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Abstract. Thematic maps (TMs) are maps that represent not only the land but also a topic 
associated with it, and they aim to inform through graphic symbols where a specific geographical 
phenomenon occurs. Development of TMs is linked to data collection, analysis, interpretation, 
and representation of the information on a map, facilitating the identification of similarities, and 
enabling the visualization of spatial correlations. Important issues associated with the creation of 
TMs are: selection of the coordinate system; exploratory data analysis; data interpolation; 
decision of the number of classes and the method for breaking the data into ranges; choosing an 
effective color scheme. A special kind of TMs is management zones (MZs), where MZ is a 
subregion of a field that expresses a functionally homogeneous combination of yield-limiting 
factors for which a single rate of a specific crop input is appropriate. The use of MZs in sampling 
is likely to reduce laboratory costs while maintaining the level of reliability, and it has shown to 
improve the use efficiency of nutrients, maintaining or increasing the yield and potentially reducing 
the overloading of nutrients into the environment. Several approaches have been developed to 
define MZs; these are often classified as empirical or clustering according to the technique used. 
Here the important issues associated with their creation are: selection of the variable to be used 
in the cluster analysis; necessity of data normalization; decision of method of delineation of MZs; 
using of indices and ANOVA to evaluate quality of MZs. In this context, the objective of this work 
was to discuss the particularities behind the creation of TMs and MZs for agriculture fields.  
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Introduction 
In addition to representing the terrain, thematic maps (TMs) are used to illustrate themes. 
Generally, TMs are used to identify different cartographic representations, and they represent not 
only the land but also associated characteristics. The development of TMs is linked to data 
collection, analysis, interpretation, and representation of the information on a map. This facilitates 
the identification of similarities and enables the visualization of spatial correlations. One specific 
case of TMs is contour maps, which are built by connecting points of the same value, and are 
applicable to geographical phenomena that show continuity in the geographic space. Contour 
maps can be constructed from absolute data (elevation, temperature, precipitation, humidity, and 
atmospheric pressure) or relative data (density, percentages, and indexes). Based on samples 
collected before, during e after the life period of the culture, TMs are generated in order to identify 
the variability of properties of the topography, soil, and plants, and to compare with the yield. 
However, first it is necessary to interpolate the data into a dense and regular grid to provide values 
for locations that were not sampled. This task is performed with the aid of interpolation methods, 
and geostatistical analysis is the most used interpolation method. In this analysis the spatial 
variability is determined through monitoring and measurements, making it possible to create a 
plan for the correction of any deficiencies, particularly when localized management is intended, 
in order to improve soil quality, and, consequently, increase production (Davidson, 2014; Mzuku 
et al., 2005). 
Timlin et al. (1998) showed that data on spatial variability and distribution of productivity can be 
effectively used in localized management of inputs (precision agriculture) with the aim of 
increasing the efficiency of fertilizers and environmental sustainability, although it is often costly 
(Khosla et al., 2008). 
Normally, soil samples are analyzed to determine the levels of nutrients in the soil. The sampling, 
therefore, should be dense enough to allow the determination of the variability of nutrients in the 
soil so that fertilizers can be used profitably and in an environmentally sustainable manner 
(Ferguson and Hergert, 2009; Franzen et al., 2002). In order to determine the appropriate density 
of soil sampling in an area, the time and budget available for sampling should be considered.  
A management zone (MZ) is a subregion of a field that expresses a functionally homogeneous 
combination of yield-limiting factors for which a single rate of a specific crop input is appropriate 
(Doerge, 2000; Moral et al., 2010; Moshia et al., 2014; Bobryk et al., 2016). Although variable-
rate application machines could be used, MZs usually involve conventional machinery. After 
delineation of the MZs, they can be used in smart sampling, and the number of samples needed 
to delineate the field soil variability can be reduced to one composite sample per zone (according 
Wollenhaupt, Wolkowski, and Clayton, 1994), the use of use of subsamples collected around 
georeferenced points ensures superior evaluation of nutrients in the area). This approach (smart 
sampling) is likely to reduce laboratory costs while maintaining the level of reliability (Ferguson 
and Hergert, 2009; Mallarino and Wittry, 2004), and it has shown to improve the use efficiency of 
nutrients, maintaining or increasing the yield and potentially reducing the overloading of nutrients 
into the environment (Moshia et al., 2014; Khosla et al., 2002). Many studies related to the 
sampling density have been performed (Journel and Huijbregts, 1978; Demattê et al., 2014; 
Wollenhaupt, Wolkowski, and Clayton, 1994; Franzen et al., 2002; Ferguson and Hergert, 2009; 
Doerge, 2000), resulting in a suggested minimum density of 1 sample ha−1 (Ferguson and 
Hergert, 2009) to 2.5 sample ha−1 (Journel and Huijbregts, 1978; Doerge, 2000), which should 
be composed of at least eight individual samples (Wollenhaupt, Wolkowski, and Clayton, 1994). 
Several kinds of sample data can be used to define MZs; however, it is advantageous to use a 
set of multivariate data attributes that do not vary significantly over time (topography, electrical 
conductivity, physical properties of the soil) and that are correlated with target variable (usually 
yield), thus producing more stable MZs (Buttafuoco et al., 2010; Doerge, 2000). That is important 
because usually we want to use the MZs for many years. But there are other situations in which 
the purpose is to use immediately and just the once the MZs. It is the case MZs for agrochemicals 
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applications.   
In this context, the objective of this work was to discuss the particularities behind the creation of 
TMs and MZs for agriculture fields. 
 

Methodology 
Thematic Maps  
Maps that represent not only the land but also a topic associated with it are called thematic maps 
(TMs), and they aim to inform through graphic symbols where a specific geographical 
phenomenon occurs. Development of TMs is linked to data collection, analysis, interpretation, 
and representation of the information on a map, facilitating the identification of similarities, and 
enabling the visualization of spatial correlations. The information presented in TMs may include, 
for example, maximum temperature or maximum precipitation at a given date, amount of calcium 
and potassium in the soil, and soybean yield at a given agricultural area. Fig. 1 shows a TM of 
world apple production in 2009. 

 
Source: Carvalho (2011). 

Fig. 1. Thematic map of world apple production in 2009. 

The combination of visual variables gives rise to different types of TMs (e.g., contour maps, zonal 
maps, graduated circle maps). Contour maps are built by connecting points of the same value, 
and are applicable to geographical phenomena that show continuity in the geographic space. 
They can be constructed from absolute (elevation, temperature, precipitation, humidity, 
atmospheric pressure) or relative data (density, percentages, or indexes). Fig. 2 shows two 
examples of contour maps. 

  
a) SPR 0.0-0.1 m b) Elevation 

Fig. 2. Examples of contour maps: a) Soil Penetration Resistance (SPR)(Mpa), b) elevation (m). 
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In order to construct TMs about attributes collected in agriculture fields, it is necessary to follow 
a protocol like the presented at Fig. 3.  
Coordinate system - A Geographic Information System (GIS Software) is designed to store, 
retrieve, manage, display, and analyze all types of geographic and spatial data. To construct TMs 
in 2D we use GIS software and a file with at least three columns representing the X (longitude) 
and Y (latitude) coordinates and the value of the measured attribute (for 3D, we need one more 
coordinate, z (altitude)).  These coordinates are associated a coordinate system, being the most 
typical the geographic and UTM (universal transverse Mercator). The geographic coordinate 
system is associated to model of the Earth shape (reference ellipsoid) called datum. The datum 
WGS84 (World Geodetic System 84) is most commonly used. In the geodetic coordinate system, 
the units are in degrees, minutes and seconds. More practical, UTM uses coordinates in meters. 
 

 
Fig. 3. Flowchart of the typical protocol do create a thematic map. 

Exploratory data analysis (EDA) – is the summarization of the data set through their main 
characteristics. EDA employs a variety of techniques (mostly graphical) to maximize insight into 
a data set; uncover underlying structure; extract important variables; detect inliers and outliers 
(atypical values) and anomalies; test underlying assumptions; develop parsimonious models; and 
determine optimal factor settings (NIST/SEMATECH, 2013). When constructing TMs, the most 
important use of EDA is to detect and remove outliers. According Amidan et al. (2005), data 
outliers can have a significant impact upon data-driven decisions, and in many cases, they do not 
reflect the true nature of the data and, hence, should not be included in the analyses. They 
proposed an outlier detection method using Chebyshev’s inequality to form a data-driven outlier 
detection method that is not dependent upon knowing the distribution of the data. According to 
Córdoba et al. (2016), using Chebyshev's theorem, the values that are outside the mean ± 3 SD 
are identified as outliers and should be removed (also Haghverdi et al., 2015), They remarked 
that even though real data could belong to this interval, the upper and lower limits use to be 
modified to obtain robust variance estimators. Also important are the removal of inliers, data that 
differ significantly from their neighborhood, but lie within the general range of variation of the data 
set (Cordoba et. Al, 2016). 
Data interpolation – With the objective of generating TMs and MZs that are continuous and 
smooth, usually the sample data are interpolated in a dense and regular grid to provide values in 
the places that were not sampled. This task is performed with the aid of interpolation methods. 
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The inverse distance weighting (IDW) and kriging are the interpolation methods commonly used 
in precision agriculture (PA) and are differentiated by the way the weights are assigned to the 
different samples, which can influence the estimated values (REZA et al., 2010). They are many 
software available for performing data interpolation, such as Surfer (Golden Software, Inc.) and 
ArcGIS (ESRI, Environmental Systems Research Institute).  
Geostatistics analysis is the most used method of interpolation. The best geostatistical model for 
a series of georeferenced data is selected by comparing theoretical values with those obtained 
from sampling, and then analyzing the estimation errors and choosing the best model (Arlot and 
Celisse, 2010; Kohavi, 1995). This technique, called cross-validation, was chosen by Faraco et 
al. (2008) as the best way to evaluate the adjustment of spatial theoretical models, and was 
deemed better than Akaike’s and Filiben’s information criteria and the maximum logarithm value 
of the likelihood function.  
Cross-validation allows for the evaluation of estimation errors by comparing predicted values with 
values determined through samples. The average error (AE) is calculated as the arithmetic 
average difference between the original values and those simulated by the interpolation, 
temporarily discarding any sample taken from the same location where the estimate is made by 
the interpolator (Isaaks and Srivastava, 1989). Other measures indicating the accuracy of the 
estimation are then calculated using the reduced average error (RE), standard deviation of the 
average error (SAE), and standard deviation of the reduced error (SRE) (Cressie, 1993; 
McBratney and Webster, 1986). According to non-tendentiousness criteria, to choose the best-
adjusted model, the values for AE and (RE) should be as close to zero as possible, the value of 
SAE should be as small as possible, and the value of SRE should be close to 1 (Cressie, 1993; 
McBratney and Webster, 1986). Because cross-validation makes it possible for ambiguous 
situations to occur, Souza et al. (2016) propose an estimation called the error comparison index 
(ECI), which uses (RE) and SRE as interpolators. This allows for the calculation of the standard 
deviation of the interpolation. ECI is considered a better semivariance model that one using a 
lower ECI.   
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where 𝐸𝐶𝐼$	is the error comparison index for model i, 𝐴𝐵𝑆(𝑅𝐸,,,,)	is the absolute value of the reduced 
average error differing from zero of the cross-validation, 𝑆&+	is the standard deviation of the 
reduced average error differing from zero, and	max	 |$E=

F 	is the highest value among the compared 
j semivariograms. 
In case of using the deterministic and stochastic methods of interpolation, the best method can 
be selected using the interpolation selection index (ISI, Equation 2; Bier and Souza, 2017), which 
assumes a lower value as the interpolator improves:  
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 (4) 

 

where,  – average error;  – standard deviation of the average errors;	𝑛 – number of 
data;	𝑍(𝑆$) – value observed at point 𝑆$;	𝑍I(𝑆$) – value predicted by kriging at point 𝑆$; 𝑎𝑏𝑠(𝐴𝐸) – 
module value of the average error of the crossed validation; 𝑚𝑖𝑛|$E=

F  – lowest value found between 
the compared j models; 𝑚𝑎𝑥|$E=

F  – highest value found between the compared j models. 

Creation of Contour Maps – after the data interpolation, to draw TMs with our data, we must 
decide both the number of classes and the method for breaking the data into ranges. The goal is 
to group together similar observations and split apart observations that are substantially different 
(Indiemapper, 2016). The first thing to do is looking at the histogram (or scatterplot) to determine 
the 'form' of your observations.  This important step of map creation and how we do that can 
dramatically change the look of the map, and thus, its message, and it is one of the easiest ways 
to "lie with maps". There is no escape from the cartographic paradox: to present a useful and 
truthful picture, an accurate map must tell white lies (Monmonier, 1996). They are many ways to 
systematically classify data and each GIS software will offer some of them. The most popular are: 

• Manual interval: we set manually the one or all of the class breaks. We use this method when 
the others do not give a good solution. A good way is to start with one of the standard 
classifications and make adjustments as needed 

• Equal interval: we divide the data into equal size classes and works well on data that is 
generally spread across the entire range. This classification should be avoided if data are 
skewed to one end or there are one or two really large outlier values. 

• Quantile: we divide in classes with an equal number of features and work well on data that is 
linearly distributed across the entire range. Nevertheless, the resulting map can be 
misleading, with similar features placed in adjacent classes, or widely different values put in 
the same class.  

• Standard deviation: it a special case of equal interval where the class size is a multiple of 
standard deviation and work well with data that has a normal distribution. It is god for seeing 
which features are above or below an average value. 

The number of data classes is also an important part of contour map design. Increasing the 
number of data classes will result in a more revealing map but require more colors. Generally, it 
is advised not to exceed of seven classes.   
Examples of contour maps are presented in the Fig. 4. In each case is presented the map using 
five classes, classified by equal interval, quantile and standard deviation, and its corresponding 
histogram. The case of pH (Fig. 4a) we have an attribute with a distribution closes to normal and 
the equal interval classification looks like the best choice but standard deviation classification is 
also good. However, with the map of aluminium (Fig. 4b), the distribution is moderately skewed 
right and then the quantile is visually the best option. 
After we selected the way to classify the data it is important to choose an effective color scheme 
for the TM. A good color scheme needs to be attractive but also support the message of the 
map and be appropriately matched to the nature of the data (Harrower and Brewer, 2003), 
being necessary to choose three dimensions of color: hue, lightness, and saturation. There are 
three kinds of color scheme: Nominal/qualitative (unorderable data, like land use, Fig. 5a): 
different hues that keep lightness, and saturation constant should be used; Sequential 
(orderable, like numerical data (or low/med/high), like yield, Fig. 5b): single or multi-hue with 
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different lightness/saturation should be used; Diverging (when there is a mid-point, like zero, or 
if we want compare with an average, like profit, Fig. 5c). Harrower and Brewer (2003) designed 
an online tool “ColorBrewer.org” to help users to select appropriate color schemes for their 
specific mapping needs. Fig. 6 presents some practical examples of application of color 
scheme.  
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a) PH           Equal Interval Quantile Standard Deviation 

   

   
b) Al             Equal Interval Quantile Standard Deviation 

Fig. 4. Thematic Maps for pH (a), and aluminium (b) using three form of classification. 

 

 

  

a)     Nominal Color Scheme                           b) Sequential Color Scheme                      c) Diverging Color Scheme  

 

Fig. 5. Three kinds of color scheme: nominal/qualitative (a), sequential (b), and diverging (c). 

Contours maps using continuous scale - despite of most common are using a discrete scale, 
some people like most continuous scale. The problem with a color ramp is that perception of color 
intensity is not linear and consequently the user could make a false assumption about what data 
value it represented. Basso et al. (2009), studying the effects of landscape position and rainfall 
on spatial variability of wheat yield and protein on a 10-ha field with rolling landscape of Southern 
Italy, presented an interpolated map of wheat yield (Fig. 7) using a continuous scale. 
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a.1) a.2) a.3) 
a) Nominal Color Scheme: maps with two (a.1), three (a.2), and four (a.3) management zones (MZs) 

 

 

 

b.1) Altitude b.2) Yield b.3) SPR 0.0 -0.1 m 

b) - Sequential Color Scheme: maps of altitude (b.1), yield (b.2), and Soil Penetration Resistance – SPR (b.3) 

   

c.1) c.2) c.3) 

c) - Diverging Color Scheme – Profit Maps (US$ ha-1) 

Fig. 6. Examples of color scheme: nominal/qualitative (a), sequential (b), and diverging (c). 

 
Source: Basso et al. (2009). 
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Fig. 7. 3D interpolated map of wheat yield (kg ha-1) for 2003. 

Management Zones 
Despite of the original concept of an MZ be is a sub-region of a field that expresses a functionally 
homogeneous combination of yield-limiting factors, the target agriculture variables can be other 
than yield, like pest & disease infestation, water content, brix, soil resistance to penetration, etc. 
A MZ can be used for one year or for several years, usually three to five. This fact is very important 
when we are choosing variables. If we are planning to use only once, that can be the case of 
weed infestation, we can use variables that are not temporally stable (like weed infestation), to 
create the MZs. But, in most cases we want to use the MZs for multiple years and we should to 
use relatively temporally stable variables like topography data (elevation, and slope), and physical 
data (Bulk density, soil texture, Soil Penetration Resistance – SPR).  
There are many approaches presented in literature for the purpose of delineating management 
zones using yield map. Among those approaches, the two approaches commonly used for 
delineating MZs using yield maps (Xiang et al., 2007) include: 1) The empirical method, which 
uses frequency distribution of yield and expertise knowledge to divide the field usually in three or 
four management zones (Blackmore, 2000); and 2) cluster analysis such as K-means and Fuzzy 
C-means (Taylor et.al., 2003; Taylor, Mcbratney, and Whelan, 2007; Yan et.al., 2007) and/or 
iterative self-organizing of data analysis technique (Fridgen, Kitchen, and Sudduth, 2000; Kitchen 
et al., 2002). While the empirical classification methods are simpler, cluster analysis allows for a 
greater degree of differentiation between and among management zones or yield classes. 
Empirical methods are mostly used when the target variable (usually yield) is used to create the 
MZs. When we use attributes that are correlated to the target variable to create the MZs, usually 
we use clustering methods. 
A typical protocol (Fig. 8) do delineate MZs is: 
Data preprocessing – Likewise the first phase of the construction of a TM, we need select the 
coordinate system and remove the outliers and inliers. 
Normalization methods - Data clustering techniques and the Fuzzy C-Means algorithm are the 
most widely used processes for defining MZs. The most common similarity measurement used is 
Euclidean distance; however, because the algorithm is sensitive to the range of the input 
variables, these variables are typically normalized dividing the value by the maximum value, by 
the mean, or sum of the observations. Schenatto et. al. (2017) analyzed the influence of data 
normalization methods for defining MZs. Tests were conducted in three experimental fields with 
9.9, 15.0, and 19.8 ha, located in Southern Brazil. The variables (attributes) used for defining MZs 
were selected using spatial correlation statistics and data were normalized using methods of 
standard score, range, and mean. The MZs were defined using the Fuzzy C-Means algorithm, 
which generated clusters of two, three, and four classes. It was proved that when the MZs 
definition uses more than one variable in the clustering process which similarity measure is 
Euclidian distance, the normalization is required. The range method was considered the overall 
best normalization method. 
Variable selection - Weighting and selection of variables are difficult tasks in cluster analysis. The 
capacity of cluster software to process a large number of variables tends to encourage users to 
use many in this process. However, one should be aware that the choice of variables and that of 
the weights assigned to them often influence the determination of clusters (Gnanadesikan, R., 
Kettenring, J., and Tsao, S., 1995).  
Three variable selection techniques that can be applied in combination with the Fuzzy C-means 
algorithm are as follows: spatial correlation analysis (Reich, 2008; Schepers et al., 2004), applied 
as described by Bazzi et al. (2013) and Schenatto et al. (2016); principal component analysis 
(PCA) (Hotelling, 1933), used by Fraisse et al. (2001), Li et al. (2007), Moral et al. (2010), and 
Cohen et al. (2013); and multivariate spatial analysis based on Moran’s index PCA (MULTISPATI-
PCA) (Dray, Saïd, and Débias, 2008), applied by Córdoba et al. (2013, 2016), and Peralta et al. 
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(2015). 
For spatial correlation analysis, Moran’s bivariate spatial autocorrelation statistic (Ord, 1975) is 
used to evaluate whether the variables have correlation and spatial autocorrelation. Thereafter, 
the variables without spatial dependence, those with no correlation with yield, and redundant 
variables are eliminated.  
PCA is a multivariate analysis technique that allows identifying the variables that account for most 
of the total variance in data sets. When using PCA, a new set of synthetic variables named 
principal components (PCs), which are uncorrelated among themselves and commonly denoted 
as linear combinations of the original variables, are obtained from the original variables through 
some transformations (Johnson and Wichern, 2007). 
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Fig. 8. Flowchart of the typical protocol do delineate management zones. 

MULTISPATI-PCA aims to add a spatial restriction on the traditional PCA, enabling it to be 
executed considering the existence of spatial dependence in sets of georeferenced data. This 
technique relies on introducing a spatial weighting matrix, which is constructed using Moran’s 
bivariate spatial autocorrelation statistic, to the PCA. Its advantage over the PCA is that the scores 
obtained with MULTISPATI-PCA maximize the spatial autocorrelation between points, while 
those obtained with PCA maximize the total variance (Córdoba et al., 2013; Dray, Saïd, and 
Débias, 2008). 
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Gavioli et al. (2016) studied the efficiency of each of these three techniques (spatial correlation 
analysis, PCA MULTISPATI-PCA and a new method proposed by them, named MPCA-SC, 
based on the combined use of Moran’s bivariate spatial autocorrelation statistic and 
MULTISPATI-PCA. The evaluation was performed by using data collected from 2010 to 2014 
from three agricultural areas in Paraná State, Brazil, with corn and soybean crops, generating 
two, three, and four classes. The delineated MZs were different according to the method used, 
and MPCA-SC provided the best performance for the Fuzzy C-means algorithm.  
Data interpolation – Likewise the first phase of the construction of a TM, we interpolate the data 
to create MZs that are continuous and smooth. Usually this task is performed with the inverse 
distance weighting (IDW) or kriging interpolation methods. 
Clustering methods - The cluster analysis methods are intended to divide the data points of an 
agricultural area into classes, which are also termed groups, by employing a similarity evaluation 
function for this division. In practice, these classes are employed to define the MZs, which can be 
subsequently delimited in the field (Boydell and McBratney, 2002; Córdoba et al., 2016). 
The terms management zone and management class are frequently used in precision agriculture 
(PA) literature and often as interchangeable terms. However, these terms are not identical. A 
management class is the area to which a particular treatment may be applied. A management 
zone is a spatially contiguous area to which a particular treatment may be applied. Thus, a 
management class may consist of numerous zones whereas a management zone can contain 
only one management class (Taylor, Mcbratney, and Whelan, 2007). 
The clustering methods are considered to be more complex than the empirical methods but they 
enable greater differentiation between classes by less subjective criteria. They employ several 
variables in the process of MZ definition. Among the many clustering algorithm options described 
in the literature, two algorithms have been frequently applied in studies related to the generation 
of MZs: K-means (MacQueen, 1967) and Fuzzy C-means (FCM) (Bezdek, 1981). Examples of 
specific software for MZ delineation using FCM are Management Zone Analyst (MZA, Fridgen et 
al., 2004), FuzME (Minasny and McBratney, 2002), Software for Defining Management Zones 
(SDUM, Bazzi et al, 2013), ZoneMAP (Zhang et al., 2009), and the user-friendly software from 
Albornoz et al. (2017). 
Gavioli et al. (2018) evaluated 20 algorithms for the clustering algorithms. The evaluation was 
conducted with data obtained between 2010 and 2015 in three commercial agricultural areas 
cultivated with soybean and corn in the state of Paraná, Brazil. From variables elevation, clay, 
sand, silt, soil penetration resistance, slope and bulk density, a method based on principal 
component analysis (PCA) was applied to generate new variables that were employed as inputs 
for the clustering algorithms. McQuitty’s Method and Fanny were considered to be the best 
algorithm because they produced the largest reductions in the variance of yield in the three areas. 
These methods generated classes with high internal homogeneity and delimited MZs without 
fragmentation (suitable for field operations). The classic FCM and K-means generated 
significantly different subareas in only two areas, in which the obtained results were similar to the 
results of McQuitty’s Method and Fanny. 
Rectification - Regardless of the method used to delimit these zones, patches or isolated pixels 
generally appear. Gonzalez and Woods (2008), Córdoba et al. (2016), Albornoz et al. (2017), and 
Betzek et al. (2018) used median and dilatation filters and erosion to reduce the fragmentation of 
MZs. 
 Evaluation of MZs - Zhang et al. (2009) commented that a method to evaluate classification 
success is to estimate how much within-zone variability is reduced for a number (n) of zones as 
compared with n - 1 zones. Generally, the total within-zone variance decreases rapidly initially 
and then approaches an asymptotic value slowly as the number of zones continues to increase. 
They proposed a two criteria method to decide the optimal number of zones: (1) overall reduction 
of variance is >50%; and (2) consecutive reduction of variance is <20%. For the case shown in 
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Fig. 9, the optimal number of zones would be 5. 

 
Source: Zhang et al. (2009). 

Fig. 9. The total within-zone variability as a percentage of initial variance normally decreases with the number of zones. 
A more advanced analysis of the performance of the clustering process can be assessed using 
indices and analysis of variance (ANOVA). The most cited in literature are: 

1) Variance Reduction (VR) (Ping and Dobermann, 2003): is calculated for the target variable, 
with the expectation that the sum of the variances of the data from MZs generated is smaller 
than the total variance (Equation 4). 

 (4) 

where c is the number of MZs;  is the proportion of the area of i-th MZ to the total area; Vmzi 
is the data variance of the i-th MZ; and Vfield is the data variance corresponding to the area as a 
whole. 
2) Fuzziness Performance Index (FPI) (Fridgen et al., 2004): it allows determining the degree 

of separation between the fuzzy c groups generated from a data set. FPI varies between 0 
and 1, such that the closer this value to 0, the lower is the degree of sharing of elements 
among the generated groups (Equation 5). 

 (5) 

where c is the number of groups; n is the number of elements in the data set; and mij is the 
element of the fuzzy pertinence matrix M. 
3) Modified Partition Entropy (MPE) (Boydell and McBratney, 2002): it is an estimate of the level 

of difficulty of organization of c groups, such that the closer the value to 0, the lower is the 
difficulty of organizing groups (Equation 6). 

 (6) 

where c is the number of groups; n is the number of elements in the data set; and mij is the 
element of the fuzzy pertinence matrix M. 
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4) Improved Cluster Validation Index (ICVI) (Gavioli et al., 2016): it was proposed to solve a 
possible problem when the estimates for FPI, MPE, and VR did not indicate similar methods 
to the definition of MZs. ICVI (Equation 8) lies between 0 and 1, such that the greater the 
value of VR and lower the values of the FPI and the MPE, the closer will the ICVI be to 0. In 
a comparison between n clustering methods, the best method is the one with the lowest ICVIi. 

 (8) 

where FPIi  is the FPI value of the i-th variable selection method; MPEi  is the MPE value of the 
i-th variable selection method; VRi  is the VR value of the i-th variable selection method; and 
Max{Index_X} represents the maximum value of the Index_X index among the n variable 
selection methods. 
5) Smoothness Index (SI) (Gavioli et al., 2016): it gives the pixel-by-pixel frequency of change 

of classes in a TM in the horizontal and vertical directions and along the diagonal 
(Equation 7). It also characterizes the smoothness of the boundary curves of the MZs. If a 
map has a completely homogeneous area, the result is SI equals to 100% because of lack 
of changes in class. On the other hand, if the map is completely generated with random 
values, the SI will have a value close to 0. 

 (7) 

where  is the number of changes in row i (horizontal);  is the number of changes in 

column j (vertical);  is the number of changes in diagonal l (right diagonal );  
is the number of changes in diagonal m (left diagonal ); k is the maximum number of pixels 
in a row, column, or diagonal;  is the possibility of changes in horizontal pixels;  is the 

possibility of changes in vertical pixels;  is the possibility of changes in the right diagonal 

; and  is the possibility of changes in the left diagonal . 

6) Analysis of Variance (ANOVA): the target variable (usually yield) is compared between 
classes by using the average target variable, and performing the Tukey’s range test to identify 
whether the generated classes showed significant differences (first, we confirmed that there 
was no spatial dependence within each class). 

7) Average silhouette coefficient (ASC) (Rousseeuw 1987): The ASC coefficient is obtained 
from the silhouette coefficient (SC) (Rousseeuw 1987), which is an evaluation index that 
measures the level of satisfactory internal formation and external separation of clusters. The 
SC value for point p, which is denoted by scp, is calculated using the average of the intra-
group distances ap and the average of the inter-group distances bp (Equation 9):  

 (9) 

where ap is the average of the distances between point p and all other points in the same group, 
and bp is the average of the distances between point p and all points in the closest group that 
contains p. The group silhouette coefficient (GSC) is obtained by calculating the average of the 
silhouette coefficients for the points of this group, and the value that corresponds to the ASC 
coefficient of k groups is obtained by calculating the average of the GSC values of the k groups. 
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The ASC values vary from -1 to 1; -1 indicates an incorrect grouping, and 1 indicates groups 
with the best intra-group formation and the best possible inter-group separation.  
8) Kappa coefficient (K) (Cohen, 1960): we want K to compare the agreement of two MZ 

delineation approach and use the classification proposed by Landis and Koch (1977): 0 < K 
≤ 0.2 indicates no agreement, 0.2 < K ≤ 0.4 weak agreement, 0.4 < K ≤ 0.6 moderate 
agreement, 0.6 < K ≤ 0.8 strong agreement, and 0.8 < K ≤ 1 very strong agreement.  

 
Final Remarks 
The use of thematic maps and management zones are essential to analyze the spatial behavior 
of selected variables but their ability to transmit the correct information depend on the competence 
and the knowledge of the author of the maps. In this sense, this work aims to help the creation of 
the referred maps. 
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