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Abstract. Bulk apparent soil electrical conductivity (ECa) is the most widely used soil sensing 
modality in precision agriculture. Soil ECa relates to multiple soil properties, including clay 
content (i.e., texture) and salt content (i.e., salinity). However, calibrations of ECa to soil 
properties are not temporally stable, due in large part to soil moisture differences between 
measurement dates. Therefore, the objective of this research was to investigate the effects of 
temporal soil moisture variations on ECa data collected within a field with highly varying soil 
texture and a growing cotton crop. A variable-rate irrigation experiment imposed additional soil 
water content (WC) variability. Data were collected with an electromagnetic induction ECa 
sensor four times within the 2017 growing season, and a fifth time pre-planting. Profile WC to 
approximately 68 cm depth was measured using time-domain reflectometry (TDR) sensors 
within season and gravimetrically pre-planting. Regressions estimating WC from ECa data were 
developed and used to map spatially variable WC. Changes in ECa-estimated WC between 
measurement dates corresponded reasonably well with a mapped water balance. These results 
are a step toward the overall goals of this research, which are to estimate WC from ECa and 
also to standardize ECa-based estimates of other soil properties for WC variation. Such 
standardized estimates would be beneficial, for example, to more effectively translate ECa data 
into texture information that could be used for establishing variable-rate irrigation strategies.  
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Introduction 
Soil textural variability within many irrigated fields diminishes the effectiveness of conventional 
irrigation management with respect to irrigation uniformity, scheduling, and water use efficiency. 
Irrigation scheduling methods that assume uniform soil conditions may produce less than 
satisfactory results on highly variable soils, contributing to a lack of commitment to irrigation 
scheduling by producers even though, in general, scheduling improves overall crop production.  
Various approaches to spatially variable-rate irrigation (VRI) have been proposed to address 
this issue. Benefits of variable-rate application of agrochemicals, seeds, and nutrients can be 
partially masked by applying inappropriate amounts of water. However, center pivot irrigation 
systems can be equipped with VRI capability for site specific water application, and commercial 
VRI systems have been tested and shown to perform dependably (O'Shaughnessy, et al., 2013; 
Sui & Fisher, 2015). This logical complement to variable rate application of other inputs has 
producers seeking guidance for preparing prescriptions for optimal water application. Soil 
properties will impact the optimal irrigation rate for a given within-field location, primarily due to 
differences in texture leading to differences in plant available water holding capacity (AWC). 
Several VRI systems primarily using soil water sensing to control application have been 
reported (e.g., Vellidis et al. 2008). Although technological advances have reduced cost and 
made arrays of multiple water content sensors more feasible, optimizing irrigation management 
zones to account for soil water variability remains a challenge. One approach has been to use 
soil apparent electrical conductivity (ECa) surveys to map within-field texture variations at a 
dense spatial scale. Hedley and Yule (2009) used ECa to map texture and AWC and then used 
these data in a soil water balance model to schedule irrigation. They noted that adding real-time 
monitoring of soil water content (WC) might provide improved results. Pan et al. (2013) used 
elevation and ECa data to place WC sensors within a 37-ha field. However, VRI was not tested 
due to sufficient precipitation during the growing season. 
Because WC is one of the main factors affecting ECa (Rhoades et al. 1976; Kachanoski et al. 
1988), it may be possible to infer temporal differences in WC directly from ECa data. In a dryland 
wheat field, McCutcheon et al. (2006) found that ECa data obtained across multiple 
measurement dates was strongly related to WC (r2 = 0.71), while relationships to soil texture 
fractions were weak and often insignificant.  
The goal of this research was to determine if WC could be estimated directly from multi-
temporal ECa surveys obtained within the growing season in a cotton field having highly variable 
soil texture. The spatially dense WC maps obtained were envisioned as a possible control input 
for soil moisture based VRI.  

Materials and Methods 

Study Field Characterization 
This research was conducted at the University of Missouri Fisher Delta Research Center Marsh 
Farm at Portageville (36.41° N, 89.70° W) during the 2017 growing season in an irrigated cotton 
field. The rectangular field is approximately 5 ha, 320 m by 156 m, with the primary slope in the 
south to north (320 m) direction. It is located roughly 14 km west of the Mississippi River and 
lies within the New Madrid Seismic Zone. The combination of alluvial, eolian, and seismic 
activity over the years has resulted in highly variable soils in the region. While farming activities, 
including precision land grading, have made the effects less obvious, they still exist.  
Soil mapping units within the study field included Tiptonville silt loam (fine-silty, mixed, 
superactive, thermic Oxyaquic Argiudolls), which made up the majority of the field, and Reelfoot 
loam and sandy loam (fine-silty, mixed, superactive, thermic Aquic Argiudolls) (USDA-SCS, 
1971). However, the field contained areas of high sand content too small to show up in the soils 
map. To provide higher resolution information, mobile ECa data were collected on 13 April 2016. 
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The ECa data used in this analysis was obtained with a DUALEM 1HS instrument (Dualem, Inc., 
Milton, ON, Canada), which provided four channels of information that responded differently to 
conductivity as a function of depth (Fig. 1). These four channels were provided by two coil 
spacings – nominally 0.5 m and 1.0 m – along with two coil geometries – horizontal coplanar 
(HCP) and perpendicular (PRP) at each spacing. For convenience, the depth-response 
behavior of an ECa instrument is often summarized as the depth of exploration (DOE), defined 
as the depth at which 70% of the cumulative response is obtained. For the channels of the 1HS 
instrument, the DOE varied from 0.3 to 1.6 m (Fig. 1; Dualem, 2014).  

 
Fig 1. Incremental (A) and cumulative (B) responses of the four channels of the DUALEM 1HS ECa sensor used in this 

study. Depth of exploration (DOE), defined as the depth at which 70% of the response is obtained, is shown. 

 

Soil texture data (sand, silt, and clay fractions) from laboratory analysis were obtained by soil 
horizon from 8 calibration locations within the study field and an adjoining 5 ha field. These 
locations were chosen to cover the range in mobile ECa data values obtained within the fields. 
To provide background information for this study, soil texture was estimated by calibrating 
profile (0-80 cm) sand and clay fractions to the 1HS ECa data. For both sand and clay, very 
good fits (r2 ≥ 0.89) were obtained by linear regression on data from a single channel (0.5 m 
PRP). Maps (Fig. 2) show the high spatial variability of texture in the study field.  

  
Fig. 2. Maps of ECa-estimated profile (0-80 cm) sand and clay fractions for the study field, showing extreme  

variability over the 5-ha area. Points labeled M2-M7 were texture calibration core locations;  
points labeled 1-5 were soil moisture sensor locations (described later). 
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Within-Season Management and Data Collection 
The field was bedded in the north-south direction with a row spacing of 0.97 m and cotton was 
seeded on 15 May 2017. Reduced tillage was utilized and standard cultural practices for 
fertilizer management and weed and insect control for producing irrigated cotton in Missouri 
were employed. The study field and adjoining field were irrigated using a 160 m Valley 6000 
center pivot irrigation system (Valmont Irrigation, Valley, NE, USA) with a Valley Zone Control 
VRI system. The system included seven independently controlled zones of approximately equal 
area, except for the outermost zone, which consisted of the three sprinklers on the 5-m 
overhang beyond the outer drive tower.  
The center pivot system was controlled to implement a study investigating the effects of 
irrigation management on cotton production (Vories et al. 2017). A rainfed treatment (R) and two 
irrigation treatments (A and B) were arranged in five replications, for a total of 15 sub-field areas 
(i.e., plots; Fig. 3). Within each of the five plots of treatment A, time-domain reflectometry (TDR) 
WC sensors (TDR-315, Acclima, Inc., Meridian, ID) were installed after planting at nominal 15, 
30, 45, and 60 cm depths. Data were collected hourly by CR206X dataloggers (Campbell 
Scientific, Inc., Logan, UT) and wirelessly transmitted to a central computer.  
Proximal ECa data were collected on four dates (13 and 26 July and 4 and 11 August 2017) 
using the DUALEM 1HS instrument described above. A specially designed sled was used so 
that the 1HS could traverse the furrows between the cotton ridges while being pulled by a high-
clearance vehicle (Fig. 4). Four channels of ECa data (Fig. 1) were obtained simultaneously as 
described above. Data collection was terminated after 11 August when it was determined that 
any additional trips through the field had the potential of damaging the cotton crop due to 
increasing size of the cotton canopy.  
 

 
Fig. 3. Variable-rate irrigation treatment layout. R = rainfed, A & B = irrigation treatments.  

Points 1-5 are locations of TDR soil moisture sensors.  
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Fig. 4. DUALEM 1HS instrument collecting within-season ECa data in cotton field.  

 

Data Processing and Analysis 
Data from the DUALEM 1HS surveys were “cleaned” by first adjusting for the physical distance 
between the instrument and the GPS, and secondly by removing a very few outliers, generally 
attributed to metal objects within the sensed area. When any of the channels were affected by 
such an anomaly, the entire data point (all channels) was removed from further analysis. Each 
DUALEM channel was kriged using Vesper software (University of Sydney, Australia) with 
appropriate semivariograms to common 1m grids. Data for the grid cells containing each 
calibration point (i.e., TDR or soil core location) were extracted and combined with the 
calibration point WC data for further analysis. 
For the TDR calibration points, WC estimates from sensors installed at 15, 30, 45 and 60 cm 
were available at each of the survey dates in 2017, and these were included in the calibration 
dataset. Averaging these four readings to represent 15 cm bands created a total soil profile WC 
estimate over the nominal range of 7.5 to 67.5 cm. An additional calibration dataset, based on 
gravimetric WC, was available for the 13 April 2016 pre-plant 1HS survey described above. 
Conicident with the 2016 survey, soil cores were taken at eight locations in the study field, 
including an adjoining portion not used for this project. The samples were split into horizons, 
and laboratory analysis, including WC, was by horizon. A weighted average was performed on 
these data to also estimate profile WC over the 7.5 to 67.5 cm depth range.  
Initially, only data from the in-crop surveys and corresponding TDR-based WC estimates were 
used to develop a calibration equation relating ECa to soil profile WC.  All four DUALEM 1HS 
channels (1.0 HCP, 1.0 PRP, 0.5 HCP and 0.5 PRP), along with product and quotient terms 
were allowed to enter into a multiple linear regression using Proc Stepwise in SAS Version 9.4 
(SAS Institute, Cary, NC).  However, although this model fit the data quite well, the span of 
measured WC was relatively low. To provide a calibration more appropriate at low WC, the 
gravimetric data from 2016 were included in a revised calibration.  
Mapping of WC variation across the field was accomplished by applying the revised calibration 
to the ECa data, kriged to a 5 m grid. Then, WC difference maps between the measurement 
dates were calculated from the four WC maps, allowing visualization of profile WC differences 
across time. For comparison with these maps, we computed a water balance for each 
measurement interval and for each of the 15 irrigation zones (Fig. 3) using irrigation, measured 
rainfall, and estimated hourly short crop evapotranspiration (ASCE-EWRI 2004) from an onsite 
weather station. This was only an approximate water balance, as it neglected such components 
as surface runoff and water movement out of the bottom of the measurement profile at 67.5 cm.  
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Results and Discussion 
Data from each channel for all four in-crop ECa surveys were significantly correlated (Table 1). 
Data from surveys closer together in time were more highly correlated, as might be expected. 
There was relatively little variation in any of the four ECa channels, either within a survey date or 
across all dates, as shown by the low standard deviations in Table 2. Correlations among 
channels at a single survey date were of variable strength, with the highest correlations on the 
first date, and the lowest correlations on the last date. Assuming that temporal variation in ECa 
is primarily attributed to changes in WC, this suggests that variability in WC as a function of 
depth may have increased later in the growing season. This is confirmed by TDR-measured WC 
(Table 3). These data show a decreasing trend in deeper (45 and 60 cm) WC data as the 
season progressed, however shallower (15 and 30 cm) WC data decreased to a point and then 
increased at the final survey date.  
 

Table 1. ECa correlations between initial and subsequent survey dates, by channel. 

 Correlation vs ECa Survey on 7/13/17  
Date 1.0 HCP 1.0 PRP 0.5 HCP 0.5 PRP 

8/11/17 0.66 0.63 0.55 0.71 
8/4/17 0.69 0.64 0.61 0.70 
7/26/17 0.78 0.78 0.69 0.82 

 

Table 2. Individual ECa channel summary statistics for each survey date, and correlations across  
channels by date. Standard deviations (SD) are shown in parentheses. 

 Soil ECa, mS m-1 
 7/13/17 7/26/17 8/04/17 8/11/17 All Dates 

Channel Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 
1.0 HCP (A) 21.2 (2.7) 22.8 (2.6) 21.3 (1.5) 19.8 (1.6) 21.3 (2.3) 
1.0 PRP (B) 17.0 (2.2) 14.5 (2.4) 15.2 (1.5) 15.2 (1.0) 15.5 (2.0) 
0.5 HCP (C) 20.9 (1.2) 24.3 (1.3) 17.5 (1.2) 13.8 (1.6) 19.1 (4.2) 
0.5 PRP (D) 11.7 (1.5) 9.4 (0.6) 10.7 (1.0) 11.5 (0.2) 10.8 (1.3) 

      
Date 7/13/17 7/26/17 8/04/17 8/11/17 All Dates 

A vs B 0.94 0.90 0.92 0.91 0.92 
A vs C 0.89 0.95 0.95 0.95 0.78 
A vs D 0.86 0.72 0.73 0.70 0.75 
B vs C 0.94 0.93 0.95 0.93 0.76 
B vs D 0.97 0.91 0.90 0.89 0.91 
C vs D 0.89 0.80 0.82 0.77 0.52 

 
Table 3. Measured soil moisture sensor data by depth and date.  

Standard deviations (SD) are shown in parentheses. 

 Soil Moisture (%) 
 7/13/17 7/26/17 8/04/17 8/11/17 All Dates 

Depth (cm) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 
15  13.6 (2.9) 9.8 (1.8) 9.3 (1.6) 13.5 (2.3) 11.6 (2.9) 
30 19.0 (8.7) 14.2 (7.5) 12.6 (7.3) 13.4 (6.6) 14.8 (7.4) 
45 30.5 (6.7) 26.5 (7.8) 22.8 (8.0) 23.0 (8.3) 25.7 (7.8) 
60 32.3 (9.7) 28.2 (9.7) 25.2 (8.2) 24.1 (7.5) 27.4 (8.7) 

All Depths 23.8 (4.5) 19.7 (3.8) 17.5 (4.0) 18.5 (4.3) 19.9 (4.6) 

 
Figure 5 shows an example of ECa and TDR data for one of the five monitoring sites. Soil WC in 
the surface layer was more dynamic than at the deeper layers in response to irrigation and 
rainfall events. Notably, the ECa readings from the shallowest channel (0.5 PRP) also increased 
later in the measurement period, while readings from the deeper channels did not.  
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Figure 5. Variation in TDR-measured soil water content and DUALEM 1HS ECa data over time at  

monitoring site 2. Rainfall and irrigation events are also shown.  

 
Calibration of profile-average WC to ECa data was accomplished using in-season TDR data 
coupled with gravimetric WC data obtained coincident with a previous ECa survey. Good results 
(R2 = 0.79; RMSE = 2.9%; Fig. 6) were obtained. The final model included terms based on all 
four DUALEM 1HS channels: 0.5 HCP, (1.0 HCP x 1.0 PRP), (1.0 HCP x 0.5 HCP), and (0.5 
HCP / 0.5 PRP). Although good results were obtained for profile-average WC, attempts to 
develop calibrations to individual-layer WC were not successful (data not shown). The response 
of each of the ECa channels to conductivity occurs over a relatively wide depth range (Fig. 1), 
making it difficult to separate the effects due to a defined depth layer. Approaches to calculate 
layer conductivities based on mathematical inversion of data from multi-channel instruments 
have been developed (Monteiro Santos, et al. 2010) and found to provide promising results with 
a different set of data collected in the study field (Sudduth et al. 2017). Use of a similar inversion 
approach to extract layer conductivities from this dataset is planned as part of ongoing research.   

 
Fig. 6. Relationship of ECa estimated profile WC to measured WC (R2 = 0.79; RMSE = 2.9%). 
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Figure 7 shows that, in general, profile WC decreased over the 29 days between the first and 
last ECa survey. The biggest decrease was in the north-south strip near the center of the field 
where initial WC was over 30%. Figure 2 shows this was the highest-clay portion of the field, 
where profile AWC would have been higher than in sandier portions of the field. The highest 
sand portions of the field (Fig. 2) showed the lowest WC initially and WC continued to decrease 
in these locations through the measurement period. Between the last two measurement dates, 
the change in WC was much more uniform across the field and also considerably less than in 
the other two increments (Fig. 7).  
To better understand temporal and spatial changes in WC, we created an estimated water 
budget map for each of the three time increments (Fig 7). These maps were similar spatially and 
in level to the changes in WC mapped from successive ECa surveys, giving a degree of 
confidence in the sensor-based results.  
These results show that it was possible to combine point soil WC measurements (dense 
temporally, sparse spatially) with data from mobile ECa surveys (sparse temporally, dense 
spatially) to develop a more complete understanding of spatio-temporal soil water dynamics. 
The good fit of profile-average WC to multi-date ECa measurements gives confidence that it 
may be possible to densify point soil WC measurements using ECa. These maps could then be 
useful in the development of soil-water based variable-rate irrigation strategies with higher 
spatial resolution.  
The ability to estimate WC from ECa might also help in standardizing ECa measurements across 
different moisture levels when estimating other soil properties. If such standardization were 
possible, this would help facilitate combining ECa datasets across measurement dates. Current 
best practices require that calibration data be obtained at each ECa survey date so that temporal 
effects can be compensated. However, if temporal effects (primarily related to WC) could be 
effectively modeled as outlined here, that would allow more flexibility and efficiency in 
developing calibrations relating ECa to other soil properties such as texture.  

Conclusion  
Using a combination of multi-temporal ECa surveys and continuous point measurements of WC, 
it was possible to create maps of profile WC through the growing season. These maps showed 
that temporal variation in profile WC varied spatially throughout the field and was related to soil 
texture variability. Future work will attempt to enhance these results by calculating discrete layer 
conductivities through mathematical inversion of the ECa signal and then using these data to 
create maps of how WC varies layer by layer throughout the season. The ECa-based WC maps 
developed in this research provide much higher spatial resolution for soil-based irrigation 
scheduling than would be possible with point WC measurements alone.  
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Fig. 7. Soil water (or moisture) content (WC) maps for the study field. Top: ECa-estimated WC for each of the  

four survey dates. Center: Spatial change in WC in each of the three between-survey intervals. Bottom:  
Approximate water balance for each of the irrigation treatment areas in each of the three intervals. 
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