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Abstract. The growth and development of Concord (Vitis labruscana Bailey) depends on internal 
and external factors. As a result, both vegetative and reproductive cycles of Concord vary based 
on growing season and vine status. Fresh berry weight also fluctuates depending on the growing 
season and location of the vineyard. Knowledge of berry weight dynamics across growing season 
is essential to accurately predict final yield at harvest based on early season crop estimates. The 
main objective of this study was to develop the state of the art methodology to precisely estimate 
Concord fresh berry weight.  
The experiment was conducted from 2011 to 2014 at nine vineyards distributed along the Lake Erie 
American Viticulture Area (AVA). Data collection on Fresh Berry Weight (FBW) was carried out for 
each vineyard starting two weeks pre-veraison until harvest. The Percent of final FBW was 
computed for each vineyard across individual growing seasons using FBW and FBW at 100 days 
after bloom. The weather data including daily Growing Degree Days (GDD) were obtained from 
Cornell University Network for Environment and Weather Applications (NEWA). A Machine 
Learning (ML) Randomforest (RF) algorithm was adopted to model the dynamics of percent of final 
FBW for each individual vineyard. The model performance was evaluated by comparing the 
observed and predicted FBW for the test subsets. Several statistical metrics such as Mean Error 
(ME), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), correlation coefficient (r), 
and model efficiency (EF) were computed and reported to compare the efficiency of the model for 
each vineyard.  
The results of the model evaluation indicated that for all the years and the sites combined ME was 
0.6 % and MAE was 6 % while RMSE was 1.3%, r was 0.9, and EF was 92%. The results also 
indicated that the ME, MAE, RMSE, and r varied depending on the vineyard location as well as the 
vineyard management status. The highest MAE and RMSE associated to a vineyard that was not 
well-maintained. This study was able to apply RF technique to successfully capture the dynamics 
of Concord FBW across multiple regions and growing seasons. 
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Introduction 
Concord (Vitis labruscana Bailey) growth and development and eventually its yield is affected by 
various internal and external factors. Concord grape crop yield is estimated based on destructive 
or non-destructive sampling schemes to help growers, juice processors, and decision makers to 
better design their work plans for the necessary order of tasks that needs to happen during the 
growing season to ensure a marketable crop yield. 
Grapevine yield components are the factors in grapevine reproduction that when multiplied together 
they compose the yield obtained from a single vine or an entire vineyard (Coombe and Dry, 2001). 
The yield components for a single vine includes total number of buds per vine, total number of 
shoots per bud, total number of clusters per shoot, total number of berries per cluster and berry 
weight (Equation 1): 
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The total yield for an entire vineyard is calculated by summing up calculated yield (using Equation 
1) for all the individual vines (Keller, 2010). The vineyard row by vine spacing as well as the trellis 
and training design controls the total number of vines in a vineyard and also the vine size (Keller, 
2010). There are various destructive and non-destructive methods to estimate yield components 
early season and these methods are used to come up with accurate predictions of final yield at 
harvest. However, for accurate prediction of final crop yield at harvest based on early season 
crop estimations, knowledge of berry weight dynamics plays a vital role. In other words, 
accurate berry weight predictions are necessary for conversion of early season yield estimates to 
final yield at harvest predictions. Among all the yield components, berry weight prediction is the 
most labor intensive and costly practice. Therefore, any technique that improves the current state 
of the art on berry weight measurement is of interest both for growers and Concord industry. 
Few studies have focused on predicting berry weight for wine grapes (Vinifera spp) and the authors 
of this current research are not aware of any studies that have focused on berry weight predictions 
for Concord grapevines. Fernandez Martiez et al. (2011) used data mining and artificial intelligence 
techniques to predict variations in ‘Tempranillo’ grape berry weight during ripening process. They 
reported that the non-parametric models behaved the best for prediction of the variables and among 
all the models “Gaussian Processes” had the highest accuracy with Root Mean Square Error 
(RMSE)= 0.0939 and Mean Absolute Error (MAE) = 0.0748. 
Triolo et al. (2017) studied the simultaneous effect of major factors influencing berry mass. The 
model was based on vine water status, nitrogen status, berry weight, berry seed mass, and seed 
number. These factors were measured from veraison to harvest in ‘Cabernet franc’ vineyards. They 
conducted a multiple linear regression and reported that all the inputs had a significant effect on 
berry weight but vine water status represented the most important factor among all.  
In the Lake Erie American Viticultural Area (AVA), the common practice for Concord yield estimation 
has been based on the assumption that on 30 Days After Bloom (DAB) berry weight usually  
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corresponds to 50% of final fresh berry weight at harvest (Bates et al. 2018). Pool et al. (1993) used 
Growing Degree Days (GDD) accumulation as a proxy for berry development and indicated that 
GDD accumulation to about 611° C (10 °C base) usually coincided with the developmental stage 
that berries were about 50% of their final fresh weight.  

Machine learning 
Machine Learning (ML) is defined as the field of study that assigns computers the ability to learn 
without being explicitly programmed (Samuel, 1963). Statistics and ML began their interface in the 
1980s (Ratner, 2012) when ML researchers became familiar with the classical problems of 
statisticians mainly on predicting outcome of continuous or categorical variables. ML technically 
refers to “the computational process of automatically inferring and generalizing a learning model 
from sample data” (Dua and Du, 2011). To effectively describe the dependences among data, these 
learning models use statistical functions (Jain et al., 2000). In addition, the correlation and 
causalities between input and output is also described by the learning models (Jain et al., 2000). 
ML has been used to predict yield for various agricultural crops such as: wheat (Newlands et al., 
2014; Pantazi et al., 2016, Johnson et al., 2016, Veenadhri et al., 2014), barley (Johnson et al., 
2016), Canola (Johnson et al., 2016), Cotton (Papageorgiou et al., 2011), Maize (Gonzalez-
Sanchez et al., 2014; Veenadhri et al., 2014), Soybean( Veenadhri et al., 2014), Rice (Gandhi et 
al., 2016; Veenadhri et al., 2014), Apples (Papageorgiou et al., 2013), Pepper (Gonzalez-Sanchez 
et al., 2014), Common bean(Gonzalez-Sanchez et al., 2014), Chickpea (Gonzalez-Sanchez et al., 
2014), Potato (Gonzalez-Sanchez et al., 2014), and Tomato (Gonzalez-Sanchez et al., 2014). 
Supervised ML is defined as when the ML algorithm is trained by a meaningful sample data to 
develop a model (Dua and Du, 2011). Among various supervised ML methods Random Forest (RF) 
is regarded the most popular bagging ensemble classifier. 

Random forest 

Random forest (RF) was initially proposed by Breiman (2001) as an improvement of previous 
methods such as bagging of classification trees (Brieman, 1996), this is due to the fact that RF 
added an additional layer of randomness to the bagging process. This technique altered the way a 
regression or classification tree is constructed through building each individual tree using a different 
bootstrap sample of data. RF technique nodes are split using the best among a subset of predictors 
randomly chosen at that node. RF has lots of known advantages over other statistical techniques 
(Breiman, 2001): a) user friendly due to low number of parameters; b) better accuracy; c) faster 
procedure compared to bagging or boosting; d) useful internal estimation of error and, e) robust 
against overfitting.  
The RF algorithm is developed as a package for R programming language by Liaw and Wiener 
(2002). The RF algorithm initially draws ntree bootstrap samples from the original data, in the next 
step for each of the bootstrap samples the algorithm grows an unpruned regression tree with the 
following modification: randomly samples mtry of the predictors at each node and choose the best 
split among variables. Subsequently, the RF algorithm predicts new data by aggregating the 
predictions of the ntree trees which for regression is done by averaging. The error estimate rate is 
obtained using training data, where at each bootstrap iteration, the data that is not in the bootstrap 
sample is predicted using the tree grown with the bootstrap sample. This is called “out of bag” or 
OOB data. Subsequently the OOB predictions are aggregated and the error rate is calculated and 
is called OOB estimate of error rate.  
The main objective of this study was to develop state of the art methodology to accurately 
predict final fresh berry weight for Concord grapes at different stages during growing 
season.  



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 4 
 

Materials and Methods 

Vineyards description 
Experimental plots were established in Concord vineyards across Lake Erie AVA (Figure 1). 

A total of nine Concord experimental plots were selected based on their geographical location in 
the Lake Erie AVA: a) three vineyard plots in the lake zone; b) three vineyard plots in the bench 
zone, c) three vineyard plots in the escarpment zone (Figure 1). At each site, from 2011-2014, 
weekly fruit samples were collected from selected vines starting two-weeks pre-veraison to harvest 
and measured for berry weight. The final yield harvest was also measured and reported for the 
selected vines. The row-by-vine spacing was 2.6 × 2.4 m in the experimental vineyards and 
commercial standards for floor, nutrient, pest, and disease management were adopted (Jordan et 
al., 1980). Pre-and post-emergence herbicides were used for no-till weed management to maintain 
a 1.2 m weed-free zone under the vines, and the row centers were treated with one glyphosate 
application at bloom. Around budbreak a single application of ammonium nitrate fertilizer was 
surface broadcasted across the block at a rate of 56 kg/ha of actual N. The NY and Pennsylvania 
pest management guidelines for grapes (Weigle, 2006) were adopted for choosing proper fungicide 
and insecticide, as well as their application rates.  

 
Figure 1: Location of the experimental plots that were established in the Lake Erie American Viticulture Area (AVA). 

Digital Elevation Model (DEM) was used to obtain the elevation information for each experimental 
vineyard (NED, 2018). Percent slope rise and aspect was calculated for each experimental vineyard 
using ArcGIS spatial analysis tool (ArcGIS10.5.1 ESRI, Redlands, CA 2018). The soil type and 
drainage class were extracted from a google earth streaming interface that has been developed by 
UC Davis Soil Resource Lab (SoilWeb Earth, 2018). The google earth interface streams the United 
States Department of Agriculture- National Cooperative Soil Survey (USDA-NCSS) Soil Survey 
Geographic database (SSURGO, 2018) and the State Soil Geographic (STATSGO, 2018) soil 
survey products depending on the scale of the maps the source of the data changes within the 
interface.  Among the nine sites, site 6 had the highest elevation and site 1 had the lowest elevation. 
Site 9 had the overall steepest slope (8.5%) and site 7 was the flattest one (0.2%) (Table 1). The 
majority of soil type in the region are silt loam and the majority of vineyards were moderately well-
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drained to well-drained (Table 1). 
 
 
 

Table 1: summary of experimental vineyard properties. 

Vineyard ID Long. Lat. Elevation 
(m) 

Slope 

(%) 
Aspect Soil type 

NEWA 
Weather 
Station 

Zone 
Drainage Class 

1 -79.19 42.54 185.7 1.4 N Niagara silt loam Silver Creek, 
NY 

Lake-East Somewhat 
poorly drained 

2 -79.20 42.49 234.0 3.2 NW 
Chenango 

gravelly loam 
Sheridan, NY Bench-East Well-drained 

3 -79.03 42.51 257.5 1.6 E 
Chenango 

gravelly loam 
Versailles, NY Escarpment-

East 
Well-drained 

4 -79.48 42.39 192.4 1.2 W 
Elnora Fine 
sandy loam 

Portland, NY Lake-Central Moderately well-
drained 

5 -79.48 42.37 234.4 0.9 N 
Pompton silt 

loam 
Portland, NY Bench-Central Moderately well-

drained 

6 -79.47 42.35 334.9 6.4 N 
Hornell silt loam 

Portland 
Escarpment, 

NY 

Escarpment-
Central 

Somewhat 
poorly drained 

7 -79.85 42.23 220.1 0.2 W 
Harborcreek-
tyner complex 

Northeast lab 
PA 

Lake-West Somewhat 
excessively 

drained 

8 -79.88 42.19 230.6 0.6 NW 
Pompton silt 

loam 
Harborcreek, 

PA 
Bench-West Moderately well-

drained 

9 -79.85 42.18 323.0 8.5 NW 
Mardin silt loam 

Harborcreek, 
PA 

Escarpment-
West 

Moderately well-
drained 

 

Weather data 
Daily weather data for each experimental plot was obtained from Network for Environment and 
Weather Applications (NEWA, 2017). For each site a representative X and Y coordinate (geographical 
latitude and longitude) was selected and the closest weather station to the experimental plot was 
selected using the coordinate location of the plots. In case, the weather station was relatively new 
and there was a lack data records for the whole period of study, then the weather data was obtained 
from the second closest station. Daily GDD accumulation for each station was obtained for the whole 
period of study.  
The daily GDD for NEWA weather stations is calculated using Tmin and Tmax with a 10 °C base 
temperature (Equation 2). GDD is a measure of grapevine thermal time, based on the assumption 
that the growth and development of grapevines linearly increase with any increase in the mean 
temperature. GDD calculation was based on Winkler et al. (1974). 

𝐺𝐷𝐷 = 	∑ (𝑇& − 𝑇!)'
&/0 ,    (2) 

where Ti is the mean daily air temperature starting from bloom date and Tb is the base temperature 
for grapevines (10 °C). Base temperature is the temperature at which vines resume their growth and 
development in spring. In this study no heat units accumulated when the average temperature was 
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below the base temperature. For the purpose of this study, the bloom date was used as the start point 
for GDD accumulation (i= bloom date) for each growing season. This was mainly done based on the 
assumption that the GDD accumulation prior to bloom date might not be directly affecting berry 
weight. The bloom date was recorded at site 5 from 2011-2014 and historical phenology records were 
also available for site 5 (Table 2); therefore, the bloom date in all the other 8 experimental vineyards 
were approximated by the bloom date at site 5.  

Table 2: Phenology dates recorded at site 5 and historical phenology dates based on sites 5 records. This dates were used 
for GDD calculations across all the other sites. 

Phenology stage 30-year average 2011 2012 2013 2014 

Budbreak 4-May 10-May 25-Apr 3-May 12-May 

Bloom 14-Jun 11-Jun 5-Jun 10-Jun 16-Jun 

Veraison 22-Aug 20-Aug 10-Aug 19-Aug 25-Aug 

Model input data  

A data set was compiled based on daily GDDbloom accumulation for all the nine sites for 2011-2014. 
The approximate bloom date (Julian date) for site 5 was used as the start date for GDD accumulation.  

Percent final fresh berry weight 

In this study, the recorded berry weights at each experimental vineyard were converted into percent 
of final berry weight assuming that the berries were ready for harvest at 100 DAB (Figure 2). This 
was done by diving the recorded berry weight for each individual day by the recorded berry weight at 
100 DAB.  
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Figure 2: Berry weight (g) dynamics based on GDD for site 5: a) 2011; b) 2012; c) 2013; d) 2014. 

The compiled data set for each individual experimental vineyard was then divided to test and train 
data-sets using a 0.75 split ratio and it was later used in the algorithm development process. The 
train dataset was used to train the mathematical algorithm and the test dataset was used for 
evaluation of the results.  

Random forest algorithm implementation 

The Random forest (RF) algorithm was developed using “randomForest” package in R programming 
language (RF, 2017). The type of RF was set to regression since the variables were continuous. The 
algorithm was developed using 1000 trees with a node size of 5. The number of variables randomly 
sampled as candidates at each split (ntry) was set to 3. The initial algorithm was developed using 

a b 

c d 
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percent of final berry weight as dependent variable and the independent variable was set to GDDbloom. 
The percent of final fresh berry weight for each experimental vineyard was predicted and used for 
evaluation of model performance.  

The mean of square of residuals for RF algorithm was computed using the following equation (Liaw 
and Wiener, 2002; Equation 3.): 

𝑀𝑆𝐸112 =	𝑛30 ∑ <𝑦& − 𝑦=&112>
4'

0 , (3) 

where 𝑦=&112 is the average of “Out of bag” or OOB predictions for the ith observation. And percent of 
variance explained by RF algorithm was computed using the following equation (Liaw and Wiener, 
2002; Equation 4.): 

1 − 567889
:;<=

,  (4) 

where 𝜎=>4 is computed with n as divisor.  

Model performance 

The predicted and observed percentage of final berry weight were compared for individual 
experimental vineyards and the error was reported. Mean error (ME), Mean Absolute Error (MAE) 
(Equation 5), and Root Mean Square Error (RMSE)(Equation 6), Correlation Coefficient (r), and model 
efficiency (EF; Greenwood et al., 1985; Equation 7) were computed and reported for individual 
experimental vineyards.  

𝑀𝐴𝐸 =	 0
'
∑ |	𝑂& −𝑂D|'
&/0 ,                    (5) 

𝑅𝑀𝑆𝐸 = (∑ (𝑂& −𝑂D)4'
&/0 /𝑛)0/4  ,      (6) 

𝐸𝐹 = 1 − H∑ (6B31B)=D
BEF
∑ (1B31G)=D
BEF

I          ,             (7) 

where Oi is the observed value, Si is the simulated value, 𝑂D is the mean observed value, and n is 
the number of observations. 

The overall procedure of model development can, therefore, be divided into five major steps including 
data collection, data compile, model development, model performance evaluation, and model 
implementation (Figure 3). The data collection step covers the sampling, data entry, and obtaining 
data from various sources. Data compile mainly includes organizing the important variables for 
individual experimental vineyards and defining the training and testing schemes. Model development 
includes defining the algorithm properties and assigning the dependent and independent variables. 
The model predictions are computed and recorded at the model development stage. In addition, the 
percent of variance explained and mean square error of RF algorithm is computed at the model 
development stage. Model performance evaluation using the error measures such as ME, MAE, 
RMSE, and r usually occurs at the model evaluation stage and the overall error is computed at this 
stage. Finally, if the model performs reasonably well based on its error measures then the model can 
be implemented as a decision support tool that can potentially be adopted by researcher, growers, 
and extension educators (Figure 3).  
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Figure 3: Overall research method. 

 

Results and Discussion 

In this study RF algorithm was employed to develop a model that has the ability to predict the 
dynamics of berry weight throughout the growing season for nine different experimental vineyards 
across multiple growing seasons. The prediction results were reported as percentage of final fresh 
berry weight for individual experimental vineyards. The model was initialized with GDDbloom as 
independent variable. To satisfy the model parsimony rules, this study only focused on GDDbloom as 
the independent variable to predict the percent of final fresh berry weight. Having fewer variables as 
model inputs, makes the implementation of the model and its future application more user friendly. In 
addition, fewer inputs, can reduce the chance of introducing error into the model.  

Percent of final fresh berry weight for individual experimental vineyards were computed and statistics 
for each individual site was computed (See Figure 4 as an example). The results indicated that, on 
average highest percent of final fresh berry weight was obtained for site 4 (86±11%) and lowest was 
for site 6 (78±12 %) among all the experimental vineyards for all the years. This can be partially 
explained by the vineyard properties as vineyard is located in the escarpment zone with the highest 
elevation that translates to a colder region with a lower overall GDDbloom accumulation and lower 
overall air temperature. In addition, site 6 soil drainage class is defined as “some-what poorly drained” 
which might be also a contributing factor to the lower overall development of berries in that site (Table 
1). On the other hand, site 4 is located near the Lake Erie with one of the lowest elevations which 
potentially translated to relatively milder temperatures and higher GDDbloom accumulations that can 
partially explain the higher growth and development rates as indicated by percent of final fresh berry 
weight.  
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Figure 4: Percent of final fresh berry weight progress with increasing GDD for site 5: a) 2011; b) 2012; c) 2013; d) 2014. 

Model performance 

The results of comparing the predicted and observed percent of final fresh berry weight (Table 3) 
indicated that ME was on average 0.06 %, with vineyard 4 having the highest ME (2.1 %) and vineyard 
1 having the lowest ME (0.02%). MAE was on average 6 % with vineyard 4 having the highest bias 
(10%) and vineyard 1 having the lowest MAE (3%). The RMSE on average was 1.4 % and the highest 

a b 

c d 
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RMSE was calculated for vineyard 4 (4.7%) and the lowest RMSE was calculated for vineyards 1 and 
5(0.4 %) (Table 3). On average these models were able to explain 92 % of the variance in the 
dependent variable (EF), the models for vineyard 5 had the highest EF (97 %) and the vineyard 4 
had the lowest EF (79%) (Table 3). Overall percent of variation explained by RF algorithm was 80.91 
% with vineyard 4 having the lowest variance explained by the model (70%) and vineyard 1 indicated 
the highest variance explained by the RF algorithm (87.73%). The mean squared of error for the RF 
algorithm was 0.0062 and the site 4 has the highest MSE for RF (0.02) while site 1 had the lowest 
MSE for RF at 0.0002 (Table 3).  

Table 3: Summary of model performance evaluation results. Mean Error (ME), Mean Absolute Error (MAE), RMSE (Root Mean 
Square Error), correlation coefficient ( r), Efficiency (EF), variation explained by Random Forest mode ( Var. RF), Mean 

Square Error for  the Random Forest model (MSE RF) 

Vineyard ID ME MAE RMSE r EF Var. RF (%) MSE  RF  

1 0.0002 0.03 0.004 0.94 0.96 87.73 0.0002 

2 0.0090 0.08 0.020 0.93 0.96 86.97 0.0080 

3 0.0090 0.08 0.013 0.93 0.98 80.19 0.0120 

4 0.0210 0.10 0.047 0.84 0.79 70.03 0.0200 

5 0.0020 0.04 0.004 0.94 0.97 84.31 0.0030 

6 0.0040 0.05 0.007 0.88 0.93 80.08 0.0030 

7 0.0060 0.05 0.011 0.85 0.86 76.70 0.0040 

8 0.0020 0.05 0.012 0.88 0.90 75.36 0.0040 

9 0.0020 0.04 0.006 0.91 0.95 86.85 0.0020 

Average 0.0061 0.06 0.014 0.90 0.92 80.91 0.0062 

The correlation coefficient between the observed and estimated percentage of final berry weight was 
on average 0.92 where vineyard 4 had the lowest correlation among all the sites (0.84) and vineyards 
1 and 5 had the highest correlation at 0.94 (Table 3; Figure 5). The overall trend in the model 
performance evaluation indicated that despite having relatively high accuracy, site 4 constantly is 
flagged as the experimental vineyard with highest bias compared to the other experimental vineyards. 
This behavior can be partially attributed to the NEWA weather station data that was used for vineyard 
4, as it might not well-represent the micro-climate in the vineyard due to the fact that vineyard 4 was 
located about 2.8 km away from the Portland, NY weather station.  

 

 

 

 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 12 
 

1  2  3  

 

4 

 

5 

 
6 

 

7 

 

8 

 

9 
Figure 5: Comparison of predicted and observed percent of fresh berry weight for all the nine sites (site1-9). 

The overall variation in model performance and the associated bias is also impacted by the cultural 
practices and management techniques in various experimental vineyards. Based on the data 
sampled across all these experimental vineyards, it is inferred that differences in topography, soil, 
micro-climate, closeness to waterbody (in this case Lake Erie), and cultural practices are contributing 
factors to the overall variation in Concord berry weight dynamics. Hence, any developed model that 
should be able to robustly predict the berry weight dynamics has to be least sensitive to changes in 
the micro-scale biophysical environment surrounding Concord grapevines. Such a model would have 
the ability to predict the berry weight accurately at a regional scale and can later be trained to predict 
the berry weight dynamics at a continental scale. This study was able to develop such a robust model 
that performed well at a regional scale. Future studies should focus on implementing the results of 
this study into a decision support tool possibly by using user friendly web applications that can be 
used by decision makers, researchers, and growers to make timely and better informed decisions 
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earlier during the growing season.  

Summary 

A four-year study from 2011-2014 was designed to measure berry weight at weekly intervals starting 
at two weeks pre-veraison until harvest. The measurements were carried out at nine different Concord 
experimental vineyards across Lake Erie grape AVA and the data was compiled to a train and test 
data-set including GDDbloom and percent of final fresh berry weight. A RF algorithm was developed 
and trained to predict the percentage of final berry weight based on GDDbloom in each experimental 
vineyard. The results indicated that the model had an overall ME of 0.6 % and MAE was on average 
6% with a range from 3 to 10 %. RMSE was on average 1.4 % and the correlation coefficient between 
predicted and observed percent of final fresh berry weights were 0.9 and the model was overall 92 % 
efficient in explaining the variation in the data. The results are promising as the overall bias is low. 
Therefore, it is recommended that this model also get tested in other geographical regions and with 
other grape varieties to come up with a general berry weight modeling scheme that has been tested 
across multiple climate zones.  
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