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Abstract. Maize is grown predominantly for silage or gain in North Island, New Zealand. Precision 
agriculture allows management of spatially variable paddocks by variably applying crop inputs 
tailored to distinctive potential-yield limiting areas of the paddock, known as management zones. 
However, uptake of precision agriculture among in New Zealand maize growers is slow and 
limited, largely due to lack of data, technical expertise and evidence of financial benefits. 
Reflectance data of satellite and areal images can be used to delineate management zones when 
yield maps are unavailable. This study focused on using publicly available remotely sensed 
reflectance data for delineating management class maps rather than traditional approaches. 
Reflectance data from freely available Google Earth images were used to develop management 
class maps for a 5.95 ha paddock in the North Island, New Zealand. Google Earth images were 
imported into Geographic Information Systems software for georeferencing and extracting pixel 
value data. Extracted data were interpolated into a 1 m x 1m common grid and normalised. 
Normalised data for each band of three crop cover only and bare soil only images were combined 
to create two separate management class maps with three clusters in Management Zone Analyst 
software. Multiple years of maize grain yield data from the paddock was used to create three 
management classes: high yield stable; low yield stable and unstable. Filtered multi-year yield 
data were used to validate maps of reflectance data opposed to traditional yield map. Both 
management class maps delineated from the Google Earth images discriminated yield classes 
with narrow absolute yield differences. Management class map derived from bare soil only images 
better depicted the patterns in the traditional multi-year yield map, compared to the map derived 
from crop cover only images. Reflectance data derived from Google Earth images can serve as 
a preliminary data source when multiple years of yield data is absent. 
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Introduction 
In New Zealand, maize is an important crop, predominately grown in the North Island, which is 
harvested as either grain or silage. Maize grain is produced for human and animal consumption, 
while maize silage is principally and increasingly used as a supplementary feed in pasture-based 
dairy industry (Morris et al 2016). Harvest hectares (ha) in New Zealand under the maize grain or 
silage crop has reduced from 69,864 ha in 2015 to 50,516 ha (predicted) in 2017 (FAR 2016). 
The situation demands New Zealand maize growers manage crop with optimal crop inputs for 
achieving higher yields with limited harvest area to satisfy maize crop supply for the industry.  
In New Zealand, fertiliser and seed rates for maize crop are determined based on multi-year 
historic yield records and crop harvest expectations of the paddock. This method is of limited 
value in spatially variable paddocks (Holmes 2017). The input rates are developed from the data 
collected from several points over a larger field and are applied to whole-field management 
strategies. For more accurate application, agronomic inputs should be tailored to paddock areas 
that have distinctive potential-yield limiting characteristics. Precision agriculture (PA) allows for 
fields to be managed by variably applying the crop inputs into sub-field areas (Fraisse et al 2001). 
These distinctive yield limiting sub-field areas are known as management zones (MZs). 
Delineation of MZs allows classification of spatially distinct areas of a field (Doerge 1999). A 
specific rate of crop input or treatment can be applied to a management zone (MZ; Doerge 1999; 
Taylor et al 2007). In PA, the terms MZ and management class (MC) are widely used, but are 
interpreted differently. Management class is an area which a specific crop input or treatment can 
be applied and may include many MZs. In comparison, MZ can only have one MC (Taylor et al 
2007). 
Uptake of PA methods is slow and limited in commercial sector, although it has been practiced in 
New Zealand since 1990’s. The slow uptake is believed to be due to lack of data, technical 
expertise or know-how to delineate MZs required to create prescription maps. Farmers are 
reluctant to uptake new technologies as the evidence of financial benefits related to site-specific 
crop input management for maize crop is not available. However, the majority of the maize grain 
or silage crops are harvested with Global Positioning System (GPS)-enabled harvesters and yield 
monitors that are capable of recording data at every second. In addition, variable rate application 
(VRA) technology is possessed by maize growers although the feature is rarely used (Holmes 
2017).  
Publicly available data can be a valuable source when promoting PA in New Zealand. This allows 
growers who wish to adopt site-specific crop management (SSCM) without years of yield data, or 
who do not have site property data such as elevation, soil moisture or soil electrical conductivity. 
Reflectance data from the satellite images can be used preliminary for delineating MZs when yield 
maps are not available for the field (Zhang et al 2010). For example, historical satellite images 
that have a spatial resolution of 10 m or less have been used to create prescription maps for 
managing cotton root rot disease through VRA of fungicide (Yang et al 2017). Large volumes of 
high resolution satellite data and aerial images can be accessed and retrieved freely from virtual 
globes such as NASA’s World wind, Microsoft’s Bing Maps, ArcGIS Explorer, and Google Earth 
being the most popular and influential virtual globe (Yu and Gong 2011). 
The objective of this study was to test the use of Google Earth images as a data source for 
delineating site-specific management classes and to determine whether those management 
classes relate to management classes derived with multiple year maize yield data. Emphasis is 
given for scenarios when any data is absent for growers who shift from whole-field management 
to a SSCM or as a case study to provide evidence on benefits of adopting SSCM for maize 
growers. 
 

Materials and methods 
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The study was carried out using data collected from a paddock near Pukekohe (-37.317590°, 
174.902172°) named “Costar Field”, North Island, New Zealand. Costar Field is situated in a flat 
valley, cultivated with maize, either for grain or silage and grazed pasture in rotation. The soil in 
the 5.95 ha paddock is classified as imperfectly drained clay stoneless mottled orthic allophanic 
soil (Hewitt 2010). The paddock is not irrigated and is totally rain-fed.  
Multi-year yield MC map for Costar Field was derived from six years (2003, 2006, 2008, 2009, 
2012 and 2016) of maize grain yield harvested at 20 to 25% moisture from GPS-enabled harvester 
yield monitors. Multiple year yield data files were analysed for spatial and temporal variability. 
Multi-year data were normalised and then aggregated to create three MZs (here after referred to 
as “Multi-year Yield Map”): High yield that is stable over time (HS); Low yield that is stable over 
time (LS) and yield that is unstable over time (US). Normalized yield is the ratio of the actual yield 
at a specific point to the paddock average. Stable zones were defined as having less than 30% 
coefficient of variance over the six years, while those where the coefficient is greater than 30% 
were considered unstable.  Areas with a normalised yield higher than 100% were defined as high 
yielding and those with less than 100% of normalised yield were low yielding.  

Reflectance data (pixel values) for the paddock was obtained from the remotely sensed imagery 
available in Google Earth Pro software (v. 7.3.0.3832, Google Inc., California, USA) historic 
imagery archive. Google Earth images only have red (R), green (G) and blue (B) bands. The RGB 
images available on 08/03/2011, 13/06/2014 and 11/03/2016 were retrieved to extract reflectance 
data from the vegetation crop cover only (here after referred to as “GE-Crop Map”). Images 
available on 04/11/2015 and 17/08/2016 were used for bare soil only reflectance data (here after 
referred to as “GE-Bare Soil Map”). Other satellite images retrieved from the historical imagery 
archive (13/06/2001, 18/05/2004, 17/03/2010, 11/03/2013, 10/05/2013, 01/09/2013, 31/05/2014, 
27/07/2014, 12/01/2015, 29/05/2015, 22/07/2015, 04/01/2017, 08/04/2017) were referred to for 
ancillary information about the field such as water channels, cropping systems, fences, trees, dark 
soil, etc. that may contribute to field variability. 

Selected GE images in the Google Earth Pro software were saved in jpeg format at 1920 x 1080 
(1080HD) resolution. Saved GE images were imported into ArcMap, ArcGIS 10.5 software 
[Environmental Systems Research Institute (ESRI), Redlands, CA, USA] and the images were 
geo-referenced using “Georeferencing” Toolbar. Geo-referenced images were clipped to the 
Costar Field boundary. Clipped rasters were converted into ESRI point shapefiles, then RGB pixel 
values corresponding to each point were extracted in to an ASCII text file format.  
Reflectance data (RGB pixel values) extracted from each GE image were interpolated into a 
common grid of 1 m x 1 m derived from Costar Field boundary, using block kriging in VESPER 
(Variogram Estimation and Spatial Prediction with ERror) software (Australian Centre for 
Precision Agriculture, University of Sydney, Sydney, Australia). Interpolated data from each band 
was normalised by dividing each point data value by the respective global mean (Fridgen et al. 
2004). These normalised data were used to derive three clusters by combining RGB bands; (i) 
GE images with vegetation crop cover only (three images, nine data sets in total) (ii) GE images 
with bare soil only  (three images, nine data sets in total), in Management Zone Analyst (v. 1.0.0) 
(MZA) software (Agricultural Research Service, USDA, USA). Both vegetation cover only and 
bare soil only outputs from MZA were imported into ArcMap to develop two separate MC maps; 
GE-Crop Map and GE-Bare Soil Map. Both maps were classified into only three management 
classes (GE-Crop Map - Classes A, B, C and GE-Bare Soil Map - Classes X, Y, Z) to comply with 
the Multi-year Yield Map. Small, isolated MZs less than 50 m2 of area were merged into a larger 
neighbouring polygon to obtain smooth maps.  
Maize grain yields data available from six years (2003, 2006, 2008, 2009, 2012 and 2016), were 
imported into ArcMap, and the data was screened for erroneous yield values using methods 
adopted from Kleinjan et al. (2002) and Ping and Dobermann (2005). This involved first detecting 
frequency distribution outliers for grain moisture based on the global mean and standard deviation 
(SD) of the histogram. Grain moisture values less than mean - 2SD or greater than mean + 2SD 
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were discarded from all the yield data sets except for 2006 yield data set. Grain moisture values 
lying outside mean ± 1SD were discarded from the 2006 yield data set. Then, maize grain yields 
were filtered with defined lower and upper yield limits. The lower yield limit selected was 0.1 t ha-

1. The upper yield limit was decided based on the average maximum yields recorded for the maize 
grain crop in the harvested year. The upper yield limit used was 18.0 t ha-1 and 20.0 t ha-1 for the 
maize crops before 2010 and after 2010, respectively. In the final step, yield data recorded at 
double-planted rows and headland turns which remained unfiltered were cleaned manually as 
required. 

Filtered maize grain yield data from six years were overlaid separately on derived three MC maps 
in ArcMap. The yield data lying in each class was then extracted to calculate yield averages per 
class. A 1 m buffer area from each boundary of the classes in the map was allocated when 
extracting yield data. The yield averages extracted from each MC were used for the analysis. 
Recurring differences in the average yield values of the MC validate the relevance of the derived 
MZs representing groups of yield variability.  
Extracted yield data from separate classes for each year are presented as means with error bars 
as standard error of the mean. Data analysis was competed in R Studio (v. 0.99.887). A 
comparison of the yields derived from the GE-Crop Map and the Multi-year Yield Map, and GE-
Bare Soil Map and Multi-year Yield Map, were completed to determine how closely the GE-Crop 
Map and GE-Bare Soil Map estimated the actual yield, as presented by the Multi-year Yield Map. 
This was done using linear regressions for each year using means from each MC.  

 

Results  
The GE-Crop Map and the GE-Bare Soil Map derived from the GE images reflectance data and 
the Multi-year Yield Map derived from the multi-year yield data are shown in the Fig. 1. The 
management classes X and Y from the GE-Crop Map were largely spatially situated within the 
center of the paddock, with MC Z mostly occupying the perimeter of the paddock (Fig. 1 a). There 
was some order to the variability of the two classes occupying the middle area of the paddock; 
the X class dominated the northern center of the paddock while the Y axis dominated the southern 
center of the paddock. The GE-Bare Soil Map (Fig. 1 b) shows high scatter and variability between 
management classes A and C within the middle of the paddock, while the perimeter of the 
paddock is mostly characterized by class B, with the exception of the eastern boundary.  
Both the GE-Crop and GE-Bare Soil Map showed classes that roughly coincided with the 
locations of HS compared to LS in the Multi-year Yield Map (Fig. 1 c). The Multi-year Yield Map 
showed that the perimeter of the paddock was characterized by LS while the interior of the 
paddock was characterized by HS. The US occupied the perimeter of the paddock, and it is mostly 
captured by class B in the GE-Bare Soil Map and MC Z in the GE-Crop Map. 
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Fig. 1 Management class maps derived from a) Google Earth (GE) images with vegetation cover 

only - X, Y, Z; b) GE images with bare soil only - A, B, C; c) multi-year maize grain yield 
data only for the high yield stability class (HS), the low stability class (LS) and the unstable 
yield class (US) 

In the GE-Crop Map, the relative yield data from the respective classes showed some consistency 
year-to-year (Fig. 2a). In the GE-Crop Map, yields in class Z were always lower than classes X 
and Y. In some years, class X yields were higher than class Y (2006, 2008, 2012, 2016), and 
other years, class Y yields were higher than class X (2003 and 2009). However, the actual 
differences in yield between classes X and Y were small; the largest difference between the two 
classes occurred in 2008 and was 0.79 t ha-1, or an 8% difference in average yield between the 
management classes.  
Like the GE-Crop Map, the relative yield data derived from the GE-Bare Soil Map was mostly 
consistent year to year from the respective classes (Fig. 2b). Yield from MC B was always on 
average lower than yields in class A and C. Between 2003 and 2009, yields from class C were 
higher than from class A, while in 2012 and 2016, yields from class A were higher than from class 
C. The relative yields from management classes A and B varied throughout the years, however, 
the maximum difference in yield between the classes was 3%, or 1.92 t ha-1.   
The yield from the Multi-year Yield Map showed that the HS class was higher than LS and US in 
each measured year; yields from the HS class were on average between 7 and 25% higher 
compared to the yields from the LS class, and on average between 9 and 104% higher compared 
to the US class (Fig. 2c). These differences translated to an average of between 2.70 and 5.87 t 
ha-1 higher yield in the HS class compared to the LS and US classes. 
A comparison of GE-Crop Map management classes X, Y and Z to HS, LS and US from the Multi-
year Yield Map, respectively, showed that in general, the yields derived from GE-Crop Map 
classes Y and Z were higher than Multi-year Yield Map classes LS and US, respectively, and the 
magnitude overestimation of the yields by the GE-Crop Map varied by year. The yield derived 
from the GE-Crop Map in class Y were between 6 to 20% higher than yield from the Multi-year 
Yield Map class LS in all years. The yields derived from the GE-Crop Map class Z were between 
4 to 81% higher than yields from the Multi-year Yield Map class US in every year   (Fig. 3a). A 
comparison of GE-Crop Map class X with Multi-year Yield Map class HS showed that the yields 
derived from the GE-Crop Map related well and were comparable (Fig. 3a). The yields derived 
from the GE-Crop Map in class X were between 5% lower and 2% higher than yields from the 
Multi-year Yield Map class HS in all years.  
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Fig. 2 Comparing mean maize grain yield (with standard error as error bars) for each year and 
management class (MC) derived from the MC map; a) Google Earth (GE) images with 
vegetation cover only – GE-Crop Map; b) GE images with bare soil only – GE-Bare Soil 
Map; c) multi-year maize grain yield data only for the high yield stability class (HS), the low 
stability class (LS) and the unstable yield class (US) – Multi-year Yield Map 

A comparison of GE-Bare Soil Map MZs derived classes A and B to HS and LS from the Multi-
year Yield Map, respectively, showed that in general, the yields derived from GE-Bare Soil Map 
were well aligned with the actual yields from the Multi-year Yield Map (Table 1, Fig. 2b). The yields 
derived from the GE-Bare Soil Map in class A were, at most, 6% lower than yield from the Multi-
year Yield Map class HS in all years (Table 1). The yields derived from the GE-Bare Soil Map in 
class B were between 3% lower and 2% higher than yields from the Multi-year Yield Map class 
LS, and between GE-Bare Soil Map in class C was between 8 and 95% higher than yield from 
the Multi-year Yield Map class US (Table 1). 
 
Table 1 The linear regression results comparing the mean maize grain yields derived from the 
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GE-Crop and GE-Bare Soil Maps to the actual yields from the Multi-year Yield Map. 
Comparisons are between GE-Crop Map management class (MC) X and Multi-year Yield 
Map class high stability yield (HS), the yield from GE-Crop Map MC Y and Multi-year Yield 
Map class low stability yields (LS), and the yield from GE-Crop Map MC Z and Multi-year 
Yield Map class unstable yields (US). 

 

Management Class Map comparison Management 
Classes R2 Slope Intercept 

GE-Crop Map vs. Multi-year Yield Map 
X – HS 0.96 1.01 -0.09 
Y – LS 0.92 0.85 2.82 
Z – US  0.62 0.57 5.75 

GE-Bare Soil Map vs. Multi-year Yield Map 
A – HS 0.98 0.92 1.24 
B – LS 0.99 0.95 0.47 
C – US 0.60 0.52 6.86 

 
Fig. 3 Mean maize grain yield for each year and management class from a) the GE-Crop Map 

against the Multi-year Yield Map, and b) the GE-Bare Soil Map against the Multi-year Yield 
Map. A 1:1 line has been inserted to show the comparability of the GE-Crop or GE-Bare 
Soil Map derived yields to the actual yields from the Multi-year Yield Map  

 

Discussion 
Based on the comparison of the MZs delineations, MC representation of relative (high vs. low) 
yields are maintained over time better by the GE-Bare Soil Map than by the GE-Crop Map (Fig. 
2). In the GE-Crop Map, only small differences in yield were noted between class X (high yield 
stability) and class Y (low yield stability) in 2003, 2009, and 2016. This suggests that while the 
GE-Crop Map can delineate management classes most of the time, the GE-Soil Map methodology 
was a more reliable for detecting and delineating high vs. low yield management classes. 
The ability to consistently derived relative yield management classes differs from the ability to 
derived accurate yields. Both GE-Crop and GE-Bare Soil Maps were able to estimate actual yield 
within the high yield stability MC, with the greatest differences between actual and estimated 
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yields from the GE-Crop or GE-Bare Soil Map equating to only 0.73 t ha-1.  
Issues, however, arose with the yield estimates within the low yield stability MC in the GE-Crop 
Map, with differences of up to 20% between the actual and estimated yields (Fig. 2). The GE-
Bare Soil Map estimates of yields in low stability yield MC were never more than 3% different from 
the actual yields, equating to a different in yields of only 0.34 t ha-1. 
The success of the GE-Bare Soil Map in both delineating MZs and estimating yield may be 
explained by the fact that constraints on crops are related to soil physical limitations such as 
shallow available rooting depth or light soil texture (Oliver et al. 2010). It may be that soil physical 
properties, and their effects on water, are more important when explaining crop yield than soil 
fertility (Pierce et al. 1995), suggesting remotely sensed bare soil data provided adequate data 
about the soil physical properties for MC delineation and yield estimates. Based on the data from 
this study, the reason for the relatively greater success of yield estimates from GE-Bare Soil Map 
compared to the GE-Crop Map can only be speculated. However, others have noted the value of 
soil data for crop MZ delineation and yield estimates. For example, Zhang et al. (2010) delineated 
MZs of commercial fields for soybeans (in 2004) and wheat (in 2005) in the northern Great Plains, 
USA with satellite images, high resolution imagery from airborne sensors and farmer provided 
field data. Their results noted that highest normalised difference vegetation index (NDVI) values 
of the cropping season had a correlation coefficient of ≈0.4 with soil organic matter content. 
Overall, the comparison of the GE-Crop and GE-Bare Soil Maps suggests that the MC derived 
from the GE-Bare Soil Map is better at discriminating high and low yields.  
There are a number of factors that may affect the accuracy of the methods proposed in this study. 
Changes to the length of time over which yield data is collected may impact the results. For cotton, 
5-year’s data (±2 years) have been found to generate stable estimates of yield zones (Boydell 
and McBratney 2002). However, climatological variability overtime must also be considered. Corn 
yields have been found to be sensitive to drought, and the associated sensitivity of maize 
tolerance to drought may be related to crop density (Lobell et al. 2014). These factors may 
influence MC classification in both the GE-Bare Soil and GE-Crop Maps by affecting the data 
quality.  
Notably, relative average yields from unstable yields class were not well represented in either the 
GE-Crop or GE-Bare Soil Map classes; average yields in the US class were overestimated by up 
95% both the GE-Bare Soil Map and GE-Crop Map. Since the unstable yield areas represent a 
relatively small proportion of the field, and occur mainly on the perimeter of the field (Fig. 1c), their 
presence in this field are of little concern. However, other fields which have greater areas of 
unstable yield may need to explore the underlying causes. Others have noted temporal patterns 
in corn grain yield are the result of interacting effects of climate, soil, plants, landscape and 
management practices (Lamb et al. 1997). While the classification of unstable yield areas is 
possible with our method using freely available GE images, a limitation of the method is that it 
does not explore the causes behind unstable yield.  
Google Earth images are increasingly used to acquire spatial data for scientific analysis. The 
image quality, resolution and image acquisition data can vary depending on the location of the 
globe and may not suitable for some analysis. Differences in acquisition dates and temporal 
frequencies of images limit the required frequency of data sets. Google Earth images may not 
available for every crop season for some fields. Furthermore, requirement for additional software 
and data sets is a drawback when using GE images for quantitative measurements (Yu and Gong 
2012). 
A comparison of GE-derived yields to actual yield data – as done in this study - can help validate 
the results of other crops. Yield maps can provide information about the productivity of fields that 
is stable if the yield data is collected over several growing seasons. While these maps have been 
used to prescribe sub-field management of fertilizer and water application, data collection 
methods have some limitations, including errors in yield estimation due to coarse resolution, lags 
in moving the grain from the crop to the point of measurement, variations in combine speed and 
noise induced by machine vibration and varying terrain (Lamb et al. 1995). 
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Conclusions 
Both GE-Crop Map and GE-Bare Soil Map were adequately delineated management classes in 
the study paddock. The relative yield (high vs. low) MC delineations were better represented by 
the GE-Bare Soil Map, which was generated by the bare soil data, compared to the GE-Crop 
Map, which was generated by vegetation crop cover data. Reflectance data extracted from the 
GE images have the potential to be used for delineating preliminary MC maps when other data is 
not available for the paddock. However, similar studies including other maize growing paddocks 
are desirable to validate the results.    
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