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Abstract.  
Reliable land cover or habitat maps are an important component of any long-term landscape planning initiatives 
relying on current and past land use. Particularly in regions where sustainable management of natural resources 
is a goal, high spatial resolution habitat maps over large areas will give guidance in land-use management. We 
propose a computational approach to identify habitats based on the automated analysis of overhead imagery. 
Ultimately, this approach could be used to assist experts, policy and decision makers who promote sustainable 
agroecology by evaluating habitat services and prioritizing land uses. 

The overall objective of our project is to classify the evolution of land usage since the advent of aerial imagery. 
In this paper, our goal is to bring automatic habitat classification to the level achieved by a human expert 
performing a high spatial resolution classification. This classification consists in identifying habitats such as 
hedges, lakes, fields, pastures or forests. Therefore, we train a machine vision algorithm to segment an overhead 
imagery into a dozen of expert-specified land use classes. Relying on the recent developments in machine 
learning, and in particular deep learning, the best machine vision model appears to be convolutional neural 
networks (e.g. SegNet, DeepLab). 

The training was performed using data from a hand-labelled high-resolution (0.5m/pixel) database around the 
Orne River (Moselle, France – 2000km²). Aerial orthophoto are available for two time periods: 2015 and 1955. In 
addition, we also generated artificial 1955 data from 2015 imagery and used them as learning base for the 1955 
imagery as the data available in 2015 provides more quantity and more diversity. 

The paper highlights the performances of these state-of- the-art machine learning algorithms for land use 
recognition and segmentation. It shows their potential in the context of studies in environment sciences and 
environmental decisions. The automatic approach presents an alternative for detailed and accurate land cover 
maps acquired manually, which are labor intensive and time consuming. 

The paper also illustrates the potential benefits of generating artificial imagery to pre-train the machine vision 
model and requires less annotated data. This approach may prove useful for time periods where there is few 
labeled data. 
Keywords. pixel-wise classification, deep learning, environment monitoring, conservation ecology 
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Introduction 

Land classification is used in many applications that need to monitor the land state and its 
changes such as environment monitoring, agriculture and town planning. For instance, urban 
master plans rely on the evolution of such classification maps to assess the ecological impact and 
the global carbon budget of new town projects. These maps are usually built from aerial or satellite 
images which a human expert annotates with the land category such as meadows, fields, hedges. 
This task is tedious and prone to ambiguities even for geomatics specialists given the image high 
resolution of up to 10cm/pixel and the expert hand and eye precision. Furthermore, it is very time 
consuming: our human expert takes about 48 hours to annotate an aerial image of 4 square 
kilometers at 50 centimeters per pixel resolution. 
An alternative is to use machine vision to automate this task. There is wide literature on the 
automatization of land map classification reviewed by Ma, L. et al (2017). Our method differs in 
that it can process images at the highest current resolution of 50 cm per pixel (Madden, M. 2009), 
classify at least 15 land categories against up to 11 categories for most of the state-of-art (Ma, L. 
et al 2017). Also, it uses the most recent machine vision techniques involving Deep Convolutional 
Neural Network (DCNN) which only needs RGB images contrary to state-of-the-art methods that 
rely on multi-spectral images. Recent works (Sherrah, J. (2016)., Scott, G. J. et al. (2017), Liu, T., 
and Abd-Elrahman, A. (2018)) have proven the performance of DCNN for land classification. We 
extend it to cover more land categories with category definitions that not only depend on their 
visual appearance but also on the town plan definitions. 

   
Fig 1.  An example of classification map autonomously generated by a deep convolutional neural network.  

Top-down: photointerpreter work or expert classification, input image, DCNN output 
Map legend: (constructed areas: green), (surface waters: black), (Heatlands and scrub: orange), (grassland: blue), (arable 

land: purple), (broadleaved trees: cyan) 

Most of the state-of-the-art for land classification uses multi-spectral images to manually compute 
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discriminative features such as NDVI between land categories (Bhandari, A. K. et al. 2012). Such 
features capture chemical and biological properties which are then used to discriminate between 
different vegetation species (Yu, Q. et al. 2006). However, these features can also introduce 
variability when they should not. The image surveys of a given area with different climatic 
conditions will have different feature maps. For example, the near infrared feature map of the 
same area before and after rain changes a lot. The use of DCNN solves several issues regarding 
multi-spectral images. First, the DCNN autonomously learns the relevant features to discriminate 
between given classes so there is no need to manually compute features from spectral images. 
Also, our experiments show that RGB channel images are enough for the network to discriminate 
between classes, so data acquisition can be done with a common vision camera. This also implies 
that DCNN classification can be used on images acquired before the launch of monitoring 
satellites. This make DCNN agnostic to the image acquisition method as most modern images 
have at least RGB channels. We show that the performance of the DCNN does not depend on 
the data acquisition method by running experiment on data acquired in 2015 and data acquired 
in 1955. Another advantage of RGB images is that they cost less to acquire than multi-spectral 
images, which solves one the challenge for airborne land monitoring.  
The type of sensor data required for land classification is another challenge faced by airborne 
surveying. Recent works (Bryson, M. et al. 2010, Hung, C. et al. 2014) aims at replacing the data 
usually collected with satellite imagery with data collected with UAVs. However, multi-spectral 
sensors are typically used in satellite and the associate cost is high compared to common vision 
camera. Since our method only requires RGB images, the satellite image acquisition can be 
replaced with UAV surveying. This reduces the data acquisition cost and simplifies the collection 
of high resolution images. However, for this paper, we follow the guidelines of Franklin, S. E and 
Wulder, M. A. (2002) and rely on a regional geomatics partner (IGN 2016) who provides rectified 
and aligned images through time. The images are recorded with a plane equipped with a camera 
which technology depends on the years. The image acquisition and processing method is further 
described in the next section. 
Previous work on autonomous land classification relied on classic machine learning methods such 
as random forests (Rodriguez-Galiano et al. 2007) and support vector machines (Huang, C. et al. 
2002). Even though these methods can classify many categories with good accuracy, they rely 
on hand-crafted features computed from the multi-spectral images. DCNN bypasses this step by 
autonomously learning features only from RGB images. Also, at the time of this writing, state-of-
the-art performance for most machine vision problems are achieved by DCNN.  Scott et al. 2017 
uses DCNN to classify the aerial image of the UCM dataset (Yang, Y. and Newsam, S (2010)) 
which are made of some land categories but also of object classes such as airplanes, buildings 
or parking lots. These categories differ from ours as described in the next section. One challenge 
of our dataset is that some categories are more difficult to discriminate than others: for example, 
it is easier to distinguish coniferous trees from constructed sites than from broadleaved trees. 
Another challenge is that some categories have a very sparse pixel distribution such as riparian 
groves. Also, the category definition not only relies on its visual appearance but also on definition 
set by town-planners. For example, a group of trees may be classified either as a chopping area, 
a broadleaved tree forest or a coniferous tree forest. To the author's knowledge, this is the first 
work that uses state-of-the-art DCNN for agricultural land classification with such refined category 
definition.  

Methods and material 

Data collection 
The images are collected above the Orne watershed in the Grand Est region which covers 
1200 𝑘𝑘𝑚𝑚2  in the north east of France. It is made of two main type of lands: a clay basin of the 
Woëvre with mainly cultures and forests, and a lime plateau of the Pays-Haut region with many 
cities and extraction sites. (French national Institute of Geographical and forestry Information 
(IGN)) surveys the region regularly and provided us with the 1955 and 2015 datasets. They are 
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made of 10.000x10.000 pixels ortho-images: this means that the terrain elevation is artificially 
removed. 2015 images were acquired with a plane equipped with a multi-spectral camera. For 
each image, we are provided with red, green, blue and near-infrared channels even though DCNN 
can classify land maps only with RGB channels. The pictures from 1955 are analog black and 
white photography that have been digitized and corrected. This yields a similar resolution as the 
2015 images but the images are blurry, and a typical analog photography grain can be seen. Also, 
the contrast and luminosity of the images are poor, and they contain large artifacts.  
“Hand-made” mapping 
Using geographic information system (GIS) software, we produced a land-use map based on the 
interpretation of ortho-images. Areal units were delineated, with a minimum mapping unit of 
2500 𝑚𝑚2. Linear elements such as roads, rivers and vegetation features were delineated when 
their width was greater than 4 m. Linear elements of woody nature, such as hedgerows, were 
also mapped when they were wider than 10 m.  
The classification methodology followed a hierarchical interpretation key with 6 main classes: built 
areas, agricultural lands, moor and bushes, forest areas, and hydrographical areas. All the 
classes were declined in subclasses with up to 4 hierarchical levels. Each class was described 
by supporting text and images. The key was built to study the impact of land use on water quality 
and therefore, it was focused on classes of wetland. For example, it included classes such as 
hems and riparian groves. A total of 25 classes were retained. In addition to the images, we also 
used water network maps (Sandre 2018), forest maps (IGN forest 2018), culture maps (IGN RPG 
2018) and Google Street View to better classify the units.  
The nomenclature of the units was inspired by the EUNIS habitat classification (LOUVEL, Justine 
and GAUDILLAT, Vincent 2013), which is a pan-European system describing habitats across 
Europe. This system complies with the European Environment Agency guidelines. 
In average, it took 8 hours to annotate a 10 000x10 000 images with a resolution of 50 cm per 
pixel. 

Data processing 
Our objective is for the DCNN to classify even the smallest scale land elements, so it must be 
able to detect small details such as hedges, transportation infrastructures and rivers. These 
details can be extremely narrow with a width of less than 2 meters. The DCNN must also find 
much larger structures such as quarries, or commercial centers, which can easily exceed 
hundreds of meters in size. So we chose to keep the original resolution of the provided images of 
50 centimeters per pixel so as to allow the DCNN to detect small enough objects in the image. 
The size of the images fed to the DCNN is set to 300x300 pixels as it seems to be the best tradeoff 
between images small enough to fit on the GPU RAM and large enough to have a sufficient field 
of view. 
Some of these 25 originals classes show visual similarity and the only thing that discriminates 
them is their direct neighboring environment. Therefore, we aggregate some of the classes. Some 
classes are a combination of two classes: mixed trees are a mix of coniferous and deciduous 
trees.  Such classes are removed from the dataset and their occurrences are blanked so that they 
do not confuse the networks as they are a combination of multiple classes. Other classes, such 
as gardens and sport infrastructures are removed and blanked as they also confuse the DCNN 
due to their poor representation and similarity with other classes such as meadows. In the end 
the datasets used to train the DCNN has a total of 14 classes (Table 1). 

 

 

 

Table 1: Class categories 
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0 Littoral zone of inland surface waterbodies 7 Coniferous woodland 

1 Surface standing waters 8 Tree farms 

2 Constructed areas 9 Fruit orchards 

3 Extractive industrial sites 10 Riparian vegetation 

4 Grasslands 11 Heathlands, scrub and tundra 

5 Arable lands 12 Chopping areas 

6 Broadleaved woodland 13 Vineyards 

  
The datasets are not originally intended to be used as a learning base. As such, the distribution 
of pixels per classes contained in the whole datasets is extremely heterogeneous. We overcome 
this issue with data augmentation. In our case, the scale of the images never changes, the quality 
of the images is always the same and the parameters used to take the pictures are invariant. This 
means that augmentation techniques that take part of the images, such as crops, are not relevant. 
Techniques that relies on saturation changes, image and color distortion cannot be applied. This 
leaves us (Wang, J., & Perez, L.) with isometric transformations such as rotations, translations or 
image flips. However, translations are not used as they would require masking. The remaining 
transformations keep the image visually unaltered while making them different for the network as 
they cannot be made using combinations of linear operations.  We use an online optimization 
process to select which image to augment. It minimizes a cost function based on the variance in 
pixel per class distribution in the whole dataset. If an image is suitable for augmentation, the 
process will augment it till it is no longer suitable, or if it runs out of transformations to apply. The 
results can be found in Table 2, as can be observed, the overall distribution is more 
homogeneous. This result is achieved with a maximum of seven transformations applicable by 
the algorithm. The more operations available, the better the result. 

Table 2: Class distribution in the 1955 dataset before and after augmentation. 

 Class distribution 

Before augmentation (%) 1.2 1.1 1.7 0.3 41.7 42.3 4.1 1.3 0 3.3 0.3 2.1 

After augmentation (%) 4.0 4.1 8.2 1.1 27.5 26.9 10 4.8 0 7.0 0.5 5.4 

The augmentation process is applied on both the 2015 dataset and the 1955 dataset. As 
mentioned earlier, the pictures from 1955 are analog black and white photography that have been 
digitized and corrected. They yields a similar resolution to the one of 2015. However, the details 
are not as sharp: they are slightly blurred, and a typical analog photography grain can be seen. 
Also, the contrast and luminosity of the image is poor. Figure 2 illustrates those issues: the edges 
of the houses are hardly distinguishable from roads because of the poor contrast, the textures in 
the trees are completely blurred, and the grain can be seen in the meadows and fields. In some 
cases, rare artifacts can be found. These images are taken in grey scale and the digitized version 
covers 255 levels of grey. 

https://eunis.eea.europa.eu/habitats/268
https://eunis.eea.europa.eu/habitats/66
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Fig 2. Difference between 1955 images and 2015. 

The generation of the datasets are made by manually selecting some large labeled images 
(10000x10000pixels) for the validation set and leaving the rest to the training set. Once those 
images were selected, an algorithm extracts learning data by taking patches of 300x300 pixels 
images in the large images of 10000x10000pixels striding from left to right, top to bottom by 150 
pixels.  
 
Classification  
State of the art performance in dense classification is achieved with Deep Convolutional Neural 
Networks. DeepLab (Chen, L. C. et al. 2018) and SegNet (Badrinarayanan, V. et al. 2017) are 
two specific network architectures that show the best performances on indoor and outdoor scene 
dense classification. This section describes the specifics of each architecture and how to 
generalize them for ortho-image dense classification. The training method is invariant to the 
choice of the network architecture.  
A DCNN is a stack of convolutional filters that can be seen as visual filters which each reacts to 
some specific feature of the images. Rather than hand-crafting the relevant image features for 
the classification and the corresponding filter, the DCNN autonomously learns the relevant filters 
to compute the features that best discriminates the land categories. DeepLab and SegNet are 
originally trained on two bench datasets of indoor and outdoor scenes PASCAL VOC12 
(Everingham, M. Et al. 2010) and CityScapes (Cordts, M. et al. 2016). They prove to generalize 
well to ortho-image classification. DeepLab and SegNet outstanding performances rely on specific 
arrangement of convolutional filters which are described next. 
Network Architectures 

DeepLab is originally made of three parallel Resnet (He, K. et al. 2016) which each process a 
scaled version of the input image. The scaled outputs are then fused to produce the final result: 
this allows the network to decide how much attention to pay to features at different positions and 
scales (Chen, L. C et al. 2016). Resnet uses skip connections between feature maps: this has 
the advantage to better propagate the information along the network even when there is a high 
number of filters: the deeper the network, the more complex filters it can build. Given the 
complexity of the category definition, we chose a Resnet made of 101 convolutional filters. 
Another specificity of DeepLab is the use of atrous convolution and spatial pyramid pooling that 
allow the filters to have larger field of view. This is especially relevant to the land classification 



   
 

Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada   Page 7 

dataset as the definition of a category may depend on the neighboring category: for example, 
riparian groves are always along water. The network also uses Conditional Random Fields 
(Krähenbühl, P. and Koltun, V. (2011)) to smoothen the classification around category 
boundaries.  
All DeepLab specifics are used except the multi-scale processing. In the specific case of land 
classification of aerial images, it is better to keep the image elements at their original dimension 
as it may induce confusion for the network. For example, a zoomed-in bush may be misclassified 
as a broad leave tree. Also, this brings a threefold reduction of the size of the network: the network 
needs only 3GB of RAM instead of 8GB.  
The second DCNN we are considering – SegNet – is made of less layers but has an encoder-
decoder architecture: the encoder is the part of the network that builds a semantic representation 
of the image in a low spatial dimensional space and the decoder is the part that projects this 
representation back into the image space. The encoder is made of stack of convolutional filters 
interleaved with max-pooling layers that can be seen as a high-pass filter: the feature maps go 
through that layer and only the features with the highest values are kept whereas the one with 
lower values are discarded. This allows building a feature representation of the image in a lower 
dimensional space than the image. It also increases the field of view of the features maps: one 
pixel of a feature map now holds information about its location and the location of its neighbor. 
This can be seen as the counterpart of the atrous convolution and spatial pyramidal pooling of 
DeepLab. To build the classification map, the decoder projects this semantic representation back 
into the image space. The dimension is augmented with unpooling layers, which are the inverse 
of the encoder pooling layer, and the projection is learned with convolutional layers.  
Loss optimization 
Instead of optimizing a classic cross-entropy loss as DeepLab does, SegNet minimizes a sum of 
weighted cross-entropy loss per class to account for the unbalanced distribution of pixel in one 
image. For example, let 𝑋𝑋1 and 𝑋𝑋2 be two images of 100 pixels with the following category 
distribution (Table 3). Let us say that the network has poor performance at classifying vineyards 
and misclassify all the pixels in that category with a penalty of 1 per misclassified pixel. With the 
classic loss, the network is optimized differently depending on the image distribution it is given: 
given the first image, the loss is only 10 so the network may think it is performing well. Given the 
second image, the loss becomes 90 so it knows that it must improve to better classify vineyards. 
The weighted loss is the same for both images which makes the optimization agnostic to the 
image distribution and only to the network performance. Whichever the image, the network knows 
that it is misclassifying the vineyard pixels.  

Table 3. Example of weighted loss 

Category Vineyard pixels Chopping areas pixel Loss Weights Weighted loss 

𝑋𝑋1 10 90 10 (5.0, 0.56) 50 = 5.0 * 10 

𝑋𝑋2 90 10 90 (0.56,5.0) 50.4 = 90 * 0.56 

The class weights are computed as follow. Let 𝑝𝑝𝑝𝑝𝑥𝑥𝑐𝑐 the number of pixels for the class c over the 
full dataset and 𝑝𝑝𝑚𝑚𝑐𝑐 be the number of images of height h and width w, with pixels of class c. For 
each class c, we compute the average pixel density per image 𝑑𝑑𝑐𝑐 and store into an array D. Then 
we compute the weight:  

𝑐𝑐 = 𝑝𝑝𝑝𝑝𝑥𝑥𝑐𝑐
𝑝𝑝𝑚𝑚𝑐𝑐 ∗ ℎ ∗ 𝑤𝑤

 (1)  

𝐷𝐷 ≜  [𝑑𝑑𝑐𝑐]𝑐𝑐  (2) 

𝑤𝑤𝑐𝑐 =
𝑚𝑚𝑚𝑚𝑑𝑑𝑝𝑝𝑚𝑚𝑚𝑚(𝐷𝐷)

𝑑𝑑𝑐𝑐
 (3) 

And for one pixel, the weighted loss is  
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𝐿𝐿(𝑥𝑥) =  −  �𝑤𝑤𝑐𝑐  ∗  𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑐𝑐|𝑥𝑥)
𝑐𝑐

  (4) 

Validation method 
Given the ground truth classification map and the network output, we compute two metrics: the 
accuracy and the Jaccard Index also known as mean Intersection Over Union (mIOU).  
For a given class C, let TP be the number of true positive, FP the number of false positive and P 
the total number of pixel of C. The accuracy of class C is defined as  

𝑚𝑚𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

(5) 

The global accuracy is defined as the average of class accuracy. This value indicates how correct 
the model classification the class C (when TP increases) and whether the model confuses other 
classes with C (when FP increases).  

For a given image and a given class C, let 𝐵𝐵𝑔𝑔𝑔𝑔 and 𝐵𝐵 be the ground truth class boundary and the 
predicted one. The mIOU is defined as 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �𝐵𝐵𝑔𝑔𝑔𝑔∩𝐵𝐵�
�𝐵𝐵𝑔𝑔𝑔𝑔∪ 𝐵𝐵�

 (6) 

This value indicates whether the model locates C correctly (𝐵𝐵𝑔𝑔𝑔𝑔  ∩  𝐵𝐵) and whether the location is 
accurate (𝐵𝐵𝑔𝑔𝑔𝑔  ∪ 𝐵𝐵 ). The global mIOU is the average of class mIOU. 

Results and discussions 

Experiments 
The networks are implemented using the Caffe library (Jia, Y. et al. 2014) and the open source 
implementations from the DeepLab and SegNet projects. The evaluation metrics are computed 
using the MATLAB code of DeepLab.  
Each network is trained following the guidelines of its respective paper. Both networks reach 
convergence after 30 000 steps. DeepLab is trained using stochastic gradient descent (SGD) with 
a "poly" learning rate policy which means that the learning rate decreases following the rule: 

𝛼𝛼 ← 𝛼𝛼 ∗   �1 −
𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖

𝑚𝑚𝑚𝑚𝑥𝑥𝑝𝑝𝑔𝑔𝑖𝑖𝑖𝑖
�
𝑝𝑝𝑝𝑝𝑤𝑤𝑖𝑖𝑖𝑖

 (7) 

The initial learning rate 𝑝𝑝𝑖𝑖 2.5 10−4 and𝑝𝑝𝑙𝑙𝑤𝑤𝑚𝑚𝑖𝑖 = 0.9. The gradient is weighted with a weight decay 
of 0.0005 and the SGD momentum is set to 0.9. One gradient step is computed over a batch size 
of 8. The weights are initialized with the weights of the multi-scale Resnet of Chen, L. C. et al. 
2018 trained on PASCAL VOC12.  

SegNet is also trained using SGD but a constant learning rate of 1.10−3 and a batch size of 12. 
The weights are initialized with the weights of the VGG network (Simonyan, K. and Zisserman, A. 
(2014)) trained on the classification of the ImageNet dataset (Deng, J. et al. 2009).  
2015 Results  
Both models have the same performance on the 2015 dataset with a 73% global accuracy. 
DeepLab proves to better locate the class distribution with a 75% mIOU which is 10% higher than 
SegNet.  Figure 3 show the confusion matrix M. This should be read as follows:  M(i,j) is the 
proportion of pixels of class i classified as class j. 



   
 

Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada   Page 9 

Fig 3. Per class accuracy.  
Global accuracy DeepLab: 73% - Global accuracy SegNet: 73% 

Table 4. Per class mIOU on the 2015 dataset. 
Global mIOU DeepLab: 65% - Global mIOU SegNet: 57% 

Model \ Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

DeepLab 79 75 77 39 77 95 92 74 56 46 19 44 73 63 98 
SegNet 78 69 72 35 74 95 89 30 14 30 21 48 69 72 NA 

The individual class accuracies are almost equal for both models except for the coniferous trees 
and the riparian groves. Both network reach accuracies near or above 80% for categories with 
many examples such as the as the constructed habitats (buildings of towns and villages) and 
water category (surface running or standing waters) or with very discriminative features such as 
vineyards. The networks exhibits different classification accuracy for coniferous trees and riparian 
vegetation. DeepLab's accuracy is 50% higher on coniferous woodlands and SegNet is 30% 
higher on riparian vegetation.  

DeepLab confuses riparian vegetation (Riverine and fen scrubs) with grasslands or some cultivated 
agricultural habitats. This can be explained by the fact these classes are visually similar but 
riparian groves are spatially narrow (Figure 4) and the network did not get enough examples of 
this kind of habitats to learn how to differentiate them. Riparian vegetation is one of class with the 
lowest density per image. So, we assume that the cost sensitive loss of SegNet compensates the 
lack of representation per imageby assigning the second highest weight to the riparian vegetation 
class: the network is highly penalized when it misclassifies the riparian vegetation even though it 
sees these examples less than the grassland examples.  
 

 
Fig 4. DeepLab does not learn to recognize riparian vegetation (green) because the pixel distribution is sparse and it 
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doesn't see enough examples. The cost-sensitive loss of SegNet solves this issue. Legend: (riparian vegetation:green), 
(grasslands: blue), (cultivated agricultural habitats: purple), (broadleaved woodland:cyan) 

SegNet's cost-sensitive classification can compensate for unbalanced class pixel distribution but 
shows its limits when the variance of the pixel distributions is too high i.e. when the order of 
magnitude between over-represented and under-represented class is too high. For example, 
coniferous and broadleaved woodlands have similar appearance but there are 21 times more 
images with broadleaved trees than with coniferous ones. One would expect the weight for 
misclassifying coniferous woodlands to be higher than for broadleaved woodlands. However, the 
weight formula of SegNet gives equivalent weights to both classes of 0.58 and 0.63 because they 
have the same average density per image: the trees occupy the same space in an image no 
matter their specie. In this case, the loss penalizes misclassifying each class the same way. Since 
there are more examples of broadleaved trees, the network ends up classifying all trees with a 
similar visual aspect as broadleaved woodland.  We assume that DeepLab can better differentiate 
these classes thanks to its higher representative space: a higher number of layers allows to learn 
more discriminative features than SegNet (Figure 5). This way it learns the features that 
discriminate coniferous trees from broadleaved trees. However, it needs a certain amount of 
example to learn these additional features.  

 
Fig 5. Confusion between broad leaves trees (cyan) and coniferous trees (grey).  

DeepLab better discriminates these two classes than SegNet.  

Identifying land uses is a challenging task for machines, much more than identifying buildings or 
road networks, because it involves understanding context and environments. If we have a deeper 
look into which classes are hard for both architectures to recognize, three classes stands out: the 
heatlands, the waste deposits and extractive sites, and the riparian vegetation. For the heatlands 
it is because they are visually hard to differentiate even for humans. Indeed, GIS experts uses 
much more data than the simple orthophotos, they can rely on the land register or on Google 
Street View to have higher resolution images. This helps them classify the heatlands properly and 
not mistake them with woodlands like the networks do. As for the riparian vegetation, it is most 
probably due to the fact the network has not properly learned the concept which is subtle: riparian 
vegetation can be described as Riversides, lakesides, fens and marshy floodplains dominated by 
woody vegetation less than 5 m high. The waste deposits and extractive sites are problematic for 
the machine for different reasons. First the size of the features: often they are much larger than 
the images fed to the network a quarry can be kilometers large when the network is fed images 
with a scale of the 150 meters. Then there is the extreme diversity of those sites, indeed inside a 
quarry one can find grass or trees which confuses the network. This shows that the networks 
have difficulties extracting context when fed with small images. This phenomenon is illustrated in 
Figure 6.  Finally, it should be noted that lots of the classification errors happen because both 
network did not manage to learn the minimal collection area: the minimal collection is the smallest 
surface that a land feature must measure to be classified by the expert. 
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Fig 6. The network only sees a small part of the dump site which makes it hard to classify it correctly. 
 (constructed areas: green), (surface waters: black), (Heatlands and scrub: orange), (grassland: blue), (arable land: purple) 
1955 results 
On the smaller 1955 dataset, DeepLab global accuracy reaches 65% of accuracy and 55% of 
mIOU. The network performance decrease of 10% which we consider still satisfying given the fact 
that the 1955 dataset is only half the size of the 2015 dataset. DeepLab training converged with 
the same setting as for the 2015 dataset but SegNet required pre-training to converge.  Once 
again, the performances of both networks are equivalent but this time, the training methods 
differs.  

Fig 7.  Per class accuracy.  
 Global accuracy DeepLab: 65% - Global accuracy SegNet: 63% 

 

Table 5. Per class mIOU on the 1955 dataset. 
Global mIOU DeepLab: 55% 
Global mIOU SegNet: 53% 

Model\Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
DeepLab 51 34 68 49 73 74 90 51 NA 51 11 14 96 NA NA 

SegNet 47 27 67 44 68 66 90 58 NA 54 13 14 98 NA NA 

DeepLab is initialized with weights provided by the authors of (Chen, L. C. et al. 2018), as 
described in section Experiments. It is then trained on the 1955 dataset for 30 000 steps. This 
procedure does not work for SegNet because of the weight distribution for the 1955 dataset. A 
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solution is to pre-train SegNet on a black and white version of 2015 with the weights of the 2015 
dataset, then finetune on the 1955 dataset while keeping the 2015 weights.  

 
Fig 8. The networks reach high performances even when the image is blurry  

(broad leaves trees: cyan), (tree farms: red), (bushes: orange), (meadow: blue), (cultures: purple) 

The 1955 weights prevent the network from converging because their variance is too high: classes 
with high pixel density per image have very low weights (~10-2) and the others have very high 
weights ranging from 1 to 275. This prevents the network from getting a loss consistent with its 
performance: when it misclassifies many pixels from the first category the loss stays low and when 
it misclassifies a few pixels from the second category the loss becomes high. This weight 
distribution can be explained by the fact that the 1955 dataset is very unbalanced: for example, 
there are only 35 images with tree farms. Similarly, to the 2015 dataset, the weight formula of the 
SegNet network cannot handle very unbalanced pixel distributions. We assume that the 2015 
weights allow the network to converge because they are better balanced. Even though the 2015 
and 1955 pixel distributions are not equal, the classes with a high pixel density are the same so 
the 2015 weights still are meaningful for the 1955 dataset.  
This training method for SegNet shows the benefits of using synthetic data to compensate for the 
lack of annotated data. For SegNet, synthetic 1955 data are generated by converting the 2015 
dataset into black and white image. This dataset has a lot more instances than the 1955 one so 
it is easier to train on it. However, such a network cannot be used on the 1955 directly as it needs 
to be fitted to the real 1955 dataset. Table 5 show the performance of SegNet trained only on the 
black and white 2015 dataset and after finetuning on the real 1955 data. The metrics are 
computed on the real 1955 data. 
For both models, a network trained on fake 1955 performs poorly on the real 1955 dataset with 
only 17.12% of accuracy at best with SegNet (Table 6). One of the explication is that the synthetic 
data does not approximate well the 1955 data. Converting the 2015 data into black and white 
images is not enough as there are also variations of saturation and resolution between the two 
datasets. The performance of the models without finetuning can be improved by putting more 
effort in the generation of synthetic data. The transformation between the 2015 dataset and the 
1955 one is mainly color intensity, resolution and saturation changes. This can be qualified as the 
style of the image. Even though it is complex for a human to explicit these transformations and 
their range, a DCNN can learn to project the style of the 1955 images onto the 2015 dataset 
following the work of Johnson, J et al. (2016) (Figure 9). Without finetuning on the real 1955 
dataset, a network trained on the second synthetic dataset reaches up to 23.92% of global 
accuracy against 9.78% with only black and white conversion. After finetuning, the performances 
are higher than when the networks are only trained on 1955 data (Table 6). 
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Fig 9. Comparison of synthetic data. (left to right)  

Top: 2015 data and the conversion to BW. 
Bottom: matching 1955 data and the stylized 2015 data. 

 
Table 6. Global accuracy. 

Left columns: Network trained of on fake 1955 data before finetuning on real 1955 data 
Right columns: Same network after finetuning on real 1955 data 

 Black and white Style 

 Before finetuning (BF) After finetuning (AF) BF AF 

 acc mIOU Acc mIOU acc mIOU acc mIOU 

Segnet 17.12 8.91 63.60 53.90 14.46 8.26 64.28 55.67 

DeepLab 9.78 4.77 67.28 57.33 23.92 12.40 70.37 58.58 

In 1955, the algorithms can no longer rely on color, this makes their job much harder especially 
for the classes with smooth textures such as water and water shore classes. The two classes in 
addition to bushes and riparian groves are the hardest to classify for the network. This can be 
explained by the fact that the network only has a very small field of view and this effect is 
crystalized by the loss of the colors. Here again it is our belief that the algorithms are penalized 
by the dimensions of the input images. Larger input or different input should be investigated. 

Conclusions 
All in all, machine learning has delivered impressive results on our land-use classification task, 
even though the dataset that was used to train them was not optimized for machine learning. This 
shows that DCNN can learn from complex data as long as there are discriminative features 
between the land categories. On the 1955 dataset, even if the performances are not as good as 



   
 

Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada   Page 14 

in 2015, the results are still satisfying enough showing that even with less information (1 channel 
instead of 3) the networks are able to recognize most classes easily. 
As was demonstrated in the result section, off-the-shelves auto-encoders can reach high 
accuracy on large datasets without modifications. They are not only accurate but also dramatically 
quick. Once trained, our model can label 15 land categories within 25 square kilometers with a 
50cm per pixels resolution in 15 minutes. In comparison, it took our GIS expert 3 working days to 
label 25 the same area. Even though, our model classifies fewer categories, it speeds up the 
classification process. Also, it only needs to be trained once and can be used on any new ortho-
imagery sampled with the same camera. Our method is much more cost-efficient since the GPU 
we use is worth about 600 euros and cloud solutions such as AWS EC2 Elastic GPUs cost about 
0.40 euros per hour. This is less than the cost of a GIS expert paid at least 17 euros per hours in 
France.  Using cloud solutions also allows parallelizing the computation which decreases the 
classification time. Furthermore, machines are consistent in the way they label the data.  
However, machine-based labelling lacks the high-level context and is not as accurate as an 
expert, in particular for very rare class occurrences. In its current state, our model can be used 
for computer-aided labelling for GIS expert, making their work more comfortable while helping to 
complete the same task faster. In the future, it would most definitely be interesting to investigate 
ways to provide the network with both high-level context and low-level information so that it can 
perceives the maps like the experts do. Moreover, when creating the dataset, we realized that 
choosing the right period of the year to realize the surveys could increase the overall accuracy of 
the machines. 
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