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Abstract. Accelerometers support the farmer with collecting information about animal behavior 
and thus allow a reduction in visual observation time. The milk intake of calves fed by teat-buckets 
has not been monitored automatically on commercial farms so far, although it is crucial for the 
calves’ development. This pilot study was based on bucket-fed dairy calves and intended (1) to 
evaluate the technical feasibility of using an ear-attached accelerometer (SMARTBOW, 
Smartbow GmbH, Weibern, Austria) to identify drinking events, (2) to develop an algorithm to 
detect milk intake, and (3) to validate the SMARTBOW sensor incorporating the algorithm 
developed under (2) for identifying drinking events against observations from video. The 
acceleration data used in this study were generated from three sensors attached to the ears of 
three preweaned calves. Sensor data were recorded for 5  d for 24 h/d and calf behavior was 
video camera-recorded during the same time period . Based on a training data set, an algorithm 
was developed to identify drinking events. In addition, a mathematical data simulation was 
performed which generated further 15  d of data. The complete data set was compared with video 
recordings to analyze whether drinking events (n = 174) were detected correctly. Sensitivity 
(82.9 %), specificity (96.9 %), and accuracy (96.2 %) were good, but precision (60.4 %) was not 
yet satisfactory. Cohen’s kappa (0.68) indicated a substantial agreement between sensor and 
video analysis. Additional work with a larger number of animals is planned to further improve the 
algorithm. 
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Introduction 
Wireless accelerometers are precision dairy farming devices that allow an automated real-time 
monitoring of animal behavior. Starting in the 1980s, different accelerometers have been 
developed (Rutten et al. 2013) to record activity (Darr and Epperson 2009; Ledgerwood et al. 
2010; Müller and Schrader 2003; Robert et al. 2009), locomotion (De Passillé et al. 2010), estrus 
cycle (Brehme et al. 2008; Dolecheck et al. 2015), parturition (Krieger et al. 2017), rumination 
(Reiter et al. 2018), and feeding behavior (Bikker et al. 2014; Burfeind et al. 2011; Scheibe and 
Gromann 2006). Previous studies in calves have evaluated the use of automated devices for 
activity (Hill et al. 2017), lying behavior (Bonk et al. 2013; Swartz et al. 2016), step activity (Swartz 
et al. 2016; De Passillé et al. 2010), gait patterns (De Passillé et al. 2010), eating (Hill et al. 2017), 
rumination (Burfeind et al. 2011; Hill et al. 2017), and milk intake from a calf feeder (Breitenberger 
et al. 2015). Milk intake by bucket-fed calves has not been monitored automatically yet, although 
it is crucial for a healthy development (Appleby et al. 2001; Miller-Cushon and DeVries 2015). 
The early recognition of a difference in a calf’s drinking pattern by an automated system allows 
an early intervention, which is likely to decrease adverse effects on a calf’s health and weight 
gain.  
The objectives of this pilot study were (1) to evaluate if the identification of drinking events (DE) 
in bucket-fed calves using an acceleration sensor is feasible under technical and mathematical 
points of view, (2) to develop an algorithm for an accelerometer (SMARTBOW Eartag, Smartbow 
GmbH, Weibern, Austria) for detecting DE in bucket-fed dairy calves, and (3) to evaluate the 
SMARTBOW sensor incorporating the algorithm for monitoring DE in bucket-fed dairy calves 
against observations from video.  

Material and methods 
Data was collected on a commercial dairy farm in Mecklenburg-Vorpommern, Germany. 
SMARTBOW Eartags were applied to three preweaned female Holstein-Friesian calves with a 
median age of 15 d. The sensors were attached to the left ear two weeks prior to the beginning 
of the study. Calves were housed in individual pens (1.37 x 2.00 m) with straw bedding. Seven 
liters of whole milk were fed from a bucket (8 L hygienic bucket, Kerbl, Buchbach, Germany) with 
a rubber teat (product no. 1454, Kerbl, Buchbach, Germany) twice a day. The SMARTBOW 
sensors recorded 10 Hz of three-dimensional acceleration values. Acceleration data were 
collected continuously for 5 d for 24 h/d.  
Calf behavior was recorded with infrared video cameras during the same time. One camera (IR 
Bullet Network Camera DS-2CD2632F-I(S), Hikvision, Hangzhou, China) was installed over each 
bucket and one camera (Fish-eye Network Camera DS-2CD6332FWD-I(V)(S), Hikvision) 
recorded an overview over all three pens. Video material was analyzed by one observer with 
Mangold Interact (Interact, Mangold International, Arnstorf, Germany). Four behaviors were 
observed: milk intake, playing or sucking at the rubber teat without milk intake, no activity on the 
teat, and non-identifiable behavior. With Interact, start and end time of each behavior were 
determined and converted into Microsoft Excel (MS Excel, Microsoft Excel for Mac, version 
14.5.2, Microsoft Corporation, Redmont, WA) files. Intra-observer reliability based on Cohen’s 
kappa (κ) (Cohen 1960) was calculated with Interact as 0.96. 
The study was approved by the institutional ethics committee of the University of Veterinary 
Medicine (ETK-03/09/2015), Vienna, Austria, as well as by the State Office of Agriculture, Food 
Safety and Fisheries Mecklenburg-Vorpommern, Germany (7221.3-2-028/15). 
An algorithm was developed to detect the timing of DE based on acceleration data generated by 
the SMARTBOW sensor. DE were defined as milk intake from the bucket including short gaps. If 
more than 300 s passed between subsequent DE they were regarded as separate events. The 
algorithm was based on a machine learning algorithm built from different features and was 
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developed in several steps: First, the complete acceleration data set (3 calves, 5 d of observation 
per calf, resulting in 15 d in total) was split up in a training set (9 d) and a test set (6 d). Second, 
the members of the training set were divided into non-overlapping subintervals of equal length 
(60 s). In these intervals, three different measures (variance, skewness, and kurtosis) of the 
absolute acceleration were calculated. Based on the training data, a lower and upper bound for 
each measure were defined and all intervals for which at least one of these statistics laid outside 
the boundaries were excluded from further consideration as a possible DE. This led to elimination 
of more than 60 % of all intervals in the training set, while keeping about 90 % of the intervals 
overlapping with a drinking phase. Third, a total of 40 features based on the absolute acceleration 
data in each interval were calculated. The features included various statistical quantities, such as 
the sample central moments up to order 4, the autocorrelation up to lag 5, features based on the 
estimated power spectral density, and parameters of modeling the acceleration with moving-
average and autoregressive processes (Brockwell and Davis 1991). Prior to further use of these 
features in the machine learning algorithm, a preliminary feature selection based on the 
correlation between the different features was implemented (Hall 1999; Jain et al. 1996). This 
procedure was employed to define a measure for importance and to eliminate unimportant 
features for further consideration. With the remaining features, the Mathematica software (version 
11.0, Wolfram Research, Inc., Champaign, Illinois) was used to build up different ensembles of 
multilayer perceptron learning algorithms with two hidden layers (Jain et al. 1996) as follows: The 
training data were split up into every combination of 7 training days and 2 validation days (36 
possibilities). For each combination, a classifier function out of the 7 training days was generated, 
the model was applied to the remaining 2 validation days, and the overall average accuracy and 
sensitivity were calculated. By changing the parameters of the underlying learning algorithm it 
was tried to maximize the average accuracy on the validation sets while maintaining an average 
sensitivity of at least 80 %. Due to the severe imbalance in the data (only approximately 5 % of 
the observation time accounted for DE), the feature vectors belonging to the drinking events in 
each calculation of a new model were randomly oversampled to approximately reach a balanced 
data base. Once appropriate parameters were found, all 36 models voted for the intervals in the 
training set and it was specified that an interval is chosen as a drinking phase if a least amount of 
models individually voted for it to be one. This minimum amount was chosen to maximize the sum 
of accuracy and sensitivity on the training set while keeping a sensitivity of at least 90 %. Next, 
the intervals which were shorter than a predefined length were eliminated, and the remaining 
ones were merged to bigger drinking phases if they did not lie more than 300 s apart. Finally, the 
same procedure was used on the test set. A more detailed review of the mathematical process is 
covered by Sturm et al. (2017). 
In a simulation study, 15 additional data sets (five days of simulation per calf) were generated to 
expand the experimental data. They were incorporated into building each of the classifiers 
outlined previously.  
All of the video recordings (120 h/calf) were used to analyze whether the algorithm identified DE 
correctly. Number and duration of DE observed via video recordings (DEv) and DE calculated 
using the algorithms based on sensor acceleration data (DEa) were calculated using MS Excel. 
True positive (TP, correctly predicted time period of milk intake), true negative (TN, correctly 
predicted time period of no milk intake), false positive (FP, falsely predicted time period of milk 
intake), and false negative (FN, falsely predicted time period of no milk intake) events were 
determined. Sensitivity, specificity (Lundorff Jensen and Kjelgaard-Hansen 2011), accuracy, 
precision (Powers 2011), negative predictive value (Lundorff Jensen and Kjelgaard-Hansen 
2011), F1 score (Powers 2011), κ (Cohen 1960), and the Youden index (Youden 1950) were 
calculated for both experimental and simulated data. Interpretation of κ was made according to 
McHugh (2012). 
In a second step, video material was analyzed again to determine what behavior calves were 
involved in during FP episodes. Behavior was categorized into licking (self grooming, licking at 
objects, playing with or sucking at the rubber teat without milk intake), roughage intake, neutral 
(no active muzzle movement), and non-identifiable.  
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Results and Discussion 
During the observation period of 120 h per calf 174 DEv and 170 DEa were identified, 133 of which 
overlap in time. The average daily number of DEv per calf was calculated as 11.6 ± 4.1 (mean ± 
standard deviation) and the daily number of DEa per calf was 11.3 ± 2.8. The mean duration of 
DEv per day amounted to 01:15:47 h, whereas the mean duration of DEa was 01:46:00 h. An 
average day (24 h) comprised 01:03:59 h (4.4 %) of TP, 22:00:50 h (91.7 %) of TN, 42:01 min 
(2.9 %) of FP, and 13:10 min (0.9 %) of FN events. A sample segment of acceleration data 
showing DEv versus DEa is presented in Figure 1.  
 

 

Fig. 1. Comparison of drinking events identified by video analysis (top) vs. algorithm based on acceleration data (bottom) 
drinking events. 

 
The test characteristics for the calculated DEa and the simulated results (DEs) are presented in 
Table 1.  
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Table 1. Test characteristics of actual (video) vs. calculated (based on sensor data, DEa) and vs. simulated drinking events 
(DEs) 

Parameter DEa DEs 

True positive (%)  4.4  4.3 

True negative (%)  91.7  92.4 

False positive (%)  2.9  2.2 

False negative (%)  0.9  1.1 

Sensitivity (%)  82.9  79.9 

Specificity (%)  96.9  97.7 

Accuracy (%)  96.2  96.7 

Precision (%)   60.4  65.9 

Negative predictive value (%)  99.0  98.8 

F1 Score (%)  69.9  72.1 

Cohen’s Kappa (κ)  0.68  0.70 

Youden Index  0.80  0.77 

 
To our knowledge, this is the first study evaluating the use of an accelerometer to identify milk 
intake in bucket-fed calves. The SMARTBOW accelerometer was overall successful in detecting 
DE. Sensitivity (82.9 %), specificity (96.9 %), and accuracy (96.2 %) were good. Cohen’s κ was 
calculated as 0.68, which indicates a substantial agreement between sensor data and video 
analysis. However, because calves were only drinking for short time periods during the day, the 
validity of the specificity and accuracy is limited. When developing the algorithm, it was particularly 
challenging to obtain a high sensitivity without causing a concurrent decrease in precision. The 
accurate identification of the duration of DE, the percentage of FP results, and the precision 
should be further improved. The moderate precision was possibly caused by the small number of 
animals enrolled in this pilot study and differences in drinking behavior between individuals. This 
complicated the transfer of movement pattern calculations to different animals. The results from 
the simulation study were comparable to the results obtained from the observed data. Selected 
video sequences were analyzed a second time to identify what activities the animals were 
engaged in during FP events. The analysis indicated that during approximately a third of the time 
calves were involved in active behaviors (e.g. licking, feed intake) that the algorithm might have 
categorized as DE incorrectly.  
Prior studies evaluating the use of data loggers for calf feeding or drinking behavior were either 
based on different technology (e.g. Burfeind et al. (2011) studied a logger based on audio 
recordings to evaluate rumination in calves) or presented different test characteristics. Hill et al. 
(2017) evaluated a different ear-attached accelerometer (SensOor, CowManager BV, Harmelen, 
The Netherlands) to describe activities in calves. They concluded that the SensOor was a suitable 
tool to detect eating, but described difficulties in identifying drinking behavior. Bikker et al. (2014) 
validated the SensOor for cows and reported a κ for ‘eating’ of 0.77. The authors suggest that 
behavior involving simple and repetitive movements might be detected more easily. Adult cows 
are likely to be less active than calves, have larger extension of jaw movements, and a higher 
degree of standardization and repetition in their movement patterns. This could explain the slightly 
lower κ calculated for milk intake in this study. Another reason could be that feeding might be 
easier to be detected by an ear-attached accelerometer than drinking behavior. 
A follow-up study with a larger number of calves is planned to further improve the algorithm. 
Another objective of that study will be to assess if the SMARTBOW sensor can be used to quantify 
milk intake. Once a suitable algorithm has been developed, it should be evaluated if changes in 
milk intake detected by acceleration sensors can be used to identify discomfort or pathological 
states in calves. 
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Conclusion 
Overall, the SMARTBOW sensor was successful in predicting drinking events. The technical 
feasibility of using an accelerometer to detect milk intake in calves was proven. Sensitivity, 
specificity, and accuracy were good, but precision is subject to further improvement. Kappa 
indicated a substantial agreement between sensor data and video material. More research based 
on a larger number of animals is planned with the objective to increase the precision of the 
algorithm, to quantify milk intake, and to identify diseased animals.  
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