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Abstract. Machine-learning methods may play an increasing role in the development of precision 
agriculture tools to provide predictive insights in dairy farming operations and to routinely monitor 
the status of dairy cows. In the present study, we explored the use of a machine-learning approach 
to detect and monitor the welfare status of dairy herds in terms of lameness and lesions based 
on pre-recorded farm-based records. Animal-based measurements such as lameness and 
lesions are time-consuming, expensive and, thus, typically not collected on a routine basis. A 
predictive model that is suitable for routine field applications can be thus an efficient strategy to 
improve dairy cattle welfare. A decision tree approach was therefore used to classify the welfare 
status of 229 herds. Single measurements were aggregated to a composite index for lameness 
and lesions, scaled to percentile ranks, and expressed as low, intermediate and high risk that a 
herd be deficient in lameness and lesions. Routinely collected dairy herd improvement data 
related to milk production, milk quality, herd size, housing and reproduction were used as potential 
predictors of the risk level. Model accuracy based on the average of repeated 10-fold cross 
validation suggests that a simple decision tree algorithm was able to predict welfare level with a 
mean accuracy of 44%. Ensemble methods such as random forests and boosting methods slightly 
improved the prediction performance to some extent (up to 51% accuracy). Model specificity for 
herds at high welfare risk was 91% with a boosting approach, suggesting that only a small 
proportion of lower risk herds were misclassified as high risk herds. These results suggest that a 
model based on a machine-learning approach is able to detect herds with potential welfare 
deficiencies using routine herd data. Additional data are required to improve model performance 
and validate the approach. Nonetheless, a machine-learning approach may be an appropriate 
and powerful tool to estimate and monitor the dairy welfare status at herd level, and can be a 
useful decision support tool for dairy farmers.  
Keywords. Precision monitoring, dairy herd improvement, routine herd data, animal welfare, 



 

Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 2 

machine learning.  

 
  

The authors are solely responsible for the content of this paper, which is not a refereed publication.. Citation of this work should state that it 
is from the Proceedings of the 14th International Conference on Precision Agriculture. EXAMPLE: Lastname, A. B. & Coauthor, C. D. (2018). 
Title of paper. In Proceedings of the 14th International Conference on Precision Agriculture (unpaginated, online). Monticello, IL: International 
Society of Precision Agriculture.  



 

Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 3 

 

Introduction 
Dairy farming systems are gradually adopting precision dairy monitoring technologies to improve 
production efficiency and improve early detection of diseases. Furthermore, modern dairy farming 
heavily relies on the collection of a large volume and variety of data at cow and herd levels, which, 
often, are stored in central databases. These relatively large and complex databases typically 
comprise data of several thousand herds and include routinely collected farm-based data related 
to identification and registration, milk quality, productivity, and reproduction.  
Traditional statistical methods often perform poorly with prediction and classification in large 
datasets (Heald et al., 2000), such as farm-based records that typically contain noisy and 
imbalanced information, and are often not complete. An artificial intelligence approach with 
machine-learning algorithms may be thus more suitable for modeling routine herd data. Machine-
learning algorithms are generally capable of better handling non-linear relationships and 
interactions between input variables. Such an approach may also be implemented and automated 
in a practical setting within a central dairy record system to create alerts. Moreover, as the volume 
and complexity of recorded farm data is growing, especially with the use of new data loggers to 
monitor cow behaviour and physiology, machine-learning methods are increasingly becoming 
interesting to analyze routine herd data and automatically predict outcomes (Morota et al., 2018).  
In the present study, a decision tree approach was used as it is particularly well suited for 
classification problems and is generally a useful tool for computerized decision support systems 
(Quinlan, 1986; Freund and Mason, 1999). With this approach, a tree-like structure with a 
collection of rules is generated with leaves representing the classes that individual observations 
are associated with. Due to their structure and easily interpretable output, decision trees are user 
friendly and may be used as on-farm tools to help producers make management decisions. 
However, a simple decision tree approach is not always considered a particularly robust 
classification method as predictions of a single tree are sensitive to noise in its training set. 
Combining decision tree with bootstrap aggregation and boosting techniques, which create 
multiple trees, may improve detection performance (Breiman, 1996; Freund and Shapire, 1999). 
Moreover, as different machine-learning methods are available, testing various algorithms is 
recommended to verify whether classification results can be further improved (White et al., 2018). 
For this reason, ensemble machine-learning methods based on bootstrap aggregation and 
boosting were applied to investigate whether the predictive performance of a simple decision tree 
can be improved.  
Machine-learning algorithms have been used to detect some common diseases (Yang et al., 
1999; Heald et al., 2000; Cavero et al., 2008; Sun et al., 2010), reproductive performance (Firk et 
al., 2003; Caraviello et al., 2006; Schefers et al., 2010; Grzesiak et al., 2010; Zaborski and 
Grzesiak, 2011; Shahinfar et al., 2014), calving predictions (Borchers et al., 2017), milk yield 
predictions (Lacroix et al., 1995; Grzesiak et al., 2003; Grzesiak et al., 2006), breeding value 
predictions (Shahinfar et al., 2012) in dairy cows, and even management predictions in dairy 
farms (Shine et al., 2018) based on a selection of pre-recorded farm-based data. Although model 
performance in the above-mentioned studies often suffered from the lack of insufficient input 
information, the approach was considered suitable for use in practice. To our knowledge, no 
similar approach integrating artificial intelligence and dairy cattle welfare was applied so far with 
the aim to detect welfare related problems on dairy farms. Because of their high prevalence on 
dairy farms and their long duration of cases (von Keyserlingk and Weary, 2017; Bouffard et al., 
2017), the emphasis was put on detecting potential welfare deficiencies related to lameness and 
body lesions. Collections of these animal-based measures is particularly time-consuming and 
expensive (Vasseur et al., 2015), limiting their collection in routine to assess on-farm welfare. A 
prediction model that allows to remotely detecting cases of lameness and lesions without the need 
of farm visits may be therefore an efficient and promising strategy to improve dairy cattle welfare 
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nationwide.  
In the present study, on-farm animal-based measures pertaining to 229 dairy herds registered in 
the central dairy database were used. The dataset at hand was relatively small compared to 
datasets in previous studies that used machine-learning algorithms. Therefore, the objective of 
this exploratory study was to investigate the potential of a machine-learning approach to remotely 
detect the herd welfare status assessed through lameness and lesions in dairy herds using a 
small set of farm-based records with the aim to develop a decision support tool.  

Material and Methods  

Test population  
The dataset used in this study is based on on-farm animal-based measures collected on 229 dairy 
herds in Ontario (n = 90), Quebec (n = 89) and Alberta (n = 50), Canada, from May 2011 to July 
2012 using criteria and methods described by Vasseur et al. (2015). Measures included the 
prevalence of lameness and lesions to hock, knee and neck (Table 1). Average herd size was 
112 (SD 80.0). Average standardized (305-day fat- and protein corrected) milk yield was 9713 kg 
(SD 855.2 kg). Of the 229 herd in the test population, 100 were housed in tie stalls and 129 in 
free stalls (including 110 herds that were equipped with a milking parlor and 19 with an automatic 
milking system). Routine herd data were extracted for the respective herds from the central dairy 
record of the dairy herd improvement programs (CanWest DHI in Ontario and Alberta; Valacta in 
Quebec) during the year before the farm visit for the animal-based measures collection. The 
extracted routine herd data comprised data relating to identification and registration, herd size, 
housing, milk production, milk quality, and reproduction.  
 

Table 1. On-farm animal-based measures with the respective herd prevalence of the 229 test dairy herds. 

Measurement 
Herd prevalence (%) 

Mean Median SD Min Max N 

Lameness 24.9 22.5 15.97 0.0 84.2 229 

Hock lesions 47.8 48.7 23.21 0.0 95.0 229 

Knee lesions 35.9 30.0 27.03 0.0 100.0 229 

Neck lesions 18.5 7.0 23.63 0.0 100.0 229 

 

Calculations and Statistical Analysis  
Calculations and statistical analyses were conducted in R version 3.4.4 (R Foundation for 
Statistical Computing, Vienna, Austria). On-farm animal-based measures were aggregated to a 
composite index of lameness and lesions to produce an overall assessment of the risk of 
deficiencies across animal-based measurements. The calculation of the composite index was 
based on a linear aggregation by weighting animal-based measures by their contribution to herd 
level welfare status (40%, 25%, 25%, and 10% for lameness and lesions on hocks, knees and 
neck, respectively; based on expert opinion). As the prevalence of the individual animal-based 
measures differed (e.g., larger prevalence for hock and knee lesions as compared to lameness 
and neck lesions; Table 1), the composite index would be affected more by animal-based 
measures with a larger prevalence. Therefore, the weighted animal-based measures used in the 
linear aggregation were adjusted by their median in the test population, as described in equation 
1:  

 𝐶𝐼#$%%& = 	 (𝐿	 × 0.47) + (𝐻	 × 0.09) +	(𝐾	 × 0.14) +	(𝑁	 × 0.30)  (1) 
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where, CI = composite index of lameness and lesions, L = lameness, H = hock lesions, K = knee 
lesions, and N = neck lesions.  

The composite index for lameness and lesions was then scaled to percentile ranks, and risk 
classes were created representing a low (≤ 30%), intermediate (30 > x ≤ 70) and high (> 70%) 
probability of a dairy herd to be potentially deficient in terms of lameness and lesions (Fig 1). The 
three risk classes were chosen as the main objective was to detect various levels of potential 
deficiencies in lameness and lesions. Furthermore, this approach is often used in practice to 
discriminate between high, intermediate, and low performing herds, and is a well-known concept 
by dairy farmers.  
Collinearity was evaluated for each variable using a variance inflation factor (package mctest 1.2; 
Imdadullah et al., 2016), and revealed that the routine herd data were likely not strongly correlated 
to each other (variance inflation factor not exceeding 10; Wooldridge, 2013). Therefore, the entire 
dataset was used to predict dairy herd welfare level.  
 

 
Fig 1. Distribution of the composite index of lameness and lesions with risk classes and respective class size based on 

229 dairy herds (low risk: ≤ 30%; medium risk: between 30% and 70%; high risk: > 70%) 

 

Model Development  
Modeling of the welfare risk level was based on both a simple classification tree and an ensemble 
method, which constructs and combines multiple trees to yield a single consensus prediction. For 
a simple classification tree, the classification and regression tree (CART) algorithm by Breiman 
et al. (1984) based on recursive portioning was used. With this approach a tree-like structure is 
generated with a collection of rules that create branches, where the ends are terminal nodes at 
which point observations are classified into one of the three risk classes. Splitting stops when the 
algorithm detects that no further gain can be made.  
Next to a simple decision tree, ensemble methods based on bootstrap aggregation and boosting 
were used to investigate whether the predictive performance could be improved compared to 
simple decision trees. Bootstrap aggregation repeatedly selects a random sample with 
replacement of the training set and fits multiple trees to these samples (i.e., each tree is shown a 
different training set). The random forest algorithm by Breiman (2001), which implements this 
method but further randomly selects variables to prevent trees from becoming correlated, was 
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used in the present study. Next to it, boosting methods were used as they generally improve 
model accuracy and can be used in conjunction with many other types of machine-learning 
algorithms. This approach is essentially based on creating several simplified trees, each using 
merely a fraction of all available variables. Each successive tree adapts to those classification 
instances where previous trees failed by using a different set of variables. In the present study, 
the adaptive boosting (AdaBoost) algorithm by Freund and Schapire (1999) was applied as it is a 
popular boosting algorithm that can adapt to previous trees. However, this method is sensitive to 
noisy data and outliers (Freund and Mason, 1999; Mason et al., 1999), which are typically found 
in routine herd data. Therefore, another popular boosting algorithm, the gradient boosting 
machine (GBM) algorithm by Friedman (2001) was applied, which may better handle noisy data 
and outliers. Lastly, the extreme gradient boosting (XGBoost) algorithm by Chen and Guestrin 
(2016) was applied as this method was specifically developed to further optimize computational 
resources for gradient boosted tree algorithms and might be, thus, useful for a potential 
implementation in a practical setting within a central dairy record system.  
Models were developed in R version 3.4.4 (R Foundation for Statistical Computing, Vienna, 
Austria), using the modelling wrapper package caret 6.0-79 (Kuhn, 2008). Missing data were 
imputed by predictive mean matching based on the approach described by van Buuren (2012). 
This method constructs matching cases with missing data to similar cases with data present, and 
generally handles well variables that are not normally distributed. Data imputation was done using 
the package mice 2.46.0 (van Buuren and Grootshuis-Oudshoorn, 2011). Extreme values in the  
herd data were removed after visual inspection. Models were prepared and the respective tuning 
parameters were adjusted using 10-fold cross-validation with three iterations. For each iteration, 
a model was prepared using nine splits of the data set, and the model was evaluated on the 
remaining part of the data set (i.e., one split). Model accuracy was estimated based on the 
average of the 10-fold cross validation repeated 3 times, and the accuracy distribution (based on 
30 values) was evaluated. This approach was found useful to analyze results for small data sets 
(Pietersma et al., 2003) as all observations are used for both developing and validating the model, 
and each observation is used for model validation exactly once.  
As one potential application of such a predictive model is the detection and identification of high 
and low performing herds in terms of lameness and lesions, model performance was further 
evaluated by estimating the proportion of correctly identified or correctly rejected herds for each 
of the three risk classes (high, medium, low). For this reason, data were randomly partitioned into 
a train data subset (70% of all data) to prepare models and a test data subset (30%). The risk 
level classes were partitioned similarly among the train and test data subsets (Table 2). However, 
both data sets had a slightly larger number of observations for the medium risk class as compared 
the low and high risk class. Average herd size and milk yield were similar between the train and 
the test data subsets. Likewise, housing systems were similarly partitioned between the subsets 
suggesting that observations were randomly split between the train and test data subsets. Model 
sensitivity and specificity were calculated. In the present study based on a multinomial 
classification, sensitivity represents the percentage of herds correctly identified within the 
respective risk class (e.g. a high risk herd identified as such; equation 2), and specificity 
represents the percentage of herds correctly rejected as not being within the respective risk class 
(e.g. a herd not at high risk identified as such; equation 3:  

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 @A
@AB	CD

  (2) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =	 @D
@DB	CA

  (3) 

where, TP = true positive (i.e., correctly identified case), FP = false positive (i.e., incorrectly 
identified case), TN = true negative (i.e., correctly rejected case), FN = false negative (i.e., 
incorrectly rejected case).  
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Table 2. Number of observations and herd characteristics in the total, training and test data subset.  

Item Total data set 
Subsets 

Train  Test  
Observations 229 162 67 

Observation per risk class1    
Low 69 49 20 

Medium 91 64 27 

High 69 49 20 
Housing system    

Tie stalls 100 70 30 

Free stalls 129 92 37 
Average herd size 112 111 114 

Average standardized milk yield2 9713 9715 9700 
1Risk for lameness and lesions on herd level 
2305-day fat- and protein-corrected milk 

Results and Discussion 
Multiple machine-learning methods based on a decision tree approach were tested to classify the 
welfare status of dairy herds with the focus on lameness and lesions using farm-based records 
related to milk production, milk quality, stock number, housing and reproduction. Model accuracy 
based on the average of the repeated 10-fold cross validation suggests that a simple decision 
tree algorithm (CART) was able to predict welfare level with a mean accuracy of 44% (Fig 2). 
Ensemble methods seem to improve the prediction performance to some extent. A random forest 
algorithm had a mean accuracy of 49%. Boosting seemed to slightly further improve prediction 
performance, in particular using a gradient boosting approach with a mean model accuracy of 
51% for a GBM algorithm. Next to model accuracy, the accuracy distribution should be taken into 
account to evaluate predictive performance of a model. For instance, Fig 2 suggests that 
maximum model accuracy may be as high as 74% for a GBM model. However, the prediction 
outcome is far less variable for a CART and an AdaBoost algorithm. Despite a lower model 
accuracy, an approach by CART or AdaBoost might be thus still of interest in practice as their 
predictive behavior with a future unseen dataset can more reliably estimated.  
The results shown in Fig 2 suggest that the predictive performance of the machine-learning 
algorithms used in the present study was comparable. A pairwise t-test with Bonferroni P-value 
adjustment confirmed that a GBM algorithm had a significantly (P = 0.007) higher model accuracy 
than a CART algorithm, but the model accuracy among all other algorithms was not significantly 
different (P > 0.08). These results suggest that a CART algorithm can be still a powerful approach. 
Vázquez Diosdado et al. (2015) observed that accuracy of the decision tree algorithm matched 
the performance of more computationally intensive algorithms (i.e., hidden Markov models and 
support vector machines) in classifying behavioral activities in dairy cows based on specific 
information from neck-mounted accelerometers.  
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Fig 2. Model accuracy for the tested machine-learning algorithms (GBM: gradient boosting machine; XGBoost: extreme 

gradient boosting; AdaBoost: adaptive boosting; CART: classification and regression tree). Boxplots display the 
respective interquartile range (box), median (solid bullet), minima and maxima (whiskers), and extreme values (empty 

bullet) for accuracy.  

 
It is expected that the prediction performance can be further improved by including a larger variety 
of farm-based records and more informative parameters. For instance, de Vries et al. (2014) 
reported a model accuracy of 72% to 81% for lameness and lesions based on multivariate 
regression but using parameters that were not available in the present study (e.g. heifer udder 
infections, days in milk, grazing management, on-farm mortality for cows after 60 days in milk, 
somatic cell count for cows at various stages of lactation, average service per cow). In the present 
study, the most important variables selected by the algorithms were percentage of culled cows, 
stock number and body weight of lactating cows that appeared in all 5 models, proportion of 
primiparous cows (appeared in 4 models), and milk urea nitrogen content (appeared in 3 models) 
(Table 3). Collection of more specific indicators known to be associated to lameness and lesions 
may further improve model performance. For instance, lying behavior (Ito et al., 2010) and body 
condition score (Solano et al., 2015) were found to be good indicators of lameness in dairy cows. 
However, collection of such animal-based measures are currently not done on routine basis. 
Nonetheless, national initiatives on herd welfare status evaluation (e.g., animal care assessment 
through proAction currently on-going by Dairy Farmers of Canada; Dairy Farmers of Canada, 
2015), and future prospects of animal-based estimates with digital images or activity sensors 
(e.g., body condition scores estimations; Bewley et al., 2008) suggest that there is ample 
opportunities for improving model performance through the collection of more specific animal-
based measures.  
 

Table 3. Variable selection (10 most important variables) used to fit the respective model for welfare risk predictions.  

Algorithm1 Variables 

CART Body weight of lactating cows, stock number, proportion of primiparous cows, housing system, percentage of 
culled cows, milk urea nitrogen content, average calving interval, proportion of lactating cows 

Random forest 
Stock number, body weight of lactating cows, temperament score, proportion of primiparous cows, percentage of 
culled cows, milk urea nitrogen content, percentage of culled cows until 30 days in milk, percentage of sold cows, 
Transition Cow Index, turnover rate for heifers 

AdaBoost Stock number, housing system, body weight of lactating cows, proportion of primiparous cows, percentage of 
culled cows for involuntary reasons, percentage of culled cows, percentage of stillborn calves 

GBM 
Stock number, body weight of lactating cows, temperament score, mortality rate, percentage of culled cows, 
turnover rate, proportion of primiparous cows, milk urea nitrogen content, days until first breeding, percentage of 
stillborn calves 

XGBoost 
Stock number, percentage of culled cows until 30 days in milk, percentage of primiparous cows, body weight of 
lactating cows, temperament score, percentage of culled cows, average calving interval, milk management index, 
days until first breeding, inbreeding coefficient 

1CART: classification and regression tree; AdaBoost: adaptive boosting; GBM: gradient boosting machine; XGBoost: extreme boosting 



 

Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 9 

 
Model performance was further evaluated in terms of sensitivity (i.e., correctly identified herds) 
and specificity (i.e., correctly rejected herds) for each of the three welfare risk classes. As shown 
in Table 2, the proportion of cases available for each class was slightly unbalanced with the 
medium risk class as the majority class. In general, machine-learning algorithms do not cope well 
with unbalanced classifications, and over-sampling and under-sampling techniques exist to 
achieve better classifier performance, but the imbalance was considered acceptable for use with 
machine-learning algorithms in the present study. Model sensitivity and specificity varied 
somewhat among the various models (Table 4). In the present study, specificity may be more 
relevant in view of a potential application in practice as dairy herds at high welfare risk need to be 
solicited and examined more closely. That is, rather than correctly identifying a large amount of 
herds of low or high risk of lameness and lesions (i.e., through a high sensitivity), it may be more 
relevant to avoid that herds are incorrectly classified into a low or high risk class (i.e., through a 
high specificity) and, thus, prevent that these herds are wrongly examined in detail at a later stage. 
In line with results in Fig 2, a GBM model seemed to be more specific within the low and high risk 
classes as compared to a simple decision tree. As there is always a trade-off between specificity 
and sensitivity, model sensitivity within the low and high risk classes decreased for a GBM model. 
The other models do not appear to be particularly more specific within the low and high risk class 
than a simple decision tree algorithm, in line with results in Fig 2. It should be noted that the results 
in Table 4 cannot be directly compared to those in Fig 2. The latter is based on a three-time 
repeated 10-fold cross-validation; thus, the entire dataset was used with only one fold withhold 
for validation and model accuracy was averaged across 30 values. On the other hand, sensitivity 
and specificity are calculated based on a smaller dataset (70%) and validated on the remaining 
dataset to obtain a better insight on how each model performs within each of the three risk 
classes.  
 

Table 4. Performance of machine-learning algorithms across the respective lameness and lesion risk classes.  

  Risk class   
Algorithm1 Model performance Low Medium High 
CART Sensitivity 0.60 0.44 0.75 

 Specificity 0.70 0.83 0.85 

GBM Sensitivity 0.50 0.59 0.50 
 Specificity 0.79 0.58 0.91 

AdaBoost Sensitivity 0.20 0.48 0.50 

 Specificity 0.79 0.50 0.79 

XGBoost Sensitivity 0.45 0.59 0.55 

 Specificity 0.79 0.68 0.83 

Random forest Sensitivity 0.45 0.48 0.50 

 Specificity 0.74 0.58 0.87 
1CART: classification and regression tree; AdaBoost: adaptive boosting; GBM: gradient boosting machine; XGBoost: extreme boosting 

Conclusion  
This paper presented results on the use of a machine-learning approach to detect dairy herd 
welfare level based on lameness and lesions. The results suggest that in principle, machine-
learning algorithms can be used to classify welfare level of dairy herds but further efforts need to 
be done to improve model performance. Model accuracy of a simple decision tree (44%) was 
slightly improved with ensemble methods based on bootstrap aggregation and boosting (up to 
51% accuracy). A comparison of a machine-learning approach to multivariate regression might 
be interesting to assess whether traditional statistical analysis performs similarly with data derived 
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from routinely collected farm-based records. Model performance suffered from the relatively small 
set of observations available and from the lack of a more focused set of farm-based records in 
the present study. Additional information more closely related to lameness and lesions may 
improve the performance of the model. A follow-up study with a larger amount of observations for 
lameness and lesions, and more relevant set of routinely collected data is needed to determine 
whether dairy herd welfare status can be more accurately identified using a machine-learning 
approach. In addition, further studies are required to investigate whether machine-learning 
methods can be also used to predict the welfare status of individual animals rather than on herd 
level. Nonetheless, the approach proposed in the present study offers opportunities to integrate 
artificial intelligence and dairy cattle welfare within a computerized information system. Such an 
approach based on classification of farm-based records into multiple welfare categories is suitable 
for routine field applications to create automatic alerts for herds with welfare deficiencies, and can 
be useful as a decision support system for dairy farmers.  
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