408 0.0208 

GEMI 0.9372 0.0214 

EVI 0.9206 0.0241 

NDI45 0.91 0.0257 
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PVI 0.896 0.0276 

DVI 0.8959 0.0276 

PSSRa 0.8902 0.0284 

RVI 0.8843 0.0291 

WDVI 0.8178 0.0365 

TSAVI 0.7673 0.0413 

MCARI 0.3199 0.0706 

NDVI (Kamble et al.)  0.1969 

NDVI (Montgomery et al.)  0.2118 

 

 
Fig. 6: Comparison of Kc – NDVI regression models (Kamble et al., 2013; Montgomery et al., 2015) with the model 

developed in this study.  
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Fig. 7: Field measured Kc for cotton in this study, and the standard Kc recommendation by the Israeli Extension Service 

(IES) for cotton growers in this region compared to estimates according to three Kc – NDVI models: (a) The model 
developed in this study; (b) Kamble et al. (2013); (c) Montgomery et al. (2015). 

 
6 Discussion 

Our results suggest that most VIs that are based on Sentinel-2 bands are suitable predictors for 
cotton Kc, and that those based on the red and red-edge spectral bands (MTCI, REP, and S2REP) 
are the best ones.  In contrast to previous studies that mostly used VIs based on red and NIR 
bands (NDVI, SAVI, etc.) to model Kc, our study suggests that we can now develop more accurate 
models using the new Sentinel-2 compared to previous sensors (e.g. Landsat).  This result is in 
agreement with previous studies that showed that red edge based VIs correlate better with 
chlorophyll content and LAI (Viña et al., 2011; Frampton et al., 2013; Nguy-Robertson et al., 
2014).  Therefore, it is not surprising that these indices exhibited the highest correlations with our 
field measured Kc.   
Our Kc estimation models for cotton were different from the standard Kc recommendations by 
IES, and different from literature Kc estimates based on VI – NDVI models. This suggests that Kc 
–VI models are specific to local conditions and accordingly, their development and application 
should be crop and region specific to achieve the best Kc estimation.  Therefore, published Kc – 
VI models should be very carefully adapted for use in different settings than the ones they were 
developed in.  
Our field measurements were carried out during the mid-late stages of the growing season.  This 
can explain the extremely high correlation we found for some Kc –VI models. Peaks in evaporation 
following irrigation or rain events, and the sensitivity of some VIs to the soil top-layer wetness, 
usually result with lower Kc –VI correlations at the beginning of the season when the vegetation 
is sparse, and higher at the end of the season since the vegetation, even senescent, is limiting 
soil evaporation (e.g. Duchemin et al., 2006).  Thus, the models presented in this paper still 
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require further testing and possibly adaptations to extend their application to the entire growing 
season.  In a future study, we intend to perform eddy covariance measurements throughout the 
growing season to validate and improve the models developed in this study.  In addition, Kc 
estimates are based on an assumption that the commercial field where the experiment took place 
was well watered, which is the common practice of cotton growers in this region, and indeed, the 
irrigation (Fig. 2) was consistently higher than the field measurements of crop evapotranspiration.  
The reason for this assumption is that Kc –VI models based on optical remote sensing data do 
not allow estimating actual evapotranspiration but provide a maximal value that would be 
observed if water were readily available in the soil (Duchemin et al., 2006).  Therefore, at this 
stage, the present remote-sensing based Kc estimates may prove inaccurate for a water stressed 
crop.  
While our study was conducted during the summer of 2016, when data from only Sentinel-2A was 
available, nowadays Sentinel-2B is already in orbit and operational.  Thus, for future studies, the 
technique demonstrated in this paper can be applied at double the temporal resolution.  Even with 
only Sentinel-2A at our disposal, we were able to obtain seven clear images during the mid-late 
growing season.  Unlike other studies that interpolated the VI time series between satellite image 
acquisition to compensate for the low temporal resolution of imagery (e.g. Duchemin et al., 2006), 
we did not perform any interpolation and relied solely on actual Sentinel-2 measurements to 
ensure that the model is calibrated using actual field measurements.  Since our field 
measurements were not entirely continuous, we did not measure ETc on every day, and as a 
result, our models are based on only five out of the seven available images.  
Together, Sentinel-2A and Sentinel-2B offer better revisit time (5 days vs. 16 days), and better 
spatial resolution (10 m vs. 30 m), compared to Landsat-8.  However, Landsat-8’s Thermal 
Infrared Sensor (TIRS) does provide information on the land surface temperature (Rozenstein et 
al., 2014) that is not available from Sentinel-2, and therefore, in the context of modeling 
evapotranspiration, Landsat-8 is still extremely valuable (Senay et al., 2016).  Moreover, the 
Harmonized Landsat/Sentinel-2 data set that is currently under development (Masek et al., 2015; 
Flood, 2017) can further improve the revisit time at the expense of spatial resolution (the 
harmonized product resolution is 30 m) and the loss of red edge based indices since Landsat-8 
Operational Land Imager (OLI) does not include red-edge bands. 

7 Conclusion 
Sentinel-2 is superior to older generations of public domain satellite data in terms of spatial, 
temporal and spectral resolutions.  This allows, for the first time, to estimate Kc, an important 
parameter for irrigation management, at a high frequency that can support irrigation decisions, at 
a fine spatial resolution of 10 m that well captures within field variability, and at higher accuracy 
than before, owing to the sensor’s unique spectral bands that cover the red-edge region.  
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