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Abstract. Improving corn (Zea mays L,) nitrogen (N) fertilizer rate recommendation tools can 
improve farmer’s profits and help mitigate N pollution. One way to improve N recommendation 
methods is to not rely on a single tool, but to employ two or more tools. This could be thought of 
as “tool fusion”. The objective of this analysis was to improve N management by combining N 
recommendation tools used for guiding rates for an in-season N application. This evaluation was 
conducted on 49 N response trials that spanned eight states and three growing seasons. An 
economical optimal N rate (EONR) was calculated for N treatments receiving  45 kg N ha-1 applied 
at-planting  and the remaining fertilizer N applied at the V9 corn developmental stage. A yield goal 
approach, the Iowa Late-Spring Nitrate Test (IA LSNT) , and canopy reflectance sensing were 
the three recommendation tools used to evaluate the tool fusion concept. Tools were fused using 
either an elastic net or decision tree approach. Using the elastic net approach tools, were fused 
with all combinations of main and two- or three-way interaction terms regressed against EONR. 
The decision tree was developed using only the main effects compared against EONR. 
Regardless of the method used to combine tools, any combination of two or three N 
recommendation tools together improved performance compared to using any one tool alone. 
The best elastic net based tool fusion occurred when all three recommendation tools and all 
possible interactions were included in the model which helped explain 42% of the variation around 
EONR, a 75% increase over the best tool alone. Additionally, the root-mean-square error (RMSE) 
improved from 68 kg N ha-1 (best tool used alone) to 55 kg N ha-1. However, the best combination 
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occurred when using the three N recommendation tools in a decision tree. The decision tree 
method explained 45% of the variation in EONR and had a RMSE value equal to 53 kg N ha-1. 
This analysis demonstrated that combining tools is a valid way to improve N recommendations, 
and thus could aid farmers in better managing N than using a single tool by itself.  
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Introduction  
Over the last six decades, significant public resources have been spent on developing corn N rate 
recommendation tools (Nafziger et al., 2004; Morris et al., 2018). The goal for each of these tools 
has been to instruct farmers as to the optimal fertilizer N rate necessary for optimizing production 
and minimizing water quality effects. However, developing a site-specific N recommendation is 
very complicated due spatial and temporal differences in crop N need as a result of interactions 
of genetics, management practices, and growing conditions driven by weather and soil factors 
(Scharf et al. 2005; Tremblay et al. 2012). A variety of N recommendation tools have been 
developed by focusing on different aspects of the soil-plant N dynamics. For example, soil 
samples used in-season allow for measurements of residual soil nitrate (NO3–N) as well as an 
estimate of the  N supplying capacity for that soil to determine if sufficient N is available in the 
soil. Canopy reflectance sensing is another tool that measures the soil-plant N dynamic indirectly 
by assessing the plant’s biomass and color. A thorough review of these and other N 
recommendation tools can be found in Morris et al. (2018).  
Many of these publicly-available tools’ performance have been assessed and found to be  
inaccurate for use across the U.S. Midwest (Ransom, 2018). Ransom, (2018) and Bean et al., 
2018) found that the effectiveness of these tools can be improved when soil and weather 
information is incorporated, but that research also found that  no more than 40% of the variability 
could be explained when compared to EONR. Hence, improvements are still needed to maximize 
profits and minimize water impairment associated with N loss to surface runoff, subsurface 
drainage, or to the atmosphere (Hong et al. 2007; Tremblay et al. 2012; Zhang et al. 2004). 
Instead of spending additional time and resources developing new methods for determining corn 
N fertilizer rates, utilizing two or more tools already developed might aid in improving the 
predictability of crop N need. No one tool has been able to capture every aspect of the soil-plant 
N dynamic, with some being limited by soil or plant sampling constraints or others fail to 
incorporate the spatial and temporal variability of weather and soil (Morris et al. 2018). Combining 
N recommendation tools together (“tool fusion”) that vary in methodology may allow for an N 
recommendation approach to account for multiple aspects of the soil-plant N dynamic not 
previously accounted for when only using a single tool.  
Nitrogen recommendation tool fusion could be accomplished by following similar procedures used 
in other scientific fields for creating an ensemble of separate algorithms (Hansen and Salamon 
1990). An ensemble is merely the average of multiple predictive models, done to obtain one 
prediction which is more accurate than the best predictive model used alone. There are multiple 
ways to create an ensemble which include: averaging predictions, taking a weighted average of 
predictions, or using other algorithms to determine which predictive models to include or exclude 
in the ensemble (Mendes-Moreira et al. 2012; Unger et al. 2009; Zheng et al. 2014). This strategy 
has been found useful with crop, climate, and economic models to improve their predictability by 
using vastly different models developed by many different researchers (Rosenzweig et al. 2013; 
Wallach et al. 2016). The objective of this research was to improve N recommendations by 
combining multiple N recommendation tools used for making an in-season recommendation.  

MATERIALS AND METHODS 

Experimental Design 
This research was conducted as a part of a public-private collaboration between DuPont Pioneer 
and eight U.S. Midwest universities (Iowa State University, University of Illinois Urbana-
Champaign, University of Minnesota, University of Missouri, North Dakota State University, 
Purdue University, University of Nebraska-Lincoln, and University of Wisconsin-Madison). Each 
state conducted research at two sites each year during 2014 to 2016, with a third site in Missouri 
in 2016, totaling 49 site-years. About half the sites were on farmers’ fields and the other half on 
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University research stations. All states followed a similar protocol for plot research implementation 
including site selection, weather data collection, soil, and plant sample timing and collection 
methodology, N application timing, N source, and N rates. Specific details are described in 
Kitchen et al. (2017). Treatments included N fertilizer rates between 0 and 315 kg N ha-1 split 
applied where 45 kg N ha-1 was applied at-planting with the remaining fertilizer N applied at the 
V9 corn developmental stage.  

Determining the Economic Optimal Nitrogen Rate 
Grain yield in response to N fertilizer rate was used to calculate the EONR on a site-year level as 
described in Kitchen et al. (2017), using proven quadratic or quadratic-plateau modeling methods 
(Cerrato and Blackmer 1990; Scharf et al. 2005). Economically optimal N rate values were 
calculated for all N fertilizer split applied between planting and a single side-dress application. 
The cost of N was $0.88 kg N-1, and the price of corn was $0.158 kg grain-1 (equivalent to $0.40 
lbs N-1 and $4.00 bu-1). The EONR was set to not exceed the maximum N rate (315 kg N ha-1). 
Five of the seven irrigated sites had N applied through irrigation > 12 kg N ha-1, and this was 
included in determining the EONR of these sites. The EONR results were used as the standard 
for evaluating all N recommendation tools and tool fusion improvement.  

Nitrogen Recommendation Tools Considered for Combinations 
General Yield Goal 

The General yield goal (YG) approach used in this work represents the approach established by 
Stanford (1973) where the expected yield was multiplied by a constant factor 0.021 kg N (kg 
grain)-1, or 1.2 lbs N bu-1. An additional soybean (Glycine max) credit of 45 kg N ha-1 was 
subtracted from the final N recommendation for sites that followed a soybean crop. The expected 
yield for each site was determined using the average of the previous five-yr county corn yields for 
the respective county the site was within. The five-yr average was then adjusted based on the 
soil productivity of the predominantly mapped soil of each site, similar to that done by Laboski et 
al. (2012). This procedure classifies soil productivity as either low, medium, or high using soil 
texture, irrigation, depth to bedrock, drainage class, temperature regime, and available water 
content information. The yield of a site was then calculated by increasing the five-yr average yield 
for low, medium, and high soil productivity by 10, 20, or 30%, respectively. 
IA LSNT 

The IA LSNT was calculated using soil NO3–N, sampled to a depth of 0.30 m at the V5 ± 1 corn 
development stage. Soil samples were taken from plots that received 0 kg N ha-1 and averaged 
together to obtain a site level NO3–N concentration. The site level NO3–N concentration was used 
to determine the amount of N to apply as an in-season N application. Values above the 25 mg kg-

1 critical limit received no additional N. To determine the N recommendation when NO3–N is below 
the critical limit, the difference between the critical limit and the measured NO3–N concentration 
is multiplied by 8. The critical limit is reduced by 3 mg kg-1 when spring precipitation (April to June) 
is 20% above normal amounts (Sawyer and Mallarino 2017).  
Canopy Reflectance Sensing 

Canopy reflectance measurements were obtained using the RapidSCAN CS-45 (Holland 
Scientific, Lincoln NE, USA) the same day or just prior to the in-season N application. For the 
majority of sites, this was done at the ~V8-V10 corn development stage. Measurement details are 
described in Kitchen et al. (2017). The Holland and Schepers algorithm [HS; Holland and 
Schepers (2010)] was used to calculate an N fertilizer recommendation derived from the 
reflectance measurements. This algorithm is based on a sufficiency index calculated using 
measurements from both well-fertilized corn (“N-Rich”) and minimally-fertilized corn that is 
referred to here as the “target” corn:  

𝑆𝐼 =
$%&'()*+
$%,-./01

  [3] 
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where SI is the sufficiency index; VITarget is the NDRE vegetative index obtained from averaging 
measurements from all plots that received 0 kg N ha-1 at-planting, and VIN-Rich is the vegetative 
index obtained by averaging additional plots where 225 and 270 kg N ha-1 were applied all at-
planting. The NDRE vegetative index was calculated using the red-edge (730 nm; RE) and near-
infrared (780 nm; NIR) wavelengths as shown: 

𝑁𝐷𝑅𝐸 = 6%7879
6%7:79

 [4] 

Fertilizer N recommendations were then calculated as described in Holland and Schepers (2010) 
as follows: 

𝑁7;< = =𝑀𝑍@ ∗ 𝑁BCD − 𝑁FG;H;GD − 𝑁I7J + 𝑁ILMCN ∗ O
(Q8R%)
TR%	

    [5] 

where NRec is the calculated N fertilizer recommendation; MZi is a scaling value (0 ≥ MZi ≤ 2) used 
to adjust the N recommendation based on areas of high or low yield performance; NOpt was the 
base N rate, which is determined by the farmer; NPreFert is the amount of N already applied prior 
to sensing; NCRD are N credits associated with the previous crop, NO3–N in irrigation water, 
manure, or residual NO3–N; NComp is an optional compensation factor for growth limiting 
conditions; SI is the sufficiency index; and ΔSI is a value to define the response range. For this 
analysis, MZi

 was left as the default value of 1.0, Nopt was set as the recorded farmer's N rate for 
each site, and NPreFert = 0 kg N ha-1. With no supportive information relative to NCRD and NComp, 
these two parameters were set to zero for all sites. The recommended value of 0.30 was used for 
ΔSI, which provides a response range between the measured vegetative index value between 
0.70 and 1.00.  

Tool Fusion  
Tool fusion was accomplished using either elastic net regression (Zou and Hastie, 2005) or 
decision tree regression models (Questier et al. 2005). For the elastic net based tool fusion, a 
series of ensemble models were created with three N recommendation tools. This analysis was 
limited to only three tools, to ensure that these methods would still be practical for a farmer to 
utilize without having to acquire excessive information. The fusion tools were created using two 
and three tool combinations of the General YG, IA LSNT calculated with 0 kg N ha-1 applied at 
planting, and canopy reflectance sensing based on the Holland and Schepers algorithm. Ideally, 
the best tool fusion would occur when N recommendations are diverse and accurate—similar to 
requirements for ensembling in machine learning (Hansen and Salamon, 1990). Following these 
guidelines, each of the tools was selected because their methods for determining an N rate had 
unique properties and inputs, with the majority of these tools also identified as some of the more 
accurate tools for predicting EONR as described in Ransom (2018). 
The elastic net regression based fused tools were developed with the EONR regressed as a 
function of the N recommendation tools. For the fused tool, the N recommendation tools were 
evaluated under two scenarios. The first was with using only the main effects, and the second 
was using the main effects and all possible three-way and two-way interactions when applicable. 
Additional fused tools were created where the interaction terms were added to each of these 
ensembles.  
The elastic net used for tool fusion was fit with the ‘caret’ package using R Statistical Software 
(Kuhn, 2017; R Core Team 2016). The elastic net was optimized by tuning the alpha and lambda 
parameters using a tenfold cross-validation repeated five times, where for each fold of the cross-
validation the data were split randomly into ten folds. Nine of the folds were selected as a training 
dataset to fit a model, and the 10th fold was used as the testing dataset to calculate the accuracy 
of the predicted model. The test statistic used to determine accuracy was the root-mean-square 
error (RMSE) between the predicted values and actual values of the 10th fold. Fifty RMSE values 
were calculated for each combination of alpha and lambda values. The best combination of these 
tuning parameters was determined as the one producing the lowest average RMSE, which was 
then used to determine the coefficients necessary for creating each fused tool. 
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A decision tree modeling approach for tool fusion was also utilized. Regression tree models were 
created using the ‘caret’ and ‘rpart’ package in R (Therneau and Atkinson 2018). The EONR was 
fit as a function of the three in N recommendation tools. Variables were selected at each node of 
the tree to where the greatest homogeneity of the data would be explained (Questier et al. 2005). 
The homogeneity was measured as the absolute deviation from the mean.  

Determining Tool Improvement 
Three different metrics were used to evaluate the performance of each elastic net and decision 
tree based fused N recommendation tool across all sites. First, the elastic net or decision tree 
fused tools were compared to the EONR across all sites using a simple linear regression model 
and the performance was based on the coefficient of determination. Secondly, the average and 
the RMSE of the difference between a fused tool’s N recommendation and EONR were used to 
evaluate accuracy. Lastly, the performance of each fused tool was examined by determining the 
percentage of sites where the tool’s N recommendation came within ±30 kg N ha-1 of EONR. Sites 
within this range of EONR were considered reasonably close to EONR (RC-EONR). This value 
around EONR was chosen based on this value to be found reasonable and practicable for 
evaluating a tool’s successful performance for generating an N fertilizer recommendation (Laboski 
et al. 2014; Sawyer 2013; Sela et al. 2017).  

RESULTS AND DISCUSSION 

Combining Nitrogen Recommendation Tools 
In almost every case, the combination of use of two or three tools together vs. individual tools 
showed marked improvement using the performance metric of comparing to EONR (Table 1). The 
combinations did cause the average difference between N recommendations and EONR to be 
close to 0 kg N ha-1 and a decrease in RMSE (Table 1; Fig. 1). For most combinations, the 
improvement was evidenced by an increased r2 (≥ 0.05) and decreased RMSE values (≥ 7 kg N 
ha-1).  There was no observed performance loss by combining tools.   
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Table 1. Elastic net and decision tree fused tools used to predict the economical optimal N rate (EONR). The coefficient of 
determination calculated by regressing EONR as a function of each tool or fused tool N recommendation. The precision 
and accuracy of each N recommendation tool were evaluated using the average difference (N recommendation tool – 
EONR), RMSE of the difference between a tools’ N recommendation and EONR, and the percentage of sites ±30 kg N ha-1 of 
EONR or “relatively close to EONR” (RC-EONR). The number of sites (n) included in the evaluation†. The number of tools 
(p) used in each regression or decision tree model. Tools include the General yield goal (YG), IA Late-Spring Nitrate Test 
(IA LSNT), and canopy reflectance sensing using the Holland and Schepers algorithm. Dashes indicate not applicable. 

 

Tools n p r2 Average RMSE 
RC-

EONR 
    ----- kg N ha-1 ----- % 

Main Effects Only       

General YG 49 1 0.13 65 113 18 

IA LSNT 49 1 0.24 –25 68 41 

Canopy Ref.†  49 1 0.19 –23 73 29 
General YG + IA LSNT 49 2 0.29 0 61 45 
General YG + Canopy Ref. 49 2 0.25 0 63 37 
IA LSNT + Canopy Ref.  49 2 0.26 0 63 41 
General YG + IA LSNT + Canopy Ref. 49 2 0.31 0 61 41 
Decision Tree (Fig. 3) 49 3 0.45 0 53 45 
Main and Interaction Effects‡       
General YG : IA LSNT 49 3 0.29 0 61 45 
General YG : Canopy Ref.  49 3 0.33 0 59 43 
IA LSNT : Canopy Ref.  49 3 0.26 0 62 43 
General YG : IA LSNT : Canopy Ref. 49 7 0.42 0 55 47 

†Canopy reflectance sensing was calculated using plots that received 0 kg N ha-1 at-planting. 
‡ Elastic net based fused N recommendation tools are marked with “ : ” indicates all combinations of main effects and 
interaction terms.   
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Fig. 1. Box and whisker plots showing the difference between the tools used at sidedress and the economically optimal N 
rate (EONR). General yield goal (YG), Iowa Late-Spring Nitrate Test (IA LSNT), and canopy reflectance sensing N 
recommendation tools were used to create eight combinations of elastic net models,  with and without interaction terms 
and a decision tree. Elastic net based fused N recommendation tools are marked with “ : ” indicates models with all 
combinations of main effects and interaction terms. The median is reported by the value in the middle of the box. Notches 
on the side of each box indicate the 95% confidence interval around the median. Limits of the box indicate the first and 
third quartile, whiskers indicate 1.5 × IQR, and small circles indicate outliers. 

 
Performance of Elastic Net Based Tool Fusion 

The elastic net performed well at adjusting each tool in order to improve the accuracy and 
precision of N recommendation tools (Table 2). As shown in Fig. 1, the length of the interquartile 
range decreases when tools are combined compared to when they are used alone.  The best 
improvement occurred when all three N recommendation tools were combined by using all three- 
and two-way interaction terms and the main effects (Fig. 1). This resulted in an r2 = 0.42 and RC-
EONR at 47% (Table 1; Fig. 2h). Compared to previous efforts of improving tools by incorporating 
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soil and weather information, the best improvement was the IA LSNT  which had an r2 = 0.39, and 
55% of sites RC-EONR (Ransom, 2018). In contrast, the best-fused tool only had 47% of sites 
RC-EONR. Hypothetically, an additional improvement to the fused tool might be obtained by 
adjusting the fused tool with soil and weather information, as was done in Ransom (2018).  
 

Table 2. The elastic net model coefficients for predicting EONR using fused N recommendation tools with and without 
interactions. The “ : ” between tools indicates when interactions and main effects were included in the model.  

 

Tool Parameter Adjustments 

General YG + IA LSNT 171 - 0.36 General YG + 0.55 IA LSNT 

General YG + Canopy 
Ref. 

193 - 0.32 General YG + 0.32 Canopy Ref. 

IA LSNT + Canopy Ref.  80 + 0.38 IA LSNT + 0.22 Canopy Ref. 

General YG + IA LSNT + 
Canopy Ref. 

153 - 0.29 General YG + 0.35 IA LSNT + 0.19 Canopy Ref. 

General YG : IA LSNT 172 - 0.39 General YG + 0.59 IA LSNT 

General YG : Canopy 
Ref.  

-194 + 1.24 General YG + 2.99 Canopy Ref. - 0.01 General YG x 
Canopy Ref. 

IA LSNT : Canopy Ref.  92 + 0.27 IA LSNT + 0.11 Canopy Ref.+ 0.00094 IA LSNT x 
Canopy Ref. 

General YG : IA LSNT : 
Canopy Ref. 

0 + 1.9 General YG + 0.96 IA LSNT + 3.79 Canopy Ref. - 0.0005 
General YG x IA LSNT - 0.015 General YG x Canopy Ref. - 2.53 
IA LSNT x Canopy Ref. + 0.000003 General YG x IA LSNT x 
Canopy Ref. 

 
The use of canopy reflectance sensing as a part of the tool combination would help farmers to 
better account for spatial variability between and among fields. Alone this tool does a mediocre 
job of predicting EONR (Table 1; Fig. 2c). When combined with other N recommendation tools, 
this tool more than doubles the % of explained variability around EONR (Table 1; Fig. 2k).  
Performance of Decision Tree Based Tool Fusion 

The decision tree fused tool resulted in an r2 = 0.45 (Fig. 2), which was the best performance of 
any fused tool (Table 1). Also, this method had the lowest RMSE and the second highest 
percentage of sites RC-EONR (Table 1). This method used all three N recommendation tools in 
the model (Fig. 3). The downside to using this particular decision tree method is that interaction 
terms could not be used in the model, which was shown to be very helpful for many of the elastic 
net models.  
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Fig. 2. Sidedress N recommendation tools evaluated relative to the economic optimal N rate (EONR). Tools included 
General yield goal (YG), Iowa Late-Spring Nitrate Test (IA LSNT), and canopy reflectance sensing. Graphs a-c) are tools 
evaluated alone (green), d-g) are combined using only main effects (orange), h-k) are combined using both main effects 
and interaction terms (blue) , and l) decision tree (red). Elastic net based fused N recommendation tools are marked with “ 
: ” indicates all combinations of main effects and interaction terms. The 1:1 line is an indicator of a perfect predictor of 
EONR, the dashed lines indicated the area in which tools ± 30 kg N ha-1 of EONR or relatively close to EONR.  
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Fig. 3. The resulting decision tree model used to predict the economically optimal N rate (EONR) for an in-season N 
application using the General yield goal (YG), Iowa Late-Spring Nitrate Test (IA LSNT), and canopy reflectance sensing 
using the Holland and Schepers algorithm. The number of sites (n) that were used to make up each final node of the tree.   

Was this Improvement Enough? 
The best improvement observed from this analysis (r2 = 0.45) was much better than the previous 
analysis used to adjust recommendations with soil and weather information (r2 = 0.39; Ransom, 
2018). The best improvement observed with tool fusion was similar to what was reported for the 
relationship between the Pennsylvania PSNT and EONR (r2 = 0.48; Schmidt et al., 2009). 
However, further improvement is necessary to match the performance reported for other N 
recommendation tools. Sela et al. (2017) showed that the Adapt-N crop growth model had an r2 

= 0.56. While Scharf et al. (2006) and Schmidt et al. (2009) in two separate studies showed that 
chlorophyll meter derived N recommendations were more strongly related with EONR (r2 between 
0.53 and 0.76).  

Conclusion 
Efforts to improve N recommendations by combining two or three unique N recommendations 
were successful when using both the elastic net and decision tree approach. The best elastic net 
approach was when all three tools and all two- and three-way interaction terms were included in 
the model. This approach explained 42% of the variability around EONR, an improvement of 75% 
over the best tool used alone. The best improvements occurred when three tools were combined 
using the decision tree approach, which explained 45% of the variability around EONR. This 
method also had the lowest RMSE value of 53 kg N ha-1 and one of the highest percentages of 
sites RC-EONR (45%).  
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Combining two N recommendation tools could improve the performance of N recommendations 
tools. There was no observed decrease in performance by combining these tools; however, while 
this theory has been proven effective additional validation is necessary to determine if these 
combinations work on independent data sets. Including more than three N recommendation tools 
in the model could also improve the performance of both the decision trees and elastic net fused 
tools. However, deploying too many recommendation tools could result in farmers ignoring the 
approach because too much information would be required.  
Another feasible method for improving the elastic net and decision tree fused tools would be to 
adjust them using site-specific soil and weather information. A previous analysis showed that the 
evenness of rainfall between planting and the time of sidedress was able to explain 22% of the 
variation around EONR (Ransom, 2018). Using this weather parameter could help to further 
adjust the fused tools as they explained ≤ 45% of the variability around EONR. It is not possible 
to explain all of the variability around EONR especially when recommendations are made early in 
the growing season without knowing if the subsequent growing conditions would optimize or limit 
plant growth. However, the process of combining multiple tools provides an improved method of 
estimating EONR compared to using a single N recommendation tool.  
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