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Abstract. New proximal sensing technologies are desirable in viticulture to assess and map 
vineyard spatial variability. Towards this end, high-spatial resolution information can be obtained 
using novel, non-invasive sensors on-the-go. In order to improve yield, grape quality and water 
management, the vineyard water status should be determined. The goal of this work was to 
assess and map vineyard water status using two different proximal sensing technologies on-the-
go: near infrared (NIR) reflectance spectroscopy and thermal imaging. On-the-go spectral and 
thermal measurements were acquired at solar noon, on east side of the canopy in a Tempranillo 
(Vitis vinifera L.) commercial vineyard. A spectrometer (1100-2100 nm) and thermal camera 
operating at 0.30 m and 1.20 m respectively from the canopy were mounted on a ATV which 
moved at 5 km/h. Midday stem water potential (Ψs) was used as reference method. Spectral, 
thermal and physiological measurements were acquired over several dates from July to 
September, in seasons 2015 and 2016. Partial least squares (PLS) was used as the algorithm for 
the training of the water stress spectral prediction models. In the cross- validation, all 
determination coefficients (R2) were above the 0.89 marks for Ψs. Moreover, canopy temperature 
and the crop water stress index (CWSI) were correlated to stem water potential (Ψs), with a R2 
value of 0.79. Vineyard water status was mapped using both near infrared reflectance 
spectroscopy and thermal imaging technologies and enabled the identification and delineation of 
zones with homogeneous grapevine water status to steer precise and optimized irrigation 
schedules in the context of precision and sustainable viticulture. These results suggest that both 
near infrared reflectance spectroscopy and thermal imaging can be used to non-destructively 
assess and map the vine water status in commercial vineyards. In conclusions, both new sensing 
proximal technologies show the potential applicability for assessing and mapping of vineyard 
water status in precision viticulture. 
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Introduction 
 
Water is a key resource in viticulture. Water status affects vegetative growth and yield in 
grapevines, as well as grape and wine composition. New technologies are desirable in viticulture 
to assess vineyard water status and to improve irrigation management. Implementation of 
precision irrigation systems could contribute to saving water and to optimizing the impact on vine 
growth, yield and grape quality. Greater precision in irrigation can be obtained using plant-based 
sensing technologies (Jones, 2004). Most of these tools can monitor only a single plant at a time 
in the field and/or are time-consuming; therefore, new non-invasive proximal or remote 
technologies are needed to detect and map vineyard water status. In precision viticulture the 
usefulness and convenience of high-spatial resolution information provided to determine plant 
water status zones within-vineyards was suggested by several authors (Acevedo-Opazo et al., 
2010; Baluja et al 2012; Cohen et al., 2016). 
Canopy temperature has been recognized as an indicator of plant water status (Costa et al., 2010, 
2013; Jones 1999, 2004). In fact, canopy temperature has been used as a tool for irrigation 
scheduling (Cohen et al., 2005, 2016; Meron et al., 2010). Thermal stress indices, such as the 
Crop Water Stress Index (CWSI) (Idso et al., 1981) and the Conductance index (Ig) (Jones et al., 
2002) have been developed to assess crop water status, reducing the impact of environmental 
fluctuations. Recent studies have also shown the effectiveness of these canopy temperature 
based indices computed from high-resolution imagery acquired either by hand-held thermal 
cameras (Pou et al 2014; Grant et al., 2016) or mounted on unmanned aerial vehicles (Baluja et 
al., 2012; Bellvert et al., 2014, 2015; Cohen et al. 2017). A vineyard is typically a discontinuous 
crop, as vines are planted in rows, trained to vertically shoot positioned trellis system in most 
grapegrowing regions worldwide. Proximal thermal imaging could be taken on-the-go for 
monitoring vineyard water status and characterizing the spatial variability in the commercial 
vineyards (Gutierrez et al., 2018).  
Near-infrared (NIR) spectroscopy is a powerful technology that provides a non-destructive 
analytical method. Non-destructive remote spectroscopy has enabled the definition of spectral 
indices from the combination of specific wavelengths, that are sensitive to changes in plant water 
status (Rodriguez-Perez et al., 2007). However, the use of NIR spectroscopy for the assessment 
of plant water status has not been extensively addressed. Likewise, estimation of grapevine water 
status based on NIR spectroscopy has been recently reported (Diago et al., 2017; 2018; 
Fernandez-Novales et al., 2018). Nevertheless, it is desirable the implementation of non-invasive 
NIR technology on-the-go to assessing and mapping the water status in commercial vineyards.  
The goal of this work was to assess and map the water status of a commercial vineyard using 
two different proximal sensing technologies on-the-go: near infrared (NIR) reflectance 
spectroscopy and thermal imaging. 
 

Materials and Methods 
 
The field experiment was conducted in a commercial vineyard located in Tudelilla, La Rioja, Spain 
over two consecutive seasons from June to end of September 2015 and from July to August 2016. 
The vineyard was planted in 2002 with grapevines of (Vitis vinifera L.) Tempranillo (Clone 776), 
grafted on rootstock R-110. The vines were trained to a vertically shoot-positioned (VSP) trellis 
system on a double-cordon Royat. Vine spacing was 2.60 m between rows and 1.20 m in the row 
in a north-south orientation.  
With the aim of creating a considerable variability of grapevine water status, a completely 
randomized block design (Hinkelmann and Kempthorne, 2007) with four blocks and three different 
water regimes was set, from no irrigation to full irrigation. This made up a total of 12 treatment 
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replicates in three different vine rows. Each treatment replicate comprised 25 plants. 
Midday stem water potential (ψs) was used as the reference indicator of the plant water status 
and it was measured around solar noon, (between 14:00 – 15:00 GMT+1). For each treatment 
replicate, the first five and last five plants were excluded, in order to avoid edge effects. The plants 
monitored were the 15 middle ones in each field replicate. These were sorted into three groups 
(five vines per group) and from each group a random one was marked. One adult leaf of the mid-
upper part of the canopy was selected per vine and its stem water potential measured using a 
Schölander pressure bomb (Model 600, PMS Instruments Co., Albany, USA). Prior to the Ψs 
measurement, the selected leaves were covered with aluminum foil to drive them into dark 
adaptation for one hour. 
 
NIR spectroscopy measurements 
On-the-go spectral measurements were also acquired at solar noon (between 14:00 – 15:00 
GMT+1) on five different days from June to September 2015. A NIR spectrometer (PSS 2120, 
Polytec GmbH, Waldbronn, Germany) working in the 1100-2100 nm spectral range, at a 4 nm 
resolution and 28 Hz of acquisition rate was used. The instrumentation was mounted to and 
carried on an all-terrain vehicle (ATV) (Trail Boss 330, Polaris Industries, Minnesota, USA), aiming 
to the left and capable of making spectral acquisitions controlled by a physical trigger while the 
vehicle was in motion (Fig 1A). The sensor head was installed at a height of 0.95 m from the 
ground, in order to cover the densest part of the vineyard's canopy (Fig 1B and 1C). Spectral 
measurements of the east side of the canopy were carried out contactless (at 25 to 30 cm from 
the canopy), from a moving vehicle moving at a speed of 5 km/h. 
 

 

 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 4 

Fig 1. (A) General display of the all-terrain vehicle mounting thermal imaging and NIR sensing technologies for assessing 
vineyard water status. (B) Detail of the NIR head sensor. (C) Industrial computer, control tablet and NIR processing unit 

and head sensor. (D) Detail of the thermal camera. (E) Industrial computer and control tablet for the thermal camera. 

Chemometric analysis was performed with algorithms programmed in MATLAB (version 8.5.0, 
The Mathworks Inc., Natick, MA, USA). PLS_Toolbox (version 8.1, Eigenvector Research, Inc., 
Manson, WA, USA) was used for principal component analysis (PCA) and partial least square 
regression (PLS).  
After removal of spectral and reference outliers, the remaining samples were divided into two 
independent datasets: calibration dataset (comprising 80% of total data), and external data set 
(involving the remaining 20% of initial data) for mapping purposes. 
As spectral pre-treatments, the Standard Normal Variate (SNV) plus Detrending (DT) (Barnes et 
al., 1989) procedure was used to remove the multiplicative interferences of scatter. In addition to 
a first or second derivative mathematical treatment, different window-wise filtering was applied. 
Partial Least Square (PLS) regression was tested for the prediction of Ψs using the on-the-go 
spectra acquired from the east side of the canopy. To prevent over-fitting, the assessment of the 
calibration model was performed by a six-fold cross-validation. In this method, the set of 
calibration samples was divided into ten groups, using one of them to check the results 
(prediction) and the remaining (nine groups) to build the calibration model. The model was 
repeated as many times as groups were (ten in total), in such a way that all the samples were 
used in both the calibration and prediction sets. The following statistics were used to select the 
most adequate models: determination coefficient of calibration (R2

c), cross-validation (R2
cv), and 

the root mean square error of calibration (RMSEC), cross-validation (RMSECV) and the number 
of latent variables (LVs). 
 
Thermal imaging measurements 
On-the-go thermal imaging was performed at solar noon (between 14:00 – 15:00 GMT+1) on two 
different days during summer 2016. A  thermal camera (FLIR A35, FLIR® Systems, Inc., Bilerica, 
MA, USA) was used. The device was mounted on the same all-terrain vehicle (ATV) (Trail Boss 
330, Polaris Industries, Minnesota, USA) used for NIR measurement (Fig 1A) and focused to the 
left at a distance from the canopy of approximately 1.2 m and with 48° × 39° horizontal and vertical 
field of views (FOV), respectively (Fig 1A). This distance and FOVs provided images covering 
canopy scenes of 1.07 m horizontally and 0.85 m vertically, approximately (Fig1D and 1E). 
Acquisition of the thermal images, at 60 frames per seconds (FPS), was performed in the east 
side of the canopy at an average speed of 5 km/h. Lower and upper boundary temperatures (Twet 
and Tdry, respectively) were acquired using two artificial leaves (Evaposensor, Skye Instruments 
Ltd, UK): a wet reference (artificial leaf covered with a black cotton wick and receiving continuous 
water absorption) and a dry reference (dry artificial leaf). 
Thermal images were not processed in their full dimensions to avoid the influence of other than 
canopy elements. A constant, automated crop out was performed to all the frames before their 
analysis. To remove large portions of sky, 35 pixels at the top were discarded, while the influence 
of soil and fruiting zone was prevented by removing 86 pixels at the bottom of the thermal images. 
Hence, only the middle section was taken into account in the analysis, named region of interest 
(ROI). While the total image resolution was 320×256 pixels, the ROI covered a total of 320×135 
pixels (1.07×0.45 m of the canopy), a 52.7% of the original area. From the ROI, a segmentation 
process was carried out by picking only those pixels whose temperature values ranged between 
Twet and Tdry, and afterwards the average temperature (Tcanopy) was computed. Additionally, from 
the ROI, Crop Water Stress Index was calculated as follows: 
 
 

𝐶𝑊𝑆𝐼 =	
'()*+,-.'/01
'23-.'/01

                                             (1) 
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Correlation analyses between the two thermal indices and Ψs were carried out. 
 
Mapping 
Maps of the predicted values of ψs in the monitored vineyard plots using the NIR spectroscopy 
and thermography models were built using a multilevel b-spline interpolation with QGIS 2.18 (Free 
Software Foundation, Boston, MA, USA). 
 

Results and Discussion 
A wide range of plant water status, from non-stress to severe water stress, as shown by the values 
of ψs was found varying from -0.76 to -2.20 MPa in season 2015 (Table 1). The best models 
obtained for ψs estimation were selected by statistical criteria, choosing those that presented the 
lowest value of SECV (0.157 MPa) and highest values of R2

cv (0.89). Moreover, a reduced number 
of PLS factors was used for the development of the cross validation model on the east side of the 
canopy under field conditions. 
 
 

Table 1: Calibration and cross-validation statistics of the best model obtained to predict stem water potential (Ψs, 
expressed in MPa) on east side of the vineyard canopy under field conditions from on-the-go NIR spectroscopy. 

 

SNV: standard normal variate. D1W15: Savitzky-Golay filter with first-grade derivative, window size of 15. n: number of samples. Min: 
minimum. Max: Maximum. SD: standard deviation. LV: number of latent variables of the PLS model. RMSEC: root mean square error 
of calibration (MPa). R2

c: determination coefficient of calibration. RMSECV: root mean square error of cross-validation (MPa). R2
cv: 

determination coefficient of cross-validation. 

 
 
In the case of thermal imaging, a wide variability in the plant water status was also observed in 
season 2016. Likewise, Ψs ranged between -1.87 to -0.87 MPa (Table 2). The average value was 
found as -1.28 MPa with a standard deviation of 0.236 MPa. The processing of the thermal 
images, along with the computation of the CWSI values, cast a determination coefficient of 0.79 
when correlating the thermal index with the Ψs. 
 
 
Table 2: Correlation statistics between Crop Water Stress Index (CWSI) and stem water potential (Ψs, expressed in MPa) on 

east side of the vineyard canopy under field conditions from on-the-go thermal imaging. 
 

Min: minimum. Max: Maximum. SD: standard deviation. 

Season 

 Calibration Cross validation 

Spectral 
pre-processing n Min Max Mean SD LV R2

c RMSEC R2
cv RMSECV 

2015 SNV + D1W15 126 -2.20 -0.76 -1.28 0.48 8 0.93 0.131 0.89 0.157 

Season Statistical summary of  Ψs  (in MPa) Correlation between CWSI and  Ψs 

n Min Max Mean SD R2 

2016 23 -1.87 -0.87 -1.28 0.236 0.79 
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The obtained results allow to assert that both NIR spectroscopy and thermal imaging were 
successfully capable of providing a very good estimation of the grapevine water status. NIR 
spectroscopy responded with slightly higher accuracy for water status estimation when compared 
to thermal imaging, taking into account that two different seasons were evaluated. In practical 
terms NIR technology has the advantage of removing the need of measuring reference 
temperatures, but on the other hand thermal cameras can be found at sensitively lower cost than 
NIR spectrometers. The results obtained in this work are in good agreement with those reported 
for on-the-go NIR spectroscopy (Diago et al. 2108; Fernández-Novales et al. 2018) and thermal 
imaging (Gutiérrez et al. 2018) for on-the-go vineyard water status appraisal, and open a totally 
new way of assessing crop water status to help in decision taking regarding irrigation 
management. However, further research is needed in order to gain a wider range of grapevine 
cultivars, seasons and locations to improve the accuracy and robustness of the predictive results. 
The spatial variability of the vineyard water status at two given dates of season 2015 (Fig 2A) and 
2016 (Fig 2B) was calculated and presented as maps from the predicted values of Ψs obtained 
using the external prediction models from the NIR spectra acquired on-the-go and the prediction 
of the second day using the equation from the first day by thermal imaging. In 2015, the most 
stressed vines (with more negative Ψs. values) were found on the west side of the plot and toward 
the north east, while the plants in the east and north-west parts of the plot exhibited little to no 
water stress. 
 
 

 
Fig 2. Maps of the predicted values of midday stem water potential using NIR spectroscopy (A) and Thermal imaging (B). 
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The presented results showed two innovative, non-destructive on-the-go technologies that allow 
the characterization of the water status of a vineyard, able to measure and predicting a huge 
amount of points within the plot for the precise monitoring of vine water status. Additionally, this 
large amount of information let for maps to be generated, and, from them, a few discretized zones 
can be defined for homogeneous irrigation treatments within them, leading to a more efficient and 
sustainable use of water. 
 

Conclusions 
On-the-go assessment of vineyard water status using NIR spectroscopy and thermal imaging 
thermography offers a pathway forward for the sustainable viticulture, particularly in the current 
worldwide scenario of increased water scarcity. The obtained results confirm the notable accuracy 
that both technologies reached in the estimation of the vineyard water status over two different 
seasons. Moreover, these non-destructive technologies allow to monitor rapidly large commercial  
vineyards becoming useful tools for irrigation scheduling in the decision-making process. 
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