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Abstract.  
Static (i.e. texture and soil depth) and dynamic (i.e. soil water, temperature) factors play a role in 
determining field or subfield economically optimal N rates (EONR). We used 50 nitrogen (N) trials 
from Argentina at contrasting landscape positions and soil types, various soil-crop measurements 
from 2012 to 2017, and statistical techniques to address the following objectives: a) characterize 
corn yield and EONR variability across a multi-landscape-year study in central west Buenos Aires, 
Argentina, b) quantify the relative importance of the dynamic versus static factors, and c) develop 
predictive models to assist site-specific N management in that region. Results indicated that 
EONR in this region varies with a coefficient of variation of 67% (range: 0 to 260 kg N ha-1). Yield 
levels varied less than the EONR with a coefficient of variation of 27% (range: 3.8 to 17 Mg ha-1). 
Dynamic factors explained about 47% of the spatial and temporal variability in the EONR and 
static variables explained 20% of the observed variation. Multi-regression analysis considering 
both static and dynamic factors captured between 60 and 71% of variability in EONR and corn 
yield. Model performance was better for yield (MAE, mean absolute error, ~1 Mg ha-1) than for 
EONR (MAE of 39 kg N ha-1). The number of rain events greater than 20 mm accumulated from 
planting to flowering and from planting to harvest and the amount of residue were the most 
important predictors of the variability (among ~ 60 variables explored). This analysis advances 
our understanding on the critical factors influencing EONR and yield to support development of 
decision N management tools to aid precision agriculture goals and strength current N guidelines. 
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Introduction 
The adoption of precision agriculture and variable rate nitrogen (VRN) in particular, has rapidly 
increased in the Pampa’s region, Argentina. It is intuitive to believe that in fields with significant 
variation in soil properties (i.e. soil texture, organic matter, etc.) and crop management (i.e. crop 
rotation), VRN application results in an effective strategy (Melchiori, 2013; Moral et al., 2010). 
Ideally, the main objective of VRN is to apply the economic optimum nitrogen rate (EONR) in 
every part of the field with the aim of increasing N fertilizer use efficiency, maximizing profits, and 
reducing environmental impacts. However, finding the EONR value per year and per site remains 
challenging (Mamo et al., 2003; Ma et al., 2005; Kyveryga et al., 2009).  
There are numerous studies reporting the effect of individual factors such as soil properties or 
precipitation on yield and EONR (Basso et al.,2001; Dharmakeerthi et al., 2005; Mamo et al., 
2003; Tremblay et al., 2012; Albarenque et al., 2016). These factors can be broadly classified into 
dynamic (change fast over time such as precipitation) and static variables (change slowly over 
time such as soil organic matter). Today N recommendation methods are based on dynamic (i.e. 
soil nitrate test, Bundy et al., 1995; Shapiro et al., 2008), static factors (i.e. soil properties, 
Tremblay et al., 2011) or both by using computer simulation models (Banger et al., 2017) or none 
of these factors such as the yield goal approach (e.g. Stanford, 1973). Understanding which 
factors or synergic relationships contribute the most to the EONR variability is complex and still 
elusive (Scharf, 2015). Yet, there is no study to compare the relative importance of different 
factors on corn yield and EONR. A targeted research is needed in which several variables are 
simultaneously measured to identify the most important ones for further emphasis. 
Regional studies have explored relationships between yield response to N and EONR with soil 
texture, soil water and organic matter (OM) variability (Gregoret et al., 2006; Peralta et al., 2013; 
Puntel and Pagani, 2013). However, regional N recommendations mostly rely on soil N test at or 
before planting without accounting for other static and/or dynamic variables that are known to 
effect the site-specific yield response to N. Depict potential benefits of VRN in this region, its 
adoption has not been yet supported by local site-specific N recommendations. The main 
objectives of this study were to: a) characterize corn yield and EONR variability across a multi-
landscape-year study in Central West Buenos Aires, Argentina, b) quantify the relative importance 
of the dynamic versus static factors, and c) develop predictive models to assist site-specific N 
management in this region. 

Materials and Methods 

Experimental sites and design 
Fifty two N rate trials were conducted at contrasting landscape positions at five fields located in 
Nueve de Julio, Buenos Aires, Argentina across five seasons: 2012-13 (season 1), 2013-14 
(season 2), 2014-15 (season 3), 2015-16 (season 4), and 2016-17 (season 5). Soils were coarse-
loamy, thermic Typic Hapludolls representing the most productive areas of the fields, coarse-
loamy, thermic Entic Hapludolls mostly representing sandy hills with medium/low crop 
productivity, and Thapto-argic Hapludolls corresponding to shallower soils due to the presence of 
a clay pan layer at varying depth. The area is characterized by a shallow water table that responds 
rapidly to rain and differs from field to field because of the variable terrain (slope).  

Figure 1 illustrates six of the N trials. Each N trail was a randomized complete block design with 
three replications. Seven N rates (0, 25, 50, 100, 150, 200, and 250 kg ha-1) applied as 
broadcasted urea around planting. Previous crop was spring soybean or winter wheat/summer 
soybean. Fields were managed with no-till and the other management practices were the normally 
recommended for this area. Corn ears were hand harvested across two five-meter row in the 
center of each plot to calculate grain yield. Grain moisture was measured and final yield was 
expressed at 14% moisture.  
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Measurements and data processing 
Measurements taken from each N trial included soil OM, texture, soil water content, apparent 
electrical conductivity (ECa), elevation, soil and water table depth, amount of residue, and hourly 
weather data. These measurements and subsequent calculations were classified as static and 
dynamic explanatory variables based on their change over time (Table 1).  

Static variables 
Variables that are relative constant over time were classified as static. The ECa at 30 and 90 cm 
soil depth was measured on transects, approximately 20 m apart using a Veris model 3100 sensor 
cart system (Veris Technologies, Salina, Kansas, USA). Elevation data were obtained by a dual 
frequency RTK system (Trimble 5700, USA) connected to the EC Veris surveyor. Both ECa and 
elevation data points were interpolated using ArcGIS (ESRI, Redlands, CA, USA) and R software 
(R Core Team, 2018) using ordinary krigging in a regular 3-m grid (Figure 1).  

 

Fig 1. Example of within-field variability in elevation (meters) and apparent electrical conductivity at 90 cm depth (ECa, 
mS/m). Purple flags represents the position of nitrogen trials. 

 

Landscape characteristics such as elevation, relative elevation (Rel_elev), slope, specific 
catchment area (SCA), and plan curvature (pcurv) were derived directly from digital elevation 
models (DEM) (Figure 1). Soil organic matter (OM) was determined by a combustion method 
(Wang and Anderson, 1998), and texture by the pipette method (Soil Survey Staff, 2014). Eight 
to 10 soil cores were taken per block from 0-20, 20-60, 60-100 cm depth in most of the 
experimental sites. Data was summarize into top (0-20 cm) and subsoil data (20-60 cm). Data 
below 60 cm was not used in the analysis. The effective soil depth was measured with a 2 meters 
soil probe in each plot. Soil depth was as shallow as 60 to 90 cm for some of the sites. Using soil 
OM, texture data, and Saxton and Rawls (2006) pedotransfer functions, we calculated field 
capacity (FC) and saturation point (SAT) for the top and subsoil layers.   

Dynamic variables 
Variables that change substantially over time were classified as dynamic. We determined 
gravimetric soil water and nitrate content from soil sampled at planting at the top and in the 
subsoil. Soil water content was expressed at a percent of FC and SAT. Water table depth at each 
trial was measured around planting by measuring the water level in a shallow well with a 
measuring tape. Weather data, including hourly precipitation, radiation and temperature, was 
obtained from the closest weather station to the experimental sites (distance less than 5 km). 
Precipitation was accumulated for the following periods: from harvesting of the previous crop to 
planting of the next crop (amount_H-P), from planting to silking (amount_P-S), ± 1.5 weeks around 
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silking (critical period for yield determination; amount_S), and from planting to harvest (amount_P-
H). The number of rain events greater than 0 mm and 20 mm at the same periods were used as 
explanatory variables (events_H-P, events_S, events_P-H, events_H-P_20, events_S_20, 
events_P-H_20). The number of days with air temperature below 10 ºC during the growing season 
and the number of days with air temperatures above 35 ºC around the season and the critical 
period were also computed (Temp_P-H_10, Temp_P-H_35, Temp_S_35, respectively). 
Radiation was accounted as the sum of radiation around the critical period (± 1.5 weeks around 
silking, Radiation_S). 

Grain yield of the previous crop was estimated from yield monitor data at each experimental site. 
The amount of residue and carbon-to-nitrogen ratio (C:N) was directly measured during season 
4 (2015-16) in each block in an area of 1 m2. A subsample of the residue was taken to analyze 
carbon, N, and C:N ratio using dry combustion technique (Leco, 2008). Residue amount and 
quality for the other growing seasons were estimated from previous yields and published C:N 
ratios.  

Data analysis  
The relationship between yield and the seven N rates was fit using the quadratic and quadratic-
plus-plateau using R software (R Core Team, 2018).  Models were deemed significant at p < 0.05 
and the equations with the smallest sums of squares and largest R2 were selected. The EONR 
and YEONR was calculated from the N response equations by setting the first derivative of the 
fitted response curve equal to a common price ratio of 5.6:1 N: corn grain price (US$ kg-1 N: US$ 
kg-1 grain) ratio during the study years (Cerrato and Blackmer, 1990; Bullock and Bullock, 1994).  

Regression analysis was performed for EONR, YEONR, and yield at Yield_N0 (Yield at N0) using 
static, dynamics, and their combination. Adjusted R2 and k-fold (leave-one-out) cross validation 
error were used to select the best model. Mean absolute difference (MAE) and root mean squares 
(RMSE) were calculated (see equations in Archontoulis and Miguez, 2015). Coefficient of 
variation (CV %) was used to describe variability within explanatory variables as well as for yield 
and EONR within and across seasons. To find the importance of static and dynamic variables 
within the regression model we used the simple unweighted averages (lmg) method.  

Results and Discussion 

Temporal and spatial variability of EONR and yields 
The EONR varied from 0 to 260 kg N ha-1 across all sites-years with a mean of 113 ± 81 kg N ha-

1 (Figure 2). The EONR was above the mean in 90% of the sites in season 1, 33 to 41% in season 
2 to 4, and 13% in season 5 (Figure 2). During season 1, Yield_N0 was below the average across 
all sites-years (9.5 Mg ha-1) while in season 5, Yield_N0 was above average in 87% of the cases 
(Figure 2). In 65% of the cases the EONR was higher than 75 kg N ha-1, the regional average N 
application rate in Argentina (Garcia et al., 2013). Furthermore, the average YEONR in our trials 
was 12 Mg ha-1 that is about 4 Mg ha-1 higher than the average corn yield in this region (Andrade 
and Satorre, 2015). Our findings strongly suggest that there is room for improvement in N 
management to increase corn production. 

In three out of five years the spatial variation of EONR and YEONR was higher than their temporal 
variation (CV > 72% and 27%, respectively, Figure 2). The variability for Yield_N0 was higher 
across years (27%) than it was within fields (21%). The CV for yield was 20% lower than for EONR 
and the CV of Yield_N0 was 8% higher than for YEONR (Figure 2). 
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Fig 2. Observed economic optimum nitrogen rate (EONR), yield at EONR (YEONR), and yield at nitrogen zero (yield at N0). 
Horizontal dashed lines represent the average across the five growing seasons. Labels represent the percent coefficient of 

variation (CV%) for each season. 

 

Predictive models for yield and EONR  
Regression model for YEONR performed better when using static than dynamic variables (R2 
0.46 vs 0.38, respectively). In contrast, variability of EONR and Yield_N0 was better explained by 
dynamic rather than static variables (R2 of 0.52 vs. 0.27, respectively). Overall, best model 
performance was achieved when dynamic and static variables were combined (R2 > 0.60, Figure 
3). 
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By accounting for factors that characterize spatial and temporal variability we were able to predict 
EONR and yield with an accuracy of 39 kg N ha-1 and ~ 1 Mg ha-1, respectively (MAE, Figures 3). 
Model performance was better for yields than for EONR (Figure 3). Poor in-season model 
performance for EONR prediction was associated with extreme weather conditions in season 1 
and 2 (MAE ~ 47 kg N ha-1, data not shown).  
 
 
 
 
 
 
 
 
 
 
 
 
 

Relative importance of static and dynamic variables within predictive models  
According to the unweighted average analysis (LMG) of in-season and at planting regression 
models, dynamic variables were more important for EONR and Yield_N0 than for YEONR (Figure 
3 and 4). For the in-season regression model, the number of rain events higher than 20 mm 
accumulated from planting to silking explained ~ 45% of the variance in EONR across sites and 
years. Other variables within the EONR regression models seemed to have similar explanatory 
power (~ 10%, Figure 4). The amount of residue and relative elevation were the most important 
variables within in-season YEONR model while rain events higher than 20 mm accumulated from 
planting to harvest and N (0-60) were the most important variables for Yield_N0 (Figure 4).  

Precipitation patterns were significantly important for all predicting models (Van Es et al., 2006; 
Kurunc et al., 2011; Tremblay et al., 2012). Interestingly, season 4 and 5 were very productive 
years with yield as high as ~ 12 Mg ha-1 and relatively low EONR (~ 70 kg N ha-1) compared to 
other seasons (Figure 3). This was associated with frequent low rain events and a low frequency 
of rain events higher than 20 mm where it is assumed that N losses will likely occur. These results 
were partially supported by the fact that Yield_N0 decreased when increasing precipitation, 
especially, from planting to silking and EONR tended to increase when decreasing Yield_N0 (data 
not shown; Sogbedji et al., 2001). 

 

 

 

 

 

 

 

 

Fig 3. Predicted versus observed economic optimum N rate (EONR) and yield at EONR 
(YEONR). Dashed line indicates the one to one line and continuous line indicates the linear 
regression fitting. Mean absolute error (MAE). 
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Conclusions 
This study investigated for the first time site-
specific variability of yield and EONR in Central-
West Buenos Aires, and quantified the relative 
importance of dynamic versus static variables. 
Based on the observed variability of EONR (0 to 
260 kg N ha-1) and attainable yield at the EONR 
we concluded that adjusting N fertilizer rates in 
this region could reduce the current yield gap and 
adoption of variable rate N technology could be 
beneficial. 

Statistical models were able to explain EONR, 
YEONR and Yield_N0 variability with an R2 
greater than 0.60. Prediction of EONR, YEONR, 
and Yield at N0 performed better when dynamic 
and static factors were included in the model 
because temporal and spatial variability of water 
and nitrogen soil dynamics were captured (MAE: 
39 kg N ha-1, 1.1 Mg ha-1, 1.0 Mg ha-1, 
respectively). The number of rain events greater 
than 20 mm accumulated from plating to silking 
and from planting to harvest, the amount of 
residue, relative elevation, and N (0-60 cm depth) 
were the most important variables within 
predictive models. Further testing and application 
of site-specific prediction models are needed to 
assist farmers in optimizing N management in 
Central-West Buenos Aires, Argentina. 
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Fig 4. Relative importance (simple unweighted 
averages method, LMG) of static and dynamic 
variables as a percent of the response variance of 
EONR, YEONR, and Yield_N0. See Table 1 for 
variables description. 
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