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Abstract 

Soil moisture and temperature are key inputs to several precision agricultural applications such 
as irrigation scheduling, identifying crop health, pest and disease prediction, yield and acreage 
estimation, etc.  The existing remote sensing satellites based soil moisture products such as SMAP 
are of coarse resolution and physics based land surface model such as NLDAS, GLDAS are of 
coarse resolution as well as not available for real time applications.  Keeping this in focus, we are 
developing a soil moisture and temperature map for India using high resolution land data 
assimilation system (HRLDAS) as a computing tool.  The service is aimed to provide soil moisture 
and soil temperature at 1 km spatial resolution in near real-time (few hours’ latency) at four soil 
depths and vegetation root zones.  The major highlights in the development of the service are: (1) 
use of Global Data Assimilation System (GDAS) dataset for dynamic forcing fields, (2) ability to 
ingest local information about the soil characteristics (3) high resolution USGS land-cover and 
other static datasets, amongst others.  In this paper, we will focus on modelling set-up details and 
model evaluation.  Model evaluation is performed against SMAP soil moisture data and local 
sensors observations using conventional statistics such as MAE, RMSE and correlation coefficient.  
The results clearly demonstrate the value of our service in comparison to exiting SMAP data.  In 
summary, the high resolution soil moisture and soil temperature service that we have developed 
could be used effectively in a real-time decision support system in precision agriculture.   
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Introduction 
Soil moisture and soil temperature are key inputs to several precision agricultural 
applications such as irrigation scheduling, identifying crop health, pest and disease 
prediction, yield and acreage estimation, etc. Even though India is not a water rich country, 
still it holds 2nd position world-wide in terms of farm output with average land holding 
less than a ha per farmer. Moreover, groundwater irrigation covers more than half of the 
total irrigation area (around 42 million ha) (Oza, 2017). Therefore, accurate knowledge of 
spatial and temporal variation in soil moisture/temperature at high resolution is critical for 
achieving sustainable and optimum water utilization in all agriculture applications.  Soil 
moisture and temperature can be measured by instruments in the field (Johnson, 1962), 
estimated by remote sensing techniques (Schmugge, 1983) or physics based land surface 
model (LSM) (Ek et al., 2003). In-site ground measurements offer us direct measurements 
of soil moisture/temperature, but they are at point scale, expensive, and sparse in time and 
space. 
The field of remote sensing soil moisture has been widening in a huge manner during the 
past decades with the advancement in earth observation technologies. The remote sensors, 
giving the most reliable soil moisture estimates (passive microwave) includes the European 
Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission launched in Nov 
2009, and the National Aeronautics and Space Administration (NASA) Soil Moisture 
Active Passive (SMAP) mission scheduled for launch in Oct 2014. Such remote sensors 
have relatively low spatial resolution from space, being on the order of 50 km. The data of 
the other high spatial resolution satellite observations, viz active microwave, visible and 
thermal have been shown to contain information on soil moisture, is noisy and/or difficult 
to interpret. Beside, a soil moisture estimate for the top few centimetres is provided by 
most of the remote sensing techniques. However, using the noisy high resolution data 
and/or modeling, downscaling of the low resolution passive microwave data is expected. 
For instance, by merging 3km active microwave data with 36km passive microwave data 
along with land data assimilation, SMAP (SPL4SMGP) provide a 9km resolution soil 
moisture product.   
Recent modeling advances centered around LSM’s demonstrate the feasibility of 
modelling land surface water and energy balance processes at continental scales using 
forcing data obtained from both in-situ and remote sensing sources (Crow and Wood, 
2003). Therese are several soil moisture products based on LSM with a spatial resolution 
typically 10-50km. Worth mentioning among them are North American Land Data 
Assimilation System (Mitchell et al., 2004), Global Land Data Assimilation System (Rui 
and Beaudoing, 2011), ECMWF. Furthermore, LSM based results are greatly dependent 
on forcing data quality, and there are large discrepancies among models (Seneviratne et al., 
2010). Although available LSM based soil moisture products mostly has global coverage, 
but are in coarse resolution and also not available in real time.   
For Indian regions, there is a need to cross validate recent past soil moisture LSM data, 
remotely sensed data and in situ observations to ensure consistency and quantifying 
uncertainties. This is particularly true for India characterized by diverse climatic zones. 
There are several studies which report spatio-temporal variation of soil moisture at coarse 
resolution for Indian regions (Bhimala and Goswami, 2015; Chakravorty et al., 2016) and 
validated with in-situ observation. However, there is strong need to develop high spatial 
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and temporal resolution soil moisture products for agriculture applications. Keeping this in 
focus, we have customized high resolution land data assimilation system (HRLDAS) for 
India with spatial resolution of 1km´1km and hourly temporal resolution. In this paper, we 
report HRLDAS (Mahoney, 2014) based real time soil moisture/temperature map up to 
root-zone (top 1m). We present the performance of the customized model against SMAP 
soil moisture data and local sensors observations. The results demonstrate that the 
customized model performs better in comparison to SMAP data. 

 

Model description-HRLDAS 2D 
In this study, we use High-Resolution Land Data Assimilation System (HRLDAS) for 
developing a soil moisture service (Chen et al., 2007). The goal of the service is to provide 
near real-time (maximum of one-day latency) soil moisture and other soil related 
parameters for whole of India. At the core of the HRLDAS model is an uncoupled land 
surface modelling system based on an advanced version of the Noah-Land Surface Model 
(Noah-LSM) (Ek et al., 2003), named as Noah-Multi-parameterization (Noah-MP). The 
foundational Noah-LSM has been developed over two decades with major efforts taken by 
NCAR, NCEP, Orgean State University and U.S Air Force Weather Agency. The Noah-
LSM has been implemented in the fifth-generation Pennsylvania State University–NCAR 
Mesoscale Model (MM5) and a popular numerical weather prediction model the Weather 
Research and Forecast (WRF) model.  
The Noah LSM couples the diurnally dependent Penman potential evaporation approach, 
the multilayer soil model, and the primitive canopy model. It has been extended to include 
the modestly complex canopy resistance approach to include frozen ground physics. 
Recent updates to the Noah LSM include new treatment of soil thermal conductivity and 
ground heat flux for wet soils and snowpack, as well as improvement to the formulation of 
bare-soil evaporation, a simple urban land use treatment, and seasonal variability of surface 
emissivity. The Noah LSM has one canopy layer and the following prognostic variables: 
total volumetric soil moisture and volumetric liquid soil moisture, soil temperature in four 
soil layers, water stored on the canopy, bulk snowpack density, snow albedo, and snow 
stored on the ground are directly computed. The model has the flexibility to define the 
thickness of soil layers depending on the application-ideal to compute near-surface and 
root-zone soil moisture. The total soil depth is 2m, and the vegetation root depth varies as 
a function of land use types in the upper 1.5 m of soil. 
The HRLDAS runs Noah-MP LSM in an offline and uncoupled mode. It requires a set of 
input static and dynamic parameters, listed below: 
Static and initialization parameters 
The prominent static fields required are: terrain elevation data, land cover, soil type, 
monthly averaged surface albedo, green vegetation fraction, leaf area index, etc.  Most of 
these data sets are available in public domain for the WRF model along with the pre-
processing codes. In addition, initialization fields are also required. These are: soil moisture 
and temperature data, skin temperature, water equivalent snow depth, plant canopy surface 
water. These initial fields are extracted from the Global Data Assimilation System (GDAS) 
(Rodell et al., 2004) at model initial time. 
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Fig. 1. Root zone soil moisture map of India on July 01, 2017 (wet session) and 

sensors location (violet map pin). 

Dynamic input parameters 
The dynamic meteorological forcing data required at the land surface to simulate the soil 
moisture and other soil related fields are: temperature, relative humidity, wind, pressure, 
and downwards shortwave and longwave radiations. The fields are extracted and processed 
from 3-hourly GDAS data. The GDAS data set is available in real-time (with a few hours 
of latency) and has global coverage at a spatial resolution of 0.11 degree (~11km). The 
code is modified to pre-process the GRIB2 GDAS data sets in order to generate the 
dynamic forcing fields. 
The model integrates fine scale static and dynamic fields mentioned above to compute 
long-term evolution of land-state variables. The modelling framework based on HRLDAS 
for the soil moisture service offers a flexible environment, such as the local information 
about the soil characteristics, high resolution land-cover, land type and other static datasets 
which can be easily ingested whenever available. The service can be easily extended for 
global coverage. A unique advantage of HRLDAS is to use the restart files generated from 
previous day simulations to compute the fields of interest for the present day. This is useful 
to save computational time and resources. 
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Fig. 2. Root zone soil moisture map of India on April 01, 2018 (dry session). 

SMAP Data 
The SMAP mission (launched on 31 January 2015) (Entekhabi et al., 2010) measures 
passive land surface microwave emission and active radar backscatter. It is designed to 
measure surface soil moisture and it repeatedly measures soil moisture every 2-3 days with 
coarse resolution (36km). The SMAP Level 4 surface (0-5 cm) and root zone (0-100 cm) 
soil moisture (SPL4SMGP) data is 9 km for spatial resolution and 3 hours for temporal 
resolution with global coverage selected for this agricultural soil moisture comparison 
purpose. 
In situ measurements 
Soil moisture sensors typically refer to sensors that estimate volumetric water content. In 
this study, capacitance based moisture sensors deployed within agricultural land in district 
Pune, state of Maharashtra, India (sensors location are shown in Fig. 1) for the validation 
of the high resolution soil moisture product.  Moisture sensors works on the principle of 
the change in the dielectric constant. Sensors location fields are rain-fed for crop cultivation 
(Tomato and Potato). Sensors (soil moisture/temperature) are installed at depth of 30cm 
from surface and hourly data are collected through wireless technology.   
 

Soil	Moisture	Map	of	India
(April	01,	2018)

Depth:	30	- 60cm	
Unit:	Percentage
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Fig. 3. Soil moisture values distribution during wet and dry seasons. 

 

Result and Discussion  
The HRLDAS model simulates a large number of land surface parameters. In this section, 
soil moisture map over India and the performance of the LSM model is evaluated against 
soil moisture from SMAP and in-situ observations and soil temperature from in-situ 
observations. The model is run for the period of February 2015 to real time (one-day 
latency) with a spin-up period considered till June 2017 and remaining four months are 
taken for evaluating the model performance. The variation of moisture content over 
different land regions of India is mainly controlled by seasons and to a great extent by 
monsoon (June-August) flow over India. The wet and dry seasons soil moisture variations 
at root zone depth over India are shown in Fig. 1 and 2 respectively. In the wet season, the 
maximum soil moisture values (20% – 45% vwc) are seen over Central zone, North East 
zone and some areas over West zone/coastal regions. In the dry season, the maximum soil 
moisture values (20% – 40% vwc) are seen in similar areas as in case of wet season (Central 
zone, North East Zone and some areas over west zone/coastal regions). Soil moisture data 
distribution plot for wet and dry seasons is shown in Fig. 3. It can be seen that, during wet 
season soil moisture values mostly occurs in the range of 30-35%.  Whereas, during dry 
season, mostly occurred soil moisture values are in the range of 25-30%. These results 
(spatial distribution of both wet and dry seasons) of soil moisture is broadly agreed over 
Indian region in the earlier study (Unnikrishnan et al., 2016). In the following sections, we 
will discuss model validation with in-situ observations.   
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Fig. 4. Time series of in-situ measurements (blue circle), SMAP SM (black line) and 

LSM SM (red line) at sensor location A. 

 
Fig. 5. Time series of in-situ measurements (blue circle), SMAP SM (black line) and 

LSM SM (red line) at sensor location B. 
Soil moisture validation with in-situ observations 
Fig. 4 and 5 shows time series of LSM SM along with SMAP SM and the in situ 
measurements for sensor location A and B respectively. It indicates that soil moisture is 
well simulated by the model. Time series profile of SMAP soil moisture at both the sensor 
locations are same as the sensors are at close proximity (sensor A and B are within 2km 
radius) and lie within same SMAP pixel, whereas LSM based SM shows different time 
series profile due to presence of different soil types. At sensor location A, soil type is silt 
loam and cultivated crop is Tomato whereas, at location B, soil type is black cotton and 
crop is Potato. In both sensor location, the soil moisture is observed to decrease faster in 
the model simulation and SMAP compared to sensor data. This indicates that the LSM and 
SMAP is losing moisture at a faster rate than that of in situ moisture. This may be due to 
higher evaporation rate or faster subsurface runoff or both. Table 1 shows mean absolute 
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error (MAE), root mean square error (RMSE) and Pearson correlation coefficient at both 
sensor sites during the period of July 2017 to September 2017. Error measures indicate that 
the customized LSM has better skills in simulating soil moisture than SMAP at the sensor 
locations. 

Table 1. The quantitative evaluation of SMAP and LSM against in-situ soil moisture 

 
Table 2. The quantitative evaluation of LSM soil temperature against in-situ 

 
Soil temperature validation with in-situ observations 
Figure 6 and 7 shows LSM simulated and in-situ soil temperature at sensor location A and 
B at 30 cm depth during July to October 2017 respectively. In general, the LSM slightly 
under-predicted the soil temperature during the validation period. This may be due to 
higher evaporation rate in the LSM (as mentioned earlier) with readily available soil 
moisture. Table 2 presents the MAE, RMSE and Pearson correlation at both the sensor 
sites. We have found high correlations between the LSM and in-situ measurement, i.e, 
LSM data exhibits nearly similar profile as the sensor data. Error numbers clearly 
demonstrate the capability of LSM results. It can also be observed that the LSM is able to 
capture well the diurnal variation of soil temperature at root zone depth. 

 
Fig. 6. Time series of in situ measurements (blue circle) and LSM soil temperature (black 

line) for sensor location A. 
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Fig. 7. Time series of in situ measurements (blue circle) and LSM soil temperature (black 

line) for sensor location A. 

 
Conclusions 
HRLDAS model is customized for simulating the land surface parameters for an Indian 
region. The model validation is carried out at two sensor locations in the state of 
Maharashtra. Soil moisture and temperature are well estimated by the model at these sites. 
It is suspected that the model has slower infiltration rate and higher evaporation rate or 
faster lateral run off than the actual. This aspect will be investigated further when more in-
situ observation data is available in future. This is our ongoing effort and in future we will 
incorporate synthetic aperture radar (SAR) remote sensing data to derive LSM model 
which may further improve accuracy. In summary, the LSM computed high resolution soil 
moisture and temperature could be effectively used in a real-time decision support system 
in precision agriculture. 
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