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Abstract. UAV imagery was collected in April and July of 2017 over a grape vineyard in 
California’s San Joaquin Valley. Using spectral signatures, a landcover classification was 
performed to isolate table grapes from the background vegetation and soil. A novel vegetation 
index was developed based off the unique spectral characteristics of the yellowing effects of 
chlorosis within the table grape vines. Spatial statistics were run only on the pixels containing 
grape plants, and a relative vegetation health map was produced, using both the novel vegetation 
index and NDVI. Several regions within the map were identified as areas of interest and marked 
for further analysis. Automated temporal analysis showed that these areas of interest were in fact 
underperforming throughout the growing season. Field measurements later confirmed that these 
areas were suffering from a potassium deficiency. It was also shown that using a simple 
vegetation index, like NDVI, alone could not locate these anomalous areas even though it was 
present and measurable within the data. 
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Introduction 
Remote sensing of vegetation can be a frustrating endeavor given that subtle nuances in spectral 
responses can signal dramatic changes in vegetation health and photosynthetic efficacy. This 
frustration is amplified when common remote sensing techniques, such as the tried and true 
Normalized Difference Vegetation Index (NDVI), fail to provide the required data and/or 
validations of the observed phenomena. It is for this reason that a deeper dive into the science of 
remote sensing is required to begin isolating and identifying these more subtle phenomena.  
Taking this study as an example: early on, a field scout identified several plants within the test 
area that were showing signs of stress, visibly presenting itself through a yellowing of the leaves.  
The shift in visible pigmentation was quite possibly a result of a loss of chlorophyll. When 
chlorophyll and carotene are both present within a leaf, the leaf will reflect more green light (as 
compared to red and blue), thus appearing as green to the eye. However, when chlorophyll levels 
begin to dissipate, during senescence for example, red and green reflectance increases and the 
leaf begins to appear yellow in color (Sims & Gamon, 2002). In addition to the increase in red and 
green reflectance, the red edge (the sharp change in reflection at 710-720nm) can begin moving 
towards shorter wavelengths accompanied by a contraction in the chlorophyll absorption peak 
(Jones & Vaughan, 2010). However, depending on the level of senescence, the ratio between the 
red and near infrared reflectance can remain somewhat invariant. This ratio is the basis for NDVI 
(Rouse Jr, Haas, Schell, & Deering, 1974) so even with the apparent visual shift, NDVI may not 
register the stress until it is too late. 
The intent of the paper is to show the reader potential vegetation monitoring solutions beyond 
NDVI. This study is not meant to be an exhaustive analysis of a specific phenomenon but rather 
an introduction to topics and hopefully a stepping off point for many.  

 

Methods 

Study Area 
The study site is located in the California’s San Joaquin Valley. This region has a population of 
roughly 4 million people and is one of the most productive agricultural regions in the world 
(Environmental Protection Agency, 2018). The imagery was collected over Brandt Farms and the 
target vegetation type in this scene is table grapes. Two images were collected over the site, one 
on April 26, 2017 and one later in the season on July 10, 2017. In the April image, there was 
considerable ground cover vegetation between rows and the target vegetation had yet to achieve 

Figure 1: Healthy (left) and stressed (right) vines, as seen from in-field inspection (Micasense, 2017a). 
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full canopy closure, whereas in the July image, some of the groundcover vegetation has been 
removed and full canopy closure has been achieved. 

 

Image Data 
The imaging platform used in this study was a 3DR Solo (e.g. unmanned aerial vehicle). This 
platform was used because it is inexpensive and could comfortably carry the weight of the imager. 
A MicaSense RedEdge camera was used to capture the imagery. The MicaSense RedEdge 
acquired five narrow, spectral bands simultaneously which were saved to an onboard SD card. 
The RedEdge camera has five spectral bands running from visible through near infrared. 
Images were also taken of a Calibrated Reflectance Panel (CRP) which were provided by 
MicaSense. The CRP provided us with a reference point from which reflectance values could be 
derived. 
Preprocessing 

A grid pattern was flown over the study area which provided adequate forward and side overlap 
for later orthomosaic generation. The raw imagery was initially captured by the MicaSense 
RedEdge sensor then analyzed using PrecisionPass (Harris Geospatial Solutions Inc., 2018d). 
The camera parameters, side lap, forward overlap, image saturation, and image contrast were 
deemed appropriate and a decision was made to leave the study area without flying again. Before 
orthorectification and mosaicking could be performed, the imagery was stacked and converted to 
reflectance values. The imagery was co-aligned and stacked using the UAV Toolkit (Norman & 
Harris Geospatial Solutions Inc., 2018) and the conversion from radiance to reflectance was done 
using Equation 1 (MicaSense, 2017b).   

𝐹" = 	
𝜌"

𝑎𝑣𝑔(𝐿")
 

Equation 1: Conversion from radiance to reflectance calibration factor. Where Fi is the reflectance calibration factor for 
band i, ρi is the average reflectance of the CRP for the ith band, and avg(Li) is the average value of the radiance for the 

pixels inside the panel for band i. 

Once the reflectance image stacks were created, they were orthorectified and mosaicked using 
ENVI OneButton (Icaros, 2017).  

Analysis 
In order to do all of the image processing and analysis, it was imperative that a remote sensing-
specific software suite was used. We decided to use ENVI + IDL and the ENVI Crop Science 
module for these tasks (Harris Geospatial Solutions Inc., 2018a, 2018b) because of its ease of 
use and large breadth of tools available. To begin, we first isolated the target vegetation (i.e. table 

Figure 2: Orthomosiac of Brandt Farms. Image on the left was captured early in the season (4/26/2017) before full canopy 
closure.  Image on the right is later in the season (7/10/2017) after canopy closure. 
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grapes) from the ground cover. This was an important step because later in the workflow, multiple 
global and local statistics were run, and by including background pixels, it raises the risk of 
skewing the resulting statistics due to the effects of spatial autocorrelation. Spatial autocorrelation 
occurs when the presence of a specific material or characteristic affects the presence of the same 
material or characteristic simply through the colocation with another material (Congalton & Green, 
2008). By isolating the target vegetation, we could compare like materials to one another to isolate 
subtle variations in spectral characteristics.  
To segment and classify the images, a spectral library was automatically built using Spectral 
Maximum Angle Convex Cone (SMACC) (Gruninger, Ratkowski, & Hoke, 2004). This algorithm 
looks for an abundance of spectral endmembers and then creates a spectral library of these 
endmembers. Since the images are primarily made up of ground cover vegetation, table grapes, 

and soil, the algorithm was able to successfully separate the spectra of the table grapes from all 
other spectral profiles (Figure 3). Once the spectral library was built, spectral angle mapper (SAM) 
was used to classify the image because it is relatively insensitive to illumination and albedo 
effects. Variations in illumination intensity were present within the collections because this dataset 
was collected in small sections and reconstructed into one large image. SAM mitigates 
illumination effects by creating a vector for each spectra in the spectral library and mapping it into 
multidimensional space (e.g. the number of dimensions are equal to the number of bands). The 
angle of each target spectra vector is compared with that of each pixel’s vector within the image. 
If the angle of a pixel in the image falls within x user-defined degrees of one of the target spectra’s 
then it is classified as that target spectra (Kruse et al., 1993).  
Once the target vegetation was isolated, manual spectral analysis was performed by examining 
the spectra at the locations where yellowing was observed. This revealed that the stressed 
vegetation had higher reflectance values in the blue, green, red, and red edge bands as compared 
to healthy green vegetation. There was also a lower spectral reflectance observed in the near 
infrared band, as compared to healthy green vegetation. To take advantage of these 
observations, a novel vegetation index was derived.  

𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑	𝐸𝑑𝑔𝑒
𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑅𝑒𝑑 − 𝜌𝐵𝑙𝑢𝑒

 

Equation 2: Novel vegetation index designed to take advantage of the unique bands available from the MicaSense 
RedEdge sensor. rBlue = 475nm, rGreen = 560nm, rRed = 668, rRed Edge = 717nm, rNIR = 840nm 

This index captures the difference between the location of the red edge absorption feature and 
that of the near infrared, while also using the ratio between the visible and non-visible portions of 
the spectra. This vegetation index was based off of the proven efficacy of the Simple Ratio (SR) 

Figure 3: Ground cover and table grape spectra 
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vegetation index (Birth & McVey, 1968).  
To track the changes occurring over the growing season, a trend analysis was performed. The 
“find developing hotspots” tool created by Harris Geospatial Solutions, Inc. was used for this 
purpose. This tool creates a trendline for the study area and then analyzes deviations from that 
trend. This tool also uses spatial statistics to define regions that are statistically significant, then 
computes the level of significance as compared to the rest of the regions under review. By 
combining the trend analysis and spatial statistics, the resulting data layers shows regions within 
a field that are statistically significant with respect to spatial information in addition to statistically 
significant in terms of developmental trends (Harris Geospatial Solutions Inc., 2018c).  
 

 
Figure 4: Developing Hotspots resulting images.  Red areas, in the developing hotspot images, indicate regions that are 
statistically significant and are trending well below the mean level of the field. Red area in the ground truth image shows 

the yellowing regions identified by the field scout. 

 

Results and Discussion 
Using the novel vegetation index discussed above, we have been able to more accurately identify 
and map areas within the field that have been affected. Tissue tests revealed that the yellowing 
seen early on was the effect of low levels of potassium. Variations in nutrient uptake can manifest 
themselves in many ways. In this case, a lack of potassium lead to chlorosis (a low level of 
chlorophyll in the leaves). Chlorosis can cause leaf die off which may result in fruit sunburn, 
variations in color uniformity, and issues associated with bunch/berry size.  
By comparing the red regions in the NDVI image to those in the novel vegetation index in Figure 
4, it is clear that considering the full spectral profile of the phenomena, we are able to derive more 
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information and identify costly problems much earlier. Luckily this issue was quickly mapped and 
remediation efforts can now be undertaken for next year. 
NDVI is an incredibly useful algorithm; however, in some cases, it is not finely tuned enough to 
see actionable results. While it is not always necessary to have a custom index built for each 
phenomenon, it is important to consider what physiological forces are at play and how they can 
be measured. By knowing the way in which light interacts with the vegetation in question, it was 
possible to narrow in on an equation that leveraged the power of the sensor being used as well 
as the physical characteristics being mapped.   

Conclusions 
Much of the literature that deals with vegetation uses NDVI as a starting point and then expands 
from there after results are not sufficient. However, we can see that it is often better to first look 
at the characteristics of the target that is being mapped and identify unique features associated 
with that material (e.g. yellowing leaves, wilting leaves, loss in moisture concentration…). Once 
these key features have been identified, then one can look at how this is being manifested in the 
spectra. Then, and only then, should the decision be made to deploy a tried and true vegetation 
index like NDVI. 
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